

Data-Driven Global Optimization
Methods and Applications

This book presents recent advances in data-driven global optimization

methods, combining theoretical foundations with real-world applications

to address complex engineering optimization challenges.

This book begins with an overview of the state-of-the-art, key tech-

nologies and standard benchmark problems in the field. It then delves

into several innovative approaches: space reduction-based, hybrid sur-

rogate model-based and multi-surrogate model-based global optimiza-

tion, followed by surrogate-assisted constrained global optimization,

discrete global optimization and high-dimensional global optimization.

These methods represent a variety of optimization techniques that excel

in both optimization capability and efficiency, making them ideal choices

for complex engineering optimization problems. Through benchmark test

problems and real-world engineering applications, this book illustrates the

practical implementation of these methods, linking established theories

with cutting-edge research in industrial and engineering optimization.

This is a professional book and an academic reference, which will pro-

vide valuable insights for researchers, students, engineers and practitio-

ners in a variety of fields, including optimization methods and algorithms,

engineering design and manufacturing and artificial intelligence and

machine learning.

Huachao Dong is an Associate Professor at the School of Marine Science

and Technology at Northwestern Polytechnical University, China.

His research includes underwater vehicle design, digital design, mul-

tidisciplinary optimization, digital twins for underwater vehicles and

data-driven global optimization, with over 50 peer-reviewed papers and

one book published.

Peng Wang is a Professor at the School of Marine Science and Technology

at Northwestern Polytechnical University, China. His research focuses on

surrogate-based design optimization, multidisciplinary design optimiza-

tion, multicriteria decision-making and the design of underwater vehicles,

with over 150 peer-reviewed papers and six books published.

Jinglu Li is an Assistant Researcher at Harbin Engineering University,

China. His research includes underwater vehicle design, multidisciplinary

optimization, digital twins and data-driven global optimization, and he has

published over 20 peer-reviewed papers.

Data-Driven Global
 Optimization Methods

and Applications

Huachao Dong, Peng Wang, and Jinglu Li

This project is supported by the National Natural Science Foundation of China (Grant No. 52175251).

The cover image is created by Huachao Dong.

MATLAB® and Simulink® are trademarks of The MathWorks, Inc. and are used with permission.
The MathWorks does not warrant the accuracy of the text or exercises in this book. This book’s
use or discussion of MATLAB® or Simulink® software or related products does not constitute
endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular
use of the MATLAB® and Simulink® software.

First edition published 2026
by CRC Press
2385 NW Executive Center Drive, Suite 320, Boca Raton FL 33431

and by CRC Press
4 Park Square, Milton Park, Abingdon, Oxon, OX14 4RN

CRC Press is an imprint of Taylor & Francis Group, LLC

© 2026 China Science Publishing & Media Ltd. All rights reserved.

Published by CRC Press, Taylor & Francis Group LLC, an informa Company, under exclusive license
granted by China Science Publishing & Media Ltd. for English language throughout the world
excluding Mainland China, and with non-exclusive license for electronic versions in Mainland
China.

Reasonable efforts have been made to publish reliable data and information, but the author and
publisher cannot assume responsibility for the validity of all materials or the consequences of
their use. The authors and publishers have attempted to trace the copyright holders of all material
reproduced in this publication and apologize to copyright holders if permission to publish in this
form has not been obtained. If any copyright material has not been acknowledged please write and
let us know so we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, access www.copyright.
com or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA
01923, 978-750-8400. For works that are not available on CCC please contact mpkbookspermissions@
tandf.co.uk

Trademark notice: Product or corporate names may be trademarks or registered trademarks and are
used only for identification and explanation without intent to infringe.

ISBN: 978-1-041-06575-3 (hbk)
ISBN: 978-1-041-06606-4 (pbk)
ISBN: 978-1-003-63626-7 (ebk)

DOI: 10.1201/9781003636267

Typeset in Minion
by codeMantra

https://www.copyright.com
mailto:mpkbookspermissions@tandf.co.uk
mailto:mpkbookspermissions@tandf.co.uk
https://doi.org/10.1201/9781003636267
https://www.copyright.com

v

Contents

List of Figures, xi

List of Tables, xviii

Preface, xxii

CHAPTER 1 ◾ Introduction 1

1.1 OVERVIEW 1

1.2 APPLICATION OF DDO TECHNIQUES IN
SIMULATION SYSTEMS 6

1.3 DEVELOPMENT OF DATA-DRIVEN GLOBAL
OPTIMIZATION TECHNIQUES 10

1.4 CHAPTER SUMMARY 11

REFERENCES 11

CHAPTER 2 ◾ Data-Driven Optimization Framework 17

2.1 SAMPLING METHODS 17

2.1.1 Traditional Design of Experiment Methods 17

2.1.2 Latin Hypercube Sampling 20

2.2 SURROGATE MODEL CONSTRUCTION 26

2.2.1 Polynomial Response Surface 27

2.2.2 Radial Basis Function 29

2.2.3 Kriging 30

2.3 DYNAMIC SAMPLING TECHNIQUES 32

2.3.1 Minimizing the Predictor 33

2.3.2 Maximum Improvement Probability Criterion 34

vi ◾ Contents

2.3.3 Maximum Improvement Expectation Criterion 36

2.4 CHAPTER SUMMARY 37

REFERENCES 38

CHAPTER 3 ◾ Benchmark Functions for Data-Driven
Optimization Methods 39

3.1 INTRODUCTION 39

3.2 UNCONSTRAINED OPTIMIZATION PROBLEMS 40

3.2.1 Unconstrained Low-Dimensional Problems 40

3.2.2 Unconstrained High-Dimensional Problems 63

3.3 CONSTRAINED OPTIMIZATION PROBLEMS 70

3.3.1 Constrained Low-Dimensional Problems 70

3.3.2 Constrained High-Dimensional Problems 76

3.4 ENGINEERING APPLICATION CASES 82

3.4.1 Tension/Compression Spring Design (TSD) 82

3.4.2 Welded Beam Design (WBD) 83

3.4.3 Pressure Vessel Design (PVD) 84

3.4.4 Speed Reducer Design (SRD/SR7) 85

3.4.5 Stepped Cantilever Beam Design (SCBD) 86

3.5 CHAPTER SUMMARY 87

REFERENCES 88

CHAPTER 4 ◾ MSSR: Multi-Start Space Reduction
Surrogate-Based Global Optimization Method 89

4.1 INTRODUCTION 89

4.2 KRIGING-BASED MODEL 91

4.3 THE PROPOSED MULTI-START OPTIMIZATION
PROCESS 91

4.4 SPACE REDUCTION APPROACH 95

4.5 THE ENTIRE OPTIMIZATION PROCESS 98

4.6 TEST CASES AND RESULTS 102

4.6.1 The Algorithmic Test 103

4.6.2 Engineering Case Testing 108

Contents ◾ vii

4.7 CHAPTER SUMMARY 111

NOTE 112

REFERENCES 112

CHAPTER 5 ◾ SOCE: Surrogate-Based Optimization with
Clustering-Based Space Exploration for
Expensive Multimodal Problems 114

5.1 INTRODUCTION 114

5.2 SOCE ALGORITHM 116

5.2.1 Surrogate Modeling and Optimization 116

5.2.2 Initialization and Loop of SOCE 118

5.2.3 Clustering-Based Space Exploration 120

5.3 OVERALL OPTIMIZATION FRAMEWORK OF SOCE 124

5.3.1 Overall Optimization Process 124

5.3.2 Parameters Analysis of SOCE 128

5.4 EXPERIMENTS ON BENCHMARK EXAMPLES 131

5.4.1 Comparison Test on Bound-Constrained Examples 131

5.4.2 Comparison Test on Nonlinear-Constrained

Examples 137

5.5 CHAPTER SUMMARY 141

NOTE 142

REFERENCES 142

CHAPTER 6 ◾ HSOSR: Hybrid Surrogate-Based Optimization
Using Space Reduction for Expensive
Black-Box Functions 144

6.1 INTRODUCTION 144

6.2 HSOSR ALGORITHM 146

6.2.1 Surrogate Models – Radial Basis Function 146

6.2.2 HSOSR Construction Process 146

6.3 COMPARISON EXPERIMENTS 155

6.4 CHAPTER SUMMARY 163

NOTE 163

REFERENCES 164

viii ◾ Contents

CHAPTER 7 ◾ MGOSIC: Multi-Surrogate-Based Global
Optimization Using a Score-Based Infill
Criterion 166

7.1 INTRODUCTION 166

7.2 ALGORITHM FLOW 169

7.3 MULTI-POINT INFILL CRITERION 172

7.4 EXPLORATION OF UNKNOWN AREA 179

7.5 COMPARISON EXPERIMENTS 180

7.5.1 Preliminary Comparison and Analysis 180

7.5.2 Analysis and Discussion 183

7.5.3 Engineering Applications 188

7.6 CHAPTER SUMMARY 195

NOTE 195

REFERENCES 195

CHAPTER 8 ◾ SCGOSR: Surrogate-Based Constrained
Global Optimization Using Space Reduction 199

8.1 INTRODUCTION 199

8.2 SCGOSR ALGORITHM 201

8.2.1 Multi-Start Constrained Optimization 201

8.2.2 Space Reduction for Constrained Optimization 203

8.2.3 Exploration on Unknown Area 205

8.2.4 Optimization Flow 206

8.3 COMPUTATIONAL EXPERIMENTS 208

8.3.1 Preliminary Test 209

8.3.2 Comparison and Analyses 209

8.3.3 Further Comparison and Analyses 217

8.3.4 Specific Analyses on Space Reduction 219

8.4 CHAPTER SUMMARY 221

NOTE 222

REFERENCES 222

Contents ◾ ix

CHAPTER 9 ◾ KTLBO: Kriging-Assisted
Teaching–Learning-Based Optimization
to Solve Computationally Expensive
Constrained Problems 224

9.1 INTRODUCTION 224

9.2 TEACHING–LEARNING-BASED OPTIMIZATION 228

9.3 THE PROPOSED KTLBO 229

9.3.1 Initialization of KTLBO 230

9.3.2 Kriging-Assisted Teaching Phase 231

9.3.3 Kriging-Assisted Learning Phase 236

9.3.4 Overall Optimization Framework of KTLBO 239

9.4 COMPARISON EXPERIMENTS 239

9.5 ENGINEERING APPLICATIONS 255

9.6 CHAPTER SUMMARY 258

NOTE 259

REFERENCES 259

CHAPTER 10 ◾ KDGO: Kriging-Assisted Discrete Global
Optimization for Black-Box Problems with
Costly Objective and Constraints 262

10.1 INTRODUCTION 262

10.2 DISCRETE OPTIMIZATION CONSTRUCTION 265

10.2.1 Multi-Start Knowledge Mining on Kriging 267

10.2.2 Constraint Handling 274

10.3 OVERALL OPTIMIZATION FRAMEWORK 275

10.4 ALGORITHMIC TEST 277

10.4.1 Mathematical Example Tests 277

10.4.2 Practical Engineering Application 284

10.5 CHAPTER SUMMARY 288

NOTE 288

REFERENCES 288

x ◾ Contents

CHAPTER 11 ◾ SAGWO: Surrogate-Assisted Gray Wolf
Optimization for High-Dimensional,
Computationally Expensive Black-Box
Problems 291

11.1 INTRODUCTION 291

11.2 GRAY WOLF OPTIMIZATION 294

11.3 SURROGATE-ASSISTED GWO 295

11.3.1 Surrogate-Assisted Metaheuristic Exploration 297

11.3.2 Knowledge Mining on Surrogate Models 300

11.3.3 Optimization Flow 302

11.4 EXPERIMENTS AND DISCUSSION 303

11.5 CHAPTER SUMMARY 317

NOTE 317

REFERENCES 318

INDEX, 321

xi

Figures

Figure 1.1 Simulation system of a blend-wing-body

underwater glider. 2

Figure 1.2 Application process of DACE in engineering design. 3

Figure 1.3 Direct integration of optimizer with black-box model

for optimi zation. 5

Figure 1.4 Optimization of complex black-box model using

surrogate model and optimizer. 5

Figure 2.1 BBD sampling method. 18

Figure 2.2 CCD sampling method. 19

Figure 2.3 LHS (25 samples). 20

Figure 2.4 Grid sampling (25 samples). 21

Figure 2.5 Explanation of Latin hypercube and Latin hypercube

sampling. (a) Permutation without repetition.

(b) Random situation 1. (c) Random situation 2.

(d) Random situation 3. 21

Figure 2.6 Grid sampling (225 samples obtained). 22

Figure 2.7 After 100 iterations using max–min criterion. 23

Figure 2.8 After 1,000 iterations using max–min criterion. 23

Figure 2.9 After 104 iterations using max–min criterion. 24

Figure 2.10 Symmetric Latin hypercube sampling points for even

and odd cases. (a) Even case. (b) Odd case. 25

xii ◾ Figures

Figure 2.11 SLHS with 25 samples. 27

Figure 2.12 OLHS with 25 samples. 28

Figure 2.13 Illustration of Kriging prediction on a 1D example. 33

Figure 2.14 MP strategy. 34

Figure 2.15 MIPC strategy. 35

Figure 2.16 MIEC strategy. 36

Figure 3.1 Generalized polynomial function. 41

Figure 3.2 Zakharov function. 42

Figure 3.3 Beale function. 42

Figure 3.4 Six-hump camel-back function. 43

Figure 3.5 Leon function. 44

Figure 3.6 Ackley function. 46

Figure 3.7 Griewank function. 47

Figure 3.8 Peaks function. 48

Figure 3.9 Styblinski–Tang function. 48

Figure 3.10 Alpine function. 49

Figure 3.11 F1 function. 50

Figure 3.12 Himmelblau function. 51

Figure 3.13 Shubert function. 52

Figure 3.14 Banana function. 53

Figure 3.15 Sasena function. 54

Figure 3.16 Goldstein–Price function. 55

Figure 3.17 Rastrigin function. 55

Figure 3.18 Alpine1 function. 56

Figure 3.19 Alpine2 function. 57

Figure 3.20 Bird function. 58

Figures ◾ xiii

Figure 3.21 Easom function. 59

Figure 3.22 Schaffer2 function. 60

Figure 3.23 Levy function. 61

Figure 3.24 Dixon–Price function. 62

Figure 3.25 Schwefel3 function. 64

Figure 3.26 Trid function. 66

Figure 3.27 Sum squares function. 67

Figure 3.28 Sphere function. 68

Figure 3.29 TSD. 82

Figure 3.30 WBD. 83

Figure 3.31 PVD. 84

Figure 3.32 SCBD. 86

Figure 4.1 Original Banana function. 91

Figure 4.2 Kriging prediction with 15 samples. 92

Figure 4.3 Estimated MSE of Kriging. 95

Figure 4.4 Multi-start process on Kriging. 96

Figure 4.5 Flowchart of the MSSR optimization process. 99

Figure 4.6 (a–e) MSSR optimization process on benchmark

Banana function. 101

Figure 4.7 (a–f) Iterative results on high-dimensional problems. 107

Figure 4.8 Execution time of MSSR, SEUMRE and HAM on

benchmark functions. 108

Figure 4.9 (a–f) Iterative results obtained by MSSR on

constrained optimization problems. 110

Figure 5.1 (a–f) Clustering-based exploration on sparsely

sampled regions. 123

Figure 5.2 Flowchart of SOCE. 125

xiv ◾ Figures

Figure 5.3 Optimization process of SOCE on Shubert. 126

Figure 5.4 Optimization process in other multimodal arithmetic

cases. 127

Figure 5.5 Histogram of mean values of NFE. 136

Figure 5.6 Test results of SOCE on 50-dimensional Rosenbrock. 137

Figure 5.7 SOCE on nonlinearly constrained problems. 139

Figure 6.1 (a–d) Graphic demonstration of GW function. 149

Figure 6.2 Graphic demonstration of Ackley function. 150

Figure 6.3 MSE of Kriging. 153

Figure 6.4 Samples updating by maximizing MSE. 154

Figure 6.5 Flowchart of HSOSR. 156

Figure 6.6 Iteration diagram of the six algorithms on 15 cases. 157

Figure 7.1 Construction of surrogate models. 170

Figure 7.2 Flowchart of MGOSIC. 172

Figure 7.3 Ackley and its surrogate models. (a) Original Ackley

function. (b) Kriging model of Ackley. (c) RBF model

of Ackley. (d) QRS model of Ackley. 175

Figure 7.4 Illustration of scoring strategy. 176

Figure 7.5 Illustration of max–min approach. 177

Figure 7.6 Search process of MGOSIC. (a) Original Ackley

function.

(b) Kriging model of Ackley. 178

Figure 7.7 Iterative results of MGOSIC, MSSR and HAM.

(a) ACK. (b) BA. (c) Peak. (d) SE. (e) GP. (f) F1. (g) HM.

(h) GF. (i) RS. (j) Levy. (k) DP. (l) ST. (m) HN6.

(n) Schw. (o) GW. (p) Trid. (q) Sums. (r) F16. (s) Sphere. 184

Figure 7.8 Design space of the hydrofoil. 190

Figure 7.9 Grid partition diagram. 191

Figures ◾ xv

Figure 7.10 Pressure contour of NACA0012. 192

Figure 7.11 Comparison of iterative results. 193

Figure 7.12 Pressure contour of the optimal shape. 193

Figure 7.13 Comparison diagram of shapes. 194

Figure 7.14 Comparison diagram of pressure curves. 194

Figure 8.1 Flowchart of SCGOSR. 207

Figure 8.2 SCGOSR on benchmark cases. (a) SCGOSR on BR.

(b) SCGOSR on SE. (c) SCGOSR on GO. (d) SCGOSR

on G4. (e) SCGOSR on G6. (f) SCGOSR on G8.

(g) SCGOSR on G7. (h) Clear results of SCGOSR on

G7. (i) SCGOSR on G9. (j) Clear results of SCGOSR on

G9. (k) SCGOSR on PVD. (l) SCGOSR on SRD.

(m) SCGOSR on WBD. (n) Clear results of SCGOSR

on WBD. (o) SCGOSR on TSD. (p) SCGOSR on SCBD. 210

Figure 8.3 Iterative results of SCGOSR on newBranin.

(a) Iterations 1–4. (b) Iterations 5–9. (c) Iterations

10–15. (d) Iterations 16–17. 219

Figure 8.4 Iterative results of SCGOSR on Gomez. (a) Iterations

1–4. (b) Iterations 5–9. (c) Iterations 10–15.

(d) Iterations 16–17. 220

Figure 9.1 Illustration of TLBO. 228

Figure 9.2 Data flow of KTLBO. 229

Figure 9.3 Data flow of initial phase. 231

Figure 9.4 Data flow of Kriging-assisted teaching phase. 233

Figure 9.5 Illustration of teaching-based prescreening theory. 234

Figure 9.6 Data flow of Kriging-assisted learning phase. 236

Figure 9.7 Illustration of learning-based prescreening theory. 237

Figure 9.8 Overall optimization flow of KTLBO. 240

Figure 9.9 Iterative results of KTLBO on the 18 cases. 247

xvi ◾ Figures

Figure 9.10 Illustration of BWBUG’s pressure shell. 256

Figure 9.11 Iterative results of KTLBO. 257

Figure 9.12 Iterative results of SCGOSR. 257

Figure 9.13 Equivalent stress and buckling results of DoE’s best

sample. 258

Figure 9.14 Equivalent stress and first mode of KTLBO’s best

sample. 258

Figure 9.15 Equivalent stress and first mode of SCGOSR’s best

sample. 258

Figure 10.1 Different discrete design spaces. 266

Figure 10.2 Step1: Multi-start optimization. 267

Figure 10.3 Step2: Projection to matrix D. 268

Figure 10.4 Step3: Grid sampling. 268

Figure 10.5 Step4: Selection by EI. 268

Figure 10.6 Overall optimization flow of KDGO. 276

Figure 10.7 Structure parameters and illustration. 285

Figure 10.8 Illustration of mesh generation. 286

Figure 10.9 Iterative process of KDGO on structure design. 286

Figure 10.10 Equivalent stress diagram. (a) DoE-opt.

(b) Final-opt. 287

Figure 10.11 Total deformation diagram. (a) DoE-opt.

(b) Final-opt. 288

Figure 11.1 Surrogate-assisted gray wolf optimization. 296

Figure 11.2 Generation of initial wolf pack. 297

Figure 11.3 Data flow of the proposed metaheuristic exploration. 298

Figure 11.4 Demonstration of multi-start optimization search. 301

Figure 11.5 Flow chart of SAGWO. 303

Figures ◾ xvii

Figure 11.6 Iteration graph on 30-dimensional cases. (a) F1

Ellipsoid function. (b) F2 Rosenbrock function.

(c) F3 Ackley function. (d) F4 Griewank function.

(e) F5 shifted rotated Rastrigin function. (f) F6

rotated hybrid composition function. (g) F7 rotated

hybrid composition function. 307

Figure 11.7 Iteration graph on 50-dimensional cases. (a) F1

Ellipsoid function. (b) F2 Rosenbrock function.

(c) F3 Ackley function. (d) F4 Griewank function.

(e) F5 shifted rotated Rastrigin function. (f) F6 rotated

hybrid composition function. (g) F7 rotated hybrid

composition function. 311

Figure 11.8 Iteration graph on 100-dimensional cases. (a) F1

Ellipsoid function. (b) F2 Rosenbrock function.

(c) F3 Ackley function. (d) F4 Griewank function.

(e) F5 shifted rotated Rastrigin function. (f) F6

rotated hybrid composition function. (g) F7 rotated

hybrid composition function. 314

xviii

Tables

Table 3.1 Parameters for g19 80

Table 4.1 Bound-Constrained Benchmark Problems for Global

Optimization 102

Table 4.2 Preliminary Comparison Results on Seven

Representative Benchmark Functions 103

Table 4.3 Mean Values of NFE and Ranges of Optimal Values

Obtained by the Three Algorithms 105

Table 4.4 Specific Statistical Results of NFE Obtained by MSSR,

SEUMRE and HAM 106

Table 4.5 Global Optimal Results Obtained by MSSR on

Nonlinear Constrained Problems 109

Table 4.6 Summary of Results Obtained by MSSR on G6, TSD

and Him 111

Table 4.7 Summary of Results Obtained by MSSR on WBD, PVD

and SRD 111

Table 5.1 Parametric Analysis of NCC and Ratio on Shubert 128

Table 5.2 Parametric Analysis of NSP on Shubert 129

Table 5.3 Parametric Analysis of MANS on Shubert 129

Table 5.4 Parametric Analysis of NCC and Ratio on GW 130

Table 5.5 Parametric Analysis of NSP on GW 131

Table 5.6 Parametric Analysis of MANS on GW 131

Tables ◾ xix

Table 5.7 Obtained Values of SOCE and MSEGO 132

Table 5.8 NFE of SOCE and MSEGO 132

Table 5.9 Bound-Constrained Benchmark Problems for Global

Optimization 133

Table 5.10 Best Values Obtained by SOCE, KMS, EGO and HAM 134

Table 5.11 Specific Statistical Results of NFE Obtained by SOCE,

KMS, EGO and HAM 135

Table 5.12 Nonlinear-Constrained Benchmark Problems for

Global Optimization 138

Table 5.13 Statistical Results of Function Values on

Nonlinear-Constrained Problems 140

Table 5.14 Statistical Results of NFE on Nonlinear-Constrained

Problems 140

Table 6.1 Mean NFE and Final Best Values of HSOSR, MKRG

and MRBF 160

Table 6.2 Statistical NFE of HSOSR, MKRG and MRBF 161

Table 6.3 Mean NFE and Final Best Values of HAM, EGO and

CAND 161

Table 6.4 Statistical NFE of HAM, EGO and CAND 162

Table 6.5 Summary of the Final Results 163

Table 7.1 Comparison on Low-Dimensional Problems 180

Table 7.2 Comparison on Higher-Dimensional Problems 181

Table 7.3 Obtained Values of EGO, MSEGO, SOCE and MGOSIC 182

Table 7.4 Mean NFE and NIT of EGO, MSEGO, SOCE and

MGOSIC 183

Table 7.5 Statistical NFE of MGOSIC, MSSR and HAM on All

Cases 186

Table 7.6 Statistical NIT of MGOSIC, MSSR and

HAM on All Cases 187

xx ◾ Tables

Table 7.7 Statistical Best Values of MGOSIC, MSSR and

HAM on All Cases 187

Table 7.8 Best Results Obtained from MGOSIC, MSSR and HAM 192

Table 8.1 Nonlinear Constrained Optimization Cases 208

Table 8.2 Preliminary Test Results of SCGOSR 209

Table 8.3 Best Values and Mean NFE of SCGOSR, RBFCGOSR,

and SCGO 213

Table 8.4 Statistical NFE of SCGOSR, RBFCGOSR and SCGO 214

Table 8.5 Best Values and Mean NFE of MSSR, MS and MSRBF 215

Table 8.6 Statistical NFE of MSSR, MS and MSRBF 216

Table 8.7 Comparison of SCGOSR and KCGO 217

Table 8.8 Comparison on newBranin and Gomez 218

Table 8.9 Best Values and Mean NFE of SCGOSR_S1 and

SCGOSR_S2 220

Table 8.10 Ranking of SCGOSR, SCGOSR_S1 and SCGOSR_S2 221

Table 9.1 Specific Characteristics of 18 Test Cases 241

Table 9.2 Statistical Results on CEC2006 Cases

(NFE = 200)—Part 1 242

Table 9.3 Statistical Results on CEC2006 Cases

(NFE = 200)—Part 2 243

Table 9.4 Statistical Results on GO, SE and Engineering Cases

(NFE = 200) 246

Table 9.5 Statistical Results on CEC2006 Cases

(NFE = 500)—Part 1 251

Table 9.6 Statistical Results on CEC2006 Cases

(NFE = 500)—Part 2 252

Table 9.7 Statistical Results on GO, SE and Engineering Cases

(NFE = 500) 254

Table 9.8 Obtained Best Solutions of BWBUG’s Structure Design 257

Tables ◾ xxi

Table 9.9 Optimal Response Values for BWBUG’s

Structure Design 257

Table 10.1 Specific Information about the Test Cases 278

Table 10.2 Comparison Results on Box-Constrained Cases 279

Table 10.3 Comparison Results on Inequality-Constrained

Cases-Part1 280

Table 10.4 Comparison Results on Inequality-Constrained

Cases-Part2 281

Table 10.5 Comparison Results on Engineering

Applications-Part1 282

Table 10.6 Comparison Results on Engineering

Applications-Part2 283

Table 10.7 Best Solutions in Different Phases 287

Table 10.8 Best Response Values in Different Phases 287

Table 11.1 Benchmark Test Functions 304

Table 11.2 Statistical Results on 30-Dimensional Test Functions 305

Table 11.3 Statistical Results on 50-Dimensional Test Functions 308

Table 11.4 Statistical Results on 100-Dimensional Test Functions 312

Table 11.5 Summary of Ranks 315

Table 11.6 Summary of Ranks on Different Cases 315

Table 11.7 Average Computation Time of Different Algorithms 316

xxii

Preface

The rapid advancement of computer technology and the growing

demand for high-precision industrial design have established simu-

lation as a cornerstone of modern engineering practices. In the fields of

mechanical and electronic systems, many complex and computationally

expensive black-box models are widely used. These models are character-

ized by their reliance on known input-output relationships without reveal-

ing internal operations. Expensive black-box models, such as automotive

crash simulations, aerodynamic calculations for aircraft design, under-

water vehicle shape optimization and structural stability analysis, often

require substantial computational resources. Each simulation run may

range from several minutes to several hours, and optimizing the design

parameters for these models can result in prohibitively high computa-

tional costs.

To overcome these challenges, data-driven optimization techniques

have emerged as a promising solution. By leveraging data and compu-

tational intelligence, these methods significantly enhance efficiency and

accuracy in optimization processes, offering transformative potential for

complex engineering design tasks. These techniques can be broadly cat-

egorized into offline and online data-driven optimization. Offline opti-

mization involves generating a large dataset at the outset, constructing

surrogate models with satisfactory accuracy, and keeping these mod-

els static throughout the optimization process. While this approach is

straightforward and easy to implement, especially for system optimiza-

tion, it has notable limitations: it lacks adaptability, heavily relies on ini-

tial sample points and often exhibits poor local approximation accuracy

near the optimum, making it less suitable for global optimization tasks.

In contrast, online optimization dynamically updates the database and

surrogate models during the iterative process. This adaptability enhances

prediction accuracy near the optimum, enabling precise solutions while

Preface ◾ xxiii

significantly reducing computational costs. Online methods are particu-

larly well-suited for scenarios demanding high accuracy and efficiency in

global optimization.

Despite their advantages, existing data-driven optimization methods

often rely on single-point sampling strategies, which lead to a high num-

ber of iterations and hinder parallel computation. Future developments

in optimization should focus on enabling parallel execution of expensive

simulations during iterative processes, highlighting the critical role of

multi-point sampling strategies. Furthermore, single surrogate models,

while effective for specific problem types, may exhibit significant predic-

tion errors when applied to others. For example, polynomial response sur-

face models are well-suited for approximating polynomial-type problems

but struggle with trigonometric function-based problems. This under-

scores the need for hybrid surrogate modeling techniques or multi-source

prediction optimization strategies that combine the strengths of different

models to improve overall performance and robustness. In addition, given

the inherent error tolerances in real-world manufacturing processes, solu-

tions derived from discrete optimization often better align with actual pro-

duction requirements. As such, advancing global optimization techniques

tailored for discrete data-driven problems is a pressing research priority.

Given the current state of development and the challenges in this field,

the authors and their research team have undertaken extensive studies in

related areas. This book consolidates and presents the data-driven global

optimization methods developed by the team over recent years. The con-

tent is organized into the following chapters:

• Chapter 1 introduces the development status of advanced data-driven

optimization methods.

• Chapter 2 provides background knowledge on data-driven optimi-

zation techniques.

• Chapter 3 presents commonly used test functions for validating

data-driven optimization methods.

• Chapter 4 introduces a multi-start space reduction method based on

Kriging models.

• Chapter 5 describes a global optimization method combining

Kriging and polynomial response surface models.

xxiv ◾ Preface

• Chapter 6 presents a hybrid global optimization method combining

radial basis function and Kriging models.

• Chapter 7 introduces a score-based multi-surrogate global optimiza-

tion method.

• Chapter 8 describes a surrogate-based constrained global optimiza-

tion algorithm using space reduction.

• Chapter 9 presents a Kriging-assisted teaching-learning-based con-

strained optimization method.

• Chapter 10 describes a Kriging-assisted discrete global optimization

method.

• Chapter 11 introduces a surrogate-assisted gray wolf optimization for

high-dimensional, computationally expensive black-box problems.

This research has been supported by several grants, including the

National Natural Science Foundation of China (Grant No. 52175251)

and the Postdoctoral Fellowship Program of CPSF under Grant Number

GZC20242194. The authors express their sincere gratitude for this sup-

port. Special thanks are extended to the Autonomous Underwater Vehicle

Team of Northwestern Polytechnical University, current doctoral students

Xiao-Yao Han, Wenxin Wang, Weibin Ma, Yunyi Zhang and Wenyi Long

as well as master’s candidates Jing Pan and Jingxue Shen for their assis-

tance in preparing this book.

Data-driven global optimization methods represent a relatively new

and rapidly evolving research field. The techniques introduced in this book

reflect cutting-edge developments from the past 5 years, delivering high

optimization efficiency and robust performance. This book is designed as

a reference for researchers and engineers involved in the design of com-

plex electromechanical systems. To support comprehension and practi-

cal application, this book includes numerous mathematical examples and

engineering case studies, making it a valuable resource for both theoreti-

cal exploration and real-world problem-solving.

Given the authors’ limited expertise, errors and omissions may inevi-

tably occur in this book. The authors welcome feedback and constructive

criticism from readers to improve future editions and enhance the quality

of the work.

C H A P T E R 1

Introduction

1.1 OVERVIEW

The rapid advancement of computer technology and the increasing demand

for high-precision industrial products have made simulation-based com-

putation an indispensable tool in modern engineering design. In the

field of mechanical and electronic engineering, there are numerous com-

plex and costly black-box models (Miller et al., 2011; Steer et al., 2002).

A black-box model is defined as a model where the input-output rela-

tionship is known, but the internal computational mechanisms remain

unknown (Bunge, 1963). Costly black-box models refer to those models in

which a set of inputs produces a set of outputs at the expense of significant

computational resources, such as in automotive crash simulations, aero-

dynamic calculations for aircraft shapes, underwater vehicle design and

structural stability analysis (Liebeck, 2004; Qin et al., 2004). Each simu-

lation can take anywhere from several minutes to several hours. When

designers seek a feasible set of design parameters within the design space

for costly black-box models, the computational cost is typically very high.

To address this issue, data-driven optimization (DDO) techniques have

emerged. Since DDO typically involves the use of surrogate models, this

approach is also referred to as surrogate-based optimization (SBO) in the

fields of mechanical design and aerospace engineering. Figure 1.1 illus-

trates the simulation system of the blend-wing-body underwater glider,

showcasing the computational time involved.

1DOI: 10.1201/9781003636267-1

https://doi.org/10.1201/9781003636267‑1

2 ◾ Data-Driven Global Optimization Methods and Applications

Over the past two decades, computer-aided design and engineering

(CAD/CAE) have experienced rapid development. Complex computa-

tional models and time-consuming simulations are frequently used to

model system behavior and improve design quality. It has been reported

that a single automotive crash simulation conducted by Ford can take

between 36 and 160 hours (Antoine & Kroo, 2005; Gu, 2001; Gur et al.,

2010; Zhang et al., 2006). Consider a two-dimensional optimization

problem where 50 iterations are required, with each iteration involv-

ing one crash simulation. The total computational time would then

range from 75 days to 11 months. Consequently, traditional optimiza-

tion solvers become infeasible when applied to complex and time-con-

suming black-box models. Reducing the number of evaluations of the

complex black-box model is crucial for minimizing computational

costs. Traditional global optimization methods, like genetic algorithms

(GA), explore the design space randomly and update the population.

After hundreds or thousands of evaluations of the objective and con-

straint functions, an optimal solution can be found. However, the heavy

FIGURE 1.1 Simulation system of a blend-wing-body underwater glider.

Introduction ◾ 3

reliance on objective function analysis in methods like GA makes them

unsuitable for handling computationally expensive simulation-based

optimization problems.

In 1989, Sacks et al. (1989) introduced the concept of design and anal-

ysis of computer experiments (DACE). Figure 1.2 illustrates the applica-

tion process of DACE in engineering design. Typically, multiple sets of

computer experiments require repeated execution of computational codes,

and each execution is time-consuming, which is referred to as the “expen-

sive simulation” problem. A set of inputs undergoes expensive simulation

to produce a set of outputs, which serve as responses and can form the

objective or constraint functions in an optimization problem. As opti-

mization progresses, the computational cost increases significantly with

each iteration. To reduce this computational burden, the input and output

values obtained from the simulation experiments are used to construct

a “cheaper” surrogate model (also known as an approximation model),

which replaces the original complex system and predicts the output for

unknown inputs. To this day, many researchers continue to explore opti-

mization based on surrogate models.

FIGURE 1.2 Application process of DACE in engineering design.

4 ◾ Data-Driven Global Optimization Methods and Applications

Wang and Shan (2006) pointed out that computationally intensive design

problems are becoming increasingly common in industry, with computa-

tional loads typically arising from expensive simulation analyses or complex

simulation procedures aimed at approximating real physical test results.

Simpson et al. (2008) noted that over the past two decades, surrogate model

techniques have achieved remarkable progress in the field of experimental

design analysis. Based on the performance of surrogate models, future efforts

should focus on multi-fidelity surrogate models and the feasibility of using

surrogate models in commercial software. Forrester and Keane (2009) high-

lighted that aerospace design calculations require long runtimes and expen-

sive computer simulations, thereby driving the need for efficient applications

of surrogate models in aerospace design optimization. Younis and Dong

(2010a) stated that computationally intensive simulation analyses support

modern engineering design, and surrogate models can effectively reduce the

number of evaluations required for expensive objective and constraint simu-

lations. Tabatabaei et al. (2015) emphasized that obtaining objective and con-

straint function values through real computational experiments incurs high

computational costs, such as in thermodynamic analysis, structural analy-

sis, fluid dynamics analysis, or complex simulations involving differential

equations. The basic idea to address this time-consuming issue is to build a

computationally inexpensive surrogate model to replace the real experiment.

Bartz-Beielstein and Zaefferer (2017) noted that SBO plays an increasingly

important role in today’s modeling, simulation and optimization processes.

Additionally, surrogate model optimization techniques can effectively solve

complex optimization problems with discrete design domains in the real

world. Liu et al. (2018) pointed out that surrogate models, as a widely adopted

technique, can reduce the number of time-consuming simulation calcula-

tions and adaptive surrogate model techniques, which learn from existing

data and models, have gained considerable attention from researchers.

As shown in Figure 1.3, traditional optimization methods often directly

link complex black-box analysis models to optimization solvers for itera-

tive calculations. General optimization algorithms typically require

numerous iterations to achieve an optimal result, and if the analysis model

is an expensive black-box model, the computational burden increases sig-

nificantly. For example, if a GA calls the complex black-box model 1,000

times to obtain an optimal solution, with each iteration taking 1 minute to

compute the output, the total computational time would be 1,000 minutes.

The substantial increase in computational load necessitates a reduction in

the number of evaluations of the analysis model (Younis & Dong, 2010b).

Introduction ◾ 5

As shown in Figure 1.4, by systematically conducting multiple experi-

mental analyses, multiple sets of corresponding input-output pairs can

be obtained. By combining these input-output pairs, a “cheap predictive

model,” or surrogate model, can be constructed. Classical optimization

algorithms can then be directly applied to the surrogate model to itera-

tively obtain an optimal solution. However, the so-called optimal solution

is a predicted estimate of the “optimal solution,” and its accuracy depends

on the experimental analysis method and the number of tests conducted.

Achieving a balance between reducing computational costs and obtaining

satisfactory results requires intelligent strategies, which will be discussed

in detail in the following sections.

In summary, SBO is an optimization strategy based on surrogate mod-

els. Figure 1.4 simply illustrates the general relationships between com-

plex black-box analysis models, surrogate models, optimization solvers

FIGURE 1.3 Direct integration of optimizer with black-box model for

optimi zation.

FIGURE 1.4 Optimization of complex black-box model using surrogate model

and optimizer.

6 ◾ Data-Driven Global Optimization Methods and Applications

and their respective inputs and outputs. However, to obtain an optimal

solution to practical problems, the surrogate model needs to be updated

iteratively to improve its predictive accuracy adaptively. Additionally,

algorithms need to intelligently select the best predictive results to balance

computational cost and accuracy.

1.2 APPLICATION OF DDO TECHNIQUES
IN SIMULATION SYSTEMS

With the development of simulation technologies and the increasing com-

plexity of modern product designs, simulation analysis has been frequently

applied in system design and optimization, providing precise analysis but

also resulting in high computational costs. Consequently, DDO tech-

niques have become a key solution for optimizing time-consuming simu-

lation systems. Common surrogate model methods used in DDO include

polynomial response surfaces (PRS), Kriging, radial basis functions (RBF)

and support vector regression (SVR) (Haftka et al., 2016).

NASA funded early research on response surface methods, which led to

the development of several key theories based on response surface meth-

odology (RSM) (Cox & John, 1992; Dennis & Torczon, 1997; Giunta et al.,

1997; Otto et al., 1997; Wujek et al., 1997). RSM typically utilizes polyno-

mials as basis functions and applies the least squares method to construct

a predictive model (Box & Wilson, 2018). Virginia Tech developed a vari-

able complexity response surface modeling (VCRSM) approach (Giunta

et al., 1996), which uses information of varying fidelity to reduce the

design space, supplementing expensive samples only in the regions most

likely to contain the optimal solution, thus reducing the computational

cost. The University of Notre Dame developed a concurrent subspace opti-

mization (CSSO) method (Renaud & Gabriele, 1991; Renaud & Gabriele,

1994; Wujek et al., 1996) and applied it to multidisciplinary design optimi-

zation (MDO) to coordinate the optimization of various subspaces. Haftka

et al. (1998) and Hardy (1971) also conducted extensive research on RSM

in mechanical and aerospace engineering.

In the past decade, most researchers have shifted their focus from PRS

methods to a variety of surrogate model techniques, including RBF (Dyn

et al., 1986), Kriging (Cressie, 1988), SVR (Smola & lkopf, 2004) and

artificial neural networks (ANNs) (Paliwal & Kumar, 2009). Numerous

scholars both domestically and internationally have proposed optimi-

zation methods based on these surrogate models and applied them to

engineering design fields. In aerospace engineering, SBO has been used

Introduction ◾ 7

for designing high-speed civil transport aircraft (Booker et al., 1998),

wing shape optimization (Rai & Madavan, 2000), diffuser shape opti-

mization (Madsen et al., 2000) and supersonic turbines (Papila et al.,

2002). Iuliano and Pérez (2016) proposed an SVR-based SBO method to

optimize aerodynamic shapes. This method combines evolutionary algo-

rithms (EA) with an intelligent estimation search with sequential learn-

ing (IES-SL) sampling strategy to efficiently explore the design space.

The surrogate model constructed by SVR replaces computational fluid

dynamics (CFD) to calculate the objective function values, ultimately

achieving the globally optimal aerodynamic shape while reducing com-

putational costs. Iuliano and Pérez (2016) introduced a surrogate model

method that implements proper orthogonal decomposition (POD) of

aerodynamic flow fields and reconstructs aerodynamic flow fields at

unknown design points using RBF. Additionally, to achieve global opti-

mization, this method was coupled with EA and two sampling strategies

based on goal enhancement and prediction error reduction were pro-

posed. As a result, only 100 CFD calls were needed to obtain the global

optimal solution. Ulaganathan and Asproulis (2013) argued that a key

challenge in the development of aerospace systems lies in understanding

system behavior. While high-precision computations provide valuable

insights for high-specification designs and enhanced understanding of

system responses, their high computational cost limits their application

across the entire system. They suggested a surrogate-based analysis (SBA)

method based on Kriging and Hammersley sequence sampling for accu-

rate aerodynamic predictions, which was combined with a GA for global

optimization on the surrogate model. This approach achieved satisfac-

tory aerodynamic efficiency while significantly reducing computational

costs. Glaz et al. (2008) compared the prediction accuracy of Kriging,

RBF and RSM surrogate models in helicopter vibration problems. They

did not focus on how to search the design space to capture the global

optimum, but rather on the adaptability of the surrogate model meth-

ods to vibration reduction problems. They ultimately found that Kriging

provided the best average accuracy for this problem.

Based on the surrogate model methods, SBA techniques have gradually

been applied in engineering design. Today, due to their powerful predic-

tive capabilities, SBA has expanded into fields such as structural design,

aerodynamic shape design, multidisciplinary optimization design and

electronic system simulation design. Leading research institutions, includ-

ing Virginia Tech, the University of Notre Dame, Rensselaer Polytechnic

8 ◾ Data-Driven Global Optimization Methods and Applications

Institute, Old Dominion University and NASA Langley Research Center,

have been at the forefront of developing SBA to address optimization design

problems in engineering (Balabanov & Venter, 2004; Schmit & Farshi,

1974; Stanford et al., 2013; Sun et al., 2011; Yamazaki, 2012; Yamazaki &

Mavriplis, 2013). Take finite element analysis (FEA) as an example, which

is commonly used for structural simulation design. Directly coupling FEA

with general optimization solvers to find an optimal solution can lead to

high computational costs. An earlier approach involved constructing an

approximate empirical formula using first-order sensitivity analysis (Sacks

et al., 1989), with the optimization process sequentially executed on this

formula. Pedersen (1981) employed sequential linear programming (SLP)

to solve structural optimization problems; Fleury and Braibant (1986) pro-

posed the convex linearization method (CONLIN); and Svanberg (1987)

introduced the method of moving asymptotes (MMA). These meth-

ods extracted the response and first-order sensitivity information from

the current design point, and therefore, they are collectively referred to

as single-point approximation methods. Later, Haftka et al. (1987) and

Fadel et al. (1990) developed a two-point approximation method using

both the current and previous points’ values and derivative informa-

tion. Rasmussen (1990) further proposed an accumulated approximation

technique that utilizes the values and gradients at the current point while

also incorporating all previously obtained points’ values and derivatives.

Finally, Toropov (1989) summarized the concept of multi-point approxi-

mations (MA), where regression analysis is used to predict the response at

the current point in each iteration. By leveraging information from previ-

ous solutions, optimization is carried out within a locally valid sub-region

to reduce the number of FEA evaluations.

Besides, DDO methods also have significant potential in system optimi-

zation design, particularly in reducing the number of calls to time-consum-

ing simulation units. For example, Mohammad Zadeh and Sadat Shirazi

(2017) employed a two-layer multidisciplinary optimization method to

design a complex satellite system, replacing time-consuming simulation

units with quadratic response surface (QRS) models that meet accuracy

requirements, thus reducing the number of calls. Similarly, Wang et al.

(2017b) proposed a novel system optimization method for lithium-ion bat-

tery thermal management system design, where surrogate models replace

costly responses such as temperature and pressure variations, greatly

improving computational efficiency. Wang et al. (2017b) introduced an

improved collaborative optimization algorithm for automotive structural

Introduction ◾ 9

design. By constructing QRS models, they effectively reduced the compu-

tational load caused by FEA, yielding satisfactory results. Although these

methods reduce the computational costs of optimizing time-consuming

simulation systems to varying degrees, they all employ offline DDO tech-

niques. Specifically, a surrogate model is constructed using a large number

of samples that meet accuracy requirements for optimization, but the sur-

rogate model is not updated during the optimization process. While this

approach is simple to implement and easy to apply in system optimization,

it lacks adaptability, heavily relies on initial sample points and does not

provide high local approximation accuracy at optimal locations, making it

unsuitable for global optimization.

Online DDO methods, on the other hand, involve using a sampling

strategy during the iteration process to collect samples and automatically

update the surrogate model. This dynamic process typically improves the

prediction accuracy near the optimal location, allowing for precise opti-

mal solutions with fewer computational costs. Recent studies have increas-

ingly applied online DDO methods in system optimization workflows.

For instance, Ollar et al. (2017) optimized the overall design of a wing

anti-collision system by constructing Kriging models for two time-con-

suming analysis units—linear static and explicit dynamics. The entire

optimization process was carried out using a local trust region method,

with Kriging models continuously updated during iterations, ultimately

determining the optimal solution with fewer computational costs. Pires

et al. (2013) employed an RBF-based EA to minimize the total cost of a

complex thermal system, constructing an RBF model for the time-con-

suming objective. In each iteration, the EA searches for the optimal sample

predicted by the RBF model and iteratively updates it until a satisfactory

solution is found. Yao et al. (2012) proposed a new method combining

multidisciplinary feasibility and collaborative subspace optimization

strategies. This method approximates time-consuming state variables,

objectives and constraints using surrogate models and updates the surro-

gate model by supplementing the dataset with predicted optimal solutions

obtained during each optimization step, facilitating rapid identification

of the real optimal target. While these online DDO methods can focus

samples in regions predicted to be optimal, they struggle with handling

large-scale, highly nonlinear simulation systems. To achieve global opti-

mization, more intelligent sampling strategies are required to adaptively

balance the “exploitation of surrogate models” and “effective exploration

of the design space” (Liu et al., 2018).

10 ◾ Data-Driven Global Optimization Methods and Applications

1.3 DEVELOPMENT OF DATA-DRIVEN GLOBAL
OPTIMIZATION TECHNIQUES

A significant amount of research has been conducted by scholars on

data-driven global optimization (DDGO). Jones et al. (1998) first pro-

posed the efficient global optimization (EGO) algorithm, which con-

structs an expected improvement function using Kriging and updates

the sample points by maximizing this function. Regis and Shoemaker

(2007) introduced a stochastic response surface method that simultane-

ously considers space-filling and the prediction of optimal values to select

candidate points for supplementation. In recent years, domestic scholars

have also carried out extensive research on DDGO. For example, Long

et al. (2015) used a space intelligence exploration strategy to accelerate the

convergence speed of adaptive response surface optimization, which was

validated through various test functions and wing plate structural design.

Jie et al. (2015) proposed a multi-surrogate global optimization algorithm

that constructed a new model combining Kriging and RBF, adjusting

internal parameters adaptively to balance global and local exploration.

Gu et al. (2012) developed a hybrid adaptive optimization method using

three surrogate models, which divided candidate points into several sub-

sets and selected a different number of samples for updating the surrogate

model based on the importance of each subset, applied to an automotive

crash example.

Haftka et al. (2016) from the University of Florida pointed out that

improving the multi-point sampling capability (parallelism) is crucial

for DDGO. Collecting multiple sample points in each iteration and per-

forming simulation analyses in parallel can significantly shorten the

design cycle. Both domestic and international teams have since researched

multi-point sampling techniques for DDGO and published new methods.

For instance, the Shoemaker team at Cornell University (Krityakierne

et al., 2016) employed a non-dominated sorting method to find supplemen-

tal sample points for single-objective optimization problems; Zhan et al.

(2017) from Huazhong University of Science and Technology captured

multiple extreme points of the expected improvement function as supple-

mental sample sets; Li et al. (2016) from Dalian University of Technology

proposed a new domain decomposition technique to enhance multi-point

sampling capabilities based on the EGO algorithm.

Most existing DDO methods use single-point sampling strategies,

such as the classic expected improvement (EI) or minimize prediction

(MP). These sampling strategies often lead to numerous iterations during

Introduction ◾ 11

optimization, which is not conducive to parallel computation. As Professor

Haftka mentioned, the future development of optimization should involve

parallel execution of expensive simulations during iterations, making the

development of multi-point sampling strategies particularly important.

Additionally, a single surrogate model may perform well for certain prob-

lems but produce large prediction errors for others. For example, PRS mod-

els can provide accurate approximations for polynomial-type problems

but may struggle with precise expressions for problems involving trigono-

metric functions. Therefore, developing hybrid surrogate model optimi-

zation methods or multi-source prediction optimization techniques can

lead to more robust results. Furthermore, considering the error precision

in real-world structural manufacturing processes, the optimal solution

obtained from discrete optimization is often more consistent with actual

production conditions. Thus, developing discrete DDGO techniques is

also of significant importance.

1.4 CHAPTER SUMMARY

This chapter provides an overview of advanced DDO methods, highlight-

ing the historical development of DDO techniques and their application

in practical simulation systems. It demonstrates the significant advantages

of DDO approaches in addressing computationally expensive black-box

problems. These methods effectively learn from and mine historical data,

construct surrogate models, predict potentially beneficial samples, acceler-

ate the exploration of design space and greatly reduce the number of calls

to time-consuming simulation models, thus holding significant implica-

tions for simulation-based product design and optimization.

REFERENCES
Antoine, N. E., & Kroo, I. M. (2005). Framework for Aircraft Conceptual Design

and Environmental Performance Studies. AIAA Journal, 43(10), 2100–2109.
Balabanov, V., & Venter, G. (2004). Multi-fidelity optimization with high-fidelity

analysis and low-fidelity gradients. 10th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Albany, New York, USA, August 30
to September 01, 2004.

Bartz-Beielstein, T., & Zaefferer, M. (2017). Model-based methods for continuous
and discrete global optimization. Applied Soft Computing, 55, 154–167.

Booker, A. J., Dennis Jr, J., Frank, P. D., Serafini, D. B., & Torczon, V. (1998).
Optimization using surrogate objectives on a helicopter test example.
Computational Methods for Optimal Design and Control: Proceedings of the
AFOSR Workshop on Optimal Design and Control, Arlington, Virginia, USA,
September 30 to October 3, 1997.

12 ◾ Data-Driven Global Optimization Methods and Applications

Box, G. E. P., & Wilson, K. B. (2018). On the Experimental Attainment of Optimum
Conditions. Journal of the Royal Statistical Society: Series B (Methodological),
13(1), 1–38. https://doi.org/10.1111/j.2517-6161.1951.tb00067.x

Bunge, M. (1963). A General Black Box Theory. Philosophy of Science, 30(4),
346–358.

Cox, D. D., & John, S. (1992). A statistical method for global optimization.
[Proceedings] 1992 IEEE International Conference on Systems, Man, and
Cybernetics, Chicago, Illinois, USA, October 18–21, 1992.

Cressie, N. (1988). Spatial Prediction and Ordinary Kriging. Mathematical Geology,
20, 405–421.

Dennis, J., & Torczon, V. (1997). Managing Approximation Models in Optimization.
Multidisciplinary Design Optimization: State-of-the-Art, 5, 330–347.

Dyn, N., Levin, D., & Rippa, S. (1986). Numerical Procedures for Surface Fitting of
Scattered Data by Radial Functions. SIAM Journal on Scientific and Statistical
Computing, 7(2), 639–659. https://doi.org/10.1137/0907043

Fadel, G. M., Riley, M. F., & Barthelemy, J. M. (1990). Two Point Exponential
Approximation Method for Structural Optimization. Structural Optimization,
2(2), 117–124. https://doi.org/10.1007/BF01745459

Fleury, C., & Braibant, V. (1986). Structural Optimization: A New Dual Method
Using Mixed Variables. International Journal for Numerical Methods in
Engineering, 23(3), 409–428. https://doi.org/10.1002/nme.1620230307

Forrester, A. I. J., & Keane, A. J. (2009). Recent Advances in Surrogate-Based
Optimization. Progress in Aerospace Sciences, 45(1), 50–79. https://doi.
org/10.1016/j.paerosci.2008.11.001

Giunta, A. A., Balabanov, V., Haim, D., Grossman, B. M., Mason, W. H., Watson, L. T.,
& Haftka, R. T. (1996). Wing design for a high-speed civil transport using
a design of experiments methodology. 6th Symposium on Multidisciplinary
Analysis and Optimization, Bellevue, Washington, USA, September 4–6,
1996.

Giunta, A. A., Balabanov, V., Kaufman, M., Burgee, S., Grossman, B., Haftka, R.,
Mason, W., & Watson, L. (1997). Variable-Complexity Response Surface
Design of an HSCT Configuration. In N. M. Alexandrov & M. Y. Hussaini
(Eds.), Multidisciplinary design optimization (pp. 53–69). Springer.

Glaz, B., Friedmann, P. P., & Liu, L. (2008). Surrogate Based Optimization of
Helicopter Rotor Blades for Vibration Reduction in Forward Flight. Structural
and Multidisciplinary Optimization, 35, 341–363.

Gu, J., Li, G. Y., & Dong, Z. (2012). Hybrid and Adaptive Meta-Model-Based
Global Optimization. Engineering Optimization, 44(1), 87–104. https://doi.
org/10.1080/0305215x.2011.564768

Gu, L. (2001). A comparison of polynomial based regression models in vehicle
safety analysis. International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, Anaheim, California,
USA, August 17–20, 2025.

Gur, O., Bhatia, M., Schetz, J. A., Mason, W. H., Kapania, R. K., & Mavris, D. N. (2010).
Design Optimization of a Truss-Braced-Wing Transonic Transport Aircraft.
Journal of Aircraft, 47(6), 1907–1917. https://doi.org/10.2514/1.47546

https://doi.org/10.2514/1.47546
https://doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.1016/j.paerosci.2008.11.001
https://doi.org/10.1137/0907043
https://doi.org/10.1080/0305215x.2011.564768
https://doi.org/10.1080/0305215x.2011.564768
https://doi.org/10.1007/BF01745459
https://doi.org/10.1002/nme.1620230307
https://doi.org/10.1111/j.2517-6161.1951.tb00067.x

Introduction ◾ 13

Haftka, R. T., Nachlas, J. A., Watson, L. T., Rizzo, T., & Desai, R. (1987). Two-Point
Constraint Approximation in Structural Optimization. Computer Methods in
Applied Mechanics and Engineering, 60(3), 289–301. https://doi.org/10.1016/
0045-7825(87)90136-8

Haftka, R. T., Scott, E. P., & Cruz, J. R. (1998). Optimization and Experiments: A
Survey. Applied Mechanics Reviews, 51(7), 435–448.

Haftka, R. T., Villanueva, D., & Chaudhuri, A. (2016). Parallel Surrogate-Assisted
Global Optimization with Expensive Functions – A Survey. Structural
and Multidisciplinary Optimization, 54(1), 3–13. https://doi.org/10.1007/
s00158-016-1432-3

Hardy, R. L. (1971). Multiquadric Equations of Topography and Other Irregular
Surfaces. Journal of Geophysical Research, 76(8), 1905–1915.

Iuliano, E., & Pérez, E. A. (2016). Application of surrogate-based global optimization
to aerodynamic design (Vol. 22). Springer.

Jie, H., Wu, Y., & Ding, J. (2015). An Adaptive Metamodel-Based Global
Optimization Algorithm for Black-Box Type Problems. Engineering
Optimization, 47(11), 1459–1480.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient Global Optimization
of Expensive Black-Box Functions. Journal of Global Optimization, 13(4),
455–492. https://doi.org/10.1023/A:1008306431147

Krityakierne, T., Akhtar, T., & Shoemaker, C. A. (2016). SOP: Parallel Surrogate Global
Optimization with Pareto Center Selection for Computationally Expensive
Single Objective Problems. Journal of Global Optimization, 66, 417–437.

Li, Z., Ruan, S., Gu, J., Wang, X., & Shen, C. (2016). Investigation on Parallel
Algorithms in Efficient Global Optimization Based on Multiple Points Infill
Criterion and Domain Decomposition. Structural and Multidisciplinary
Optimization, 54, 747–773.

Liebeck, R. H. (2004). Design of the Blended Wing Body Subsonic Transport.
Journal of Aircraft, 41(1), 10–25. https://doi.org/10.2514/1.9084

Liu, H., Ong, Y.-S., & Cai, J. (2018). A Survey of Adaptive Sampling for Global
Metamodeling in Support of Simulation-Based Complex Engineering
Design. Structural and Multidisciplinary Optimization, 57, 393–416.

Long, T., Wu, D., Guo, X., Wang, G. G., & Liu, L. (2015). Efficient Adaptive Response
Surface Method Using Intelligent Space Exploration Strategy. Structural and
Multidisciplinary Optimization, 51(6), 1335–1362. https://doi.org/10.1007/
s00158-014-1219-3

Madsen, J. I., Shyy, W., & Haftka, R. T. (2000). Response Surface Techniques for
Diffuser Shape Optimization. AIAA Journal, 38(9), 1512–1518. https://doi.
org/10.2514/2.1160

Miller, W., Smith, C. W., & Evans, K. E. (2011). Honeycomb Cores with Enhanced
Buckling Strength. Composite Structures, 93(3), 1072–1077. https://doi.
org/10.1016/j.compstruct.2010.09.021

Mohammad Zadeh, P., & Sadat Shirazi, M. (2017). Multidisciplinary Design
Optimization Architecture to Concurrent Design of Satellite Systems.
Proceedings of the Institution of Mechanical Engineers, Part G: Journal of
Aerospace Engineering, 231(10), 1898–1916.

https://doi.org/10.1023/A:1008306431147
https://doi.org/10.2514/1.9084
https://doi.org/10.2514/2.1160
https://doi.org/10.2514/2.1160
https://doi.org/10.1007/s00158-014-1219-3
https://doi.org/10.1016/j.compstruct.2010.09.021
https://doi.org/10.1016/j.compstruct.2010.09.021
https://doi.org/10.1016/0045-7825(87)90136-8
https://doi.org/10.1007/s00158-016-1432-3
https://doi.org/10.1016/0045-7825(87)90136-8
https://doi.org/10.1007/s00158-016-1432-3
https://doi.org/10.1007/s00158-014-1219-3

14 ◾ Data-Driven Global Optimization Methods and Applications

Ollar, J., Jones, R., & Toropov, V. (2017). Sub-space metamodel-based multidisci-
plinary optimization of an aircraft wing subjected to bird strike. 58th AIAA/
ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference,
Grapevine, Texas, USA, January 9–13, 2017.

Otto, J., Paraschivoiu, M., Yesilyurt, S., & Patera, A. T. (1997). Bayesian-Validated
Computer-Simulation Surrogates for Optimization and Design: Error
Estimates and Applications. Mathematics and Computers in Simulation, 44
(4), 347–367.

Paliwal, M., & Kumar, U. A. (2009). Neural Networks and Statistical Techniques:
A Review of Applications. Expert Systems with Applications, 36(1), 2–17.
https://doi.org/10.1016/j.eswa.2007.10.005

Papila, N., Shyy, W., Griffin, L., & Dorney, D. J. (2002). Shape Optimization of
Supersonic Turbines Using Global Approximation Methods. Journal of
Propulsion and Power, 18(3), 509–518. https://doi.org/10.2514/2.5991

Pedersen, P. (1981). The integrated approach of FEM-SLP for solving problems
of optimal design. In E. J. Haug & J. Gea (Eds.), Optimization of distributed
parameter structures (Vol. 1, pp. 757–780). Sijthoff and Noordhoff.

Pires, T. S., Cruz, M. E., & Colaço, M. J. (2013). Response Surface Method Applied
to the Thermoeconomic Optimization of a Complex Cogeneration System
Modeled in a Process Simulator. Energy, 52, 44–54.

Qin, N., Vavalle, A., Le Moigne, A., Laban, M., Hackett, K., & Weinerfelt, P.
(2004). Aerodynamic Considerations of Blended Wing Body Aircraft.
Progress in Aerospace Sciences, 40(6), 321–343. https://doi.org/10.1016/j.
paerosci.2004.08.001

Rai, M. M., & Madavan, N. K. (2000). Aerodynamic Design Using Neural Networks.
AIAA Journal, 38(1), 173–182.

Rasmussen, J. (1990). Accumulated approximation: a new method for structural
optimization by iterative improvement. NASA. Langley Research Center, The
Third Air Force (NASA Symposium on Recent Advances in Multidisciplinary
Analysis and Optimization, San Francisco, California, USA, September
24–26, 1990.

Regis, R. G., & Shoemaker, C. A. (2007). A Stochastic Radial Basis Function
Method for the Global Optimization of Expensive Functions. Informs Journal
on Computing, 19(4), 497–509.

Renaud, J., & Gabriele, G. (1991). Sequential global approximation in non-
hierarchic system decomposition and optimization. International Design
Engineering Technical Conferences and Computers and Information in
Engineering Conference, Anaheim, California, USA, August 17–20, 2025.

Renaud, J. E., & Gabriele, G. A. (1994). Approximation in Nonhierarchic System
Optimization. AIAA Journal, 32(1), 198–205. https://doi.org/10.2514/3.11967

Sacks, J., Welch, W. J., Mitchell, T. J., & Wynn, H. P. (1989). Design and Analysis of
Computer Experiments. Statistical Science, 4(4), 409–423.

Schmit, L. A., & Farshi, B. (1974). Some Approximation Concepts for Structural
Synthesis. AIAA Journal, 12(5), 692–699. https://doi.org/10.2514/3.49321

Simpson, T., Toropov, V., Balabanov, V., & Viana, F. (2008). Design and analy-
sis of computer experiments in multidisciplinary design optimization: a

https://doi.org/10.1016/j.paerosci.2004.08.001
https://doi.org/10.1016/j.paerosci.2004.08.001
https://doi.org/10.1016/j.eswa.2007.10.005
https://doi.org/10.2514/2.5991
https://doi.org/10.2514/3.49321
https://doi.org/10.2514/3.11967

Introduction ◾ 15

review of how far we have come-or not. 12th AIAA/ISSMO Multidisciplinary
Analysis and Optimization Conference, Victoria, British Columbia, Canada,
September 10–12, 2008.

Smola, A. J., & lkopf, B. S. (2004). A Tutorial on Support Vector Regression.
Statistics and Computing, 14(3), 199–222.

Stanford, B., Beran, P., & Kobayashi, M. (2013). Simultaneous Topology Optimization
of Membrane Wings and Their Compliant Flapping Mechanisms. AIAA
Journal, 51(6), 1431–1441. https://doi.org/10.2514/1.J052118

Steer, M. B., Bandler, J. W., & Snowden, C. M. (2002). Computer-Aided Design of
RF and Microwave Circuits and Systems. IEEE Transactions on Microwave
Theory and Techniques, 50(3), 996–1005. https://doi.org/10.1109/22.989983

Sun, G., Li, G., Zhou, S., Xu, W., Yang, X., & Li, Q. (2011). Multi-Fidelity Optimization
for Sheet Metal Forming Process. Structural and Multidisciplinary
Optimization, 44(1), 111–124. https://doi.org/10.1007/s00158-010-0596-5

Svanberg, K. (1987). The Method of Moving Asymptotes—A New Method for
Structural Optimization. International Journal for Numerical Methods in
Engineering, 24(2), 359–373. https://doi.org/10.1002/nme.1620240207

Tabatabaei, M., Hakanen, J., Hartikainen, M., Miettinen, K., & Sindhya, K.
(2015). A Survey on Handling Computationally Expensive Multiobjective
Optimization Problems Using Surrogates: Non-nature Inspired Methods.
Structural and Multidisciplinary Optimization, 52, 1–25.

Toropov, V. V. (1989). Simulation Approach to Structural Optimization. Structural
Optimization, 1, 37–46.

Ulaganathan, S., & Asproulis, N. (2013). Surrogate Models for Aerodynamic Shape
Optimisation. In S. Koziel & L. Leifsson (Eds.), Surrogate-based modeling and
optimization: Applications in engineering (pp. 285–312). Springer. https://doi.
org/10.1007/978-1-4614-7551-4_12

Wang, G. G., & Shan, S. (2006). Review of Metamodeling Techniques in Support
of Engineering Design Optimization. Journal of Mechanical Design, 129(4),
370–380. https://doi.org/10.1115/1.2429697

Wang, W., Gao, F., Cheng, Y., & Lin, C. (2017a). Multidisciplinary Design
Optimization for Front Structure of an Electric Car Body-in-White Based
on Improved Collaborative Optimization Method. International Journal of
Automotive Technology, 18, 1007–1015.

Wang, X., Li, M., Liu, Y., Sun, W., Song, X., & Zhang, J. (2017b). Surrogate Based
Multidisciplinary Design Optimization of Lithium-Ion Battery Thermal
Management System in Electric Vehicles. Structural and Multidisciplinary
Optimization, 56, 1555–1570.

Wujek, B., Renaud, J. E., & Batill, S. (1997). A Concurrent Engineering Approach
for Multidisciplinary Design in a Distributed Computing Environment. In
N. M. Alexandrov & M. Yousuff Hussaini (Eds.), Multidisciplinary design
optimization: state of the art (pp. 189–208). Society for Industrial and Applied
Mathematics.

Wujek, B. A., Renaud, J. E., Batill, S. M., & Brockman, J. B. (1996). Concurrent
Subspace Optimization Using Design Variable Sharing in a Distributed
Computing Environment. Concurrent Engineering, 4(4), 361–377.

https://doi.org/10.1007/s00158-010-0596-5
https://doi.org/10.1115/1.2429697
https://doi.org/10.1109/22.989983
https://doi.org/10.1002/nme.1620240207
https://doi.org/10.1007/978-1-4614-7551-4_12
https://doi.org/10.2514/1.J052118
https://doi.org/10.1007/978-1-4614-7551-4_12

16 ◾ Data-Driven Global Optimization Methods and Applications

Yamazaki, W. (2012). Efficient robust design optimization by variable fidelity
kriging model. 53rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural
Dynamics and Materials Conference 20th AIAA/ASME/AHS Adaptive
Structures Conference 14th AIAA, Honolulu, Hawaii, USA, April 23–26, 2012.

Yamazaki, W., & Mavriplis, D. J. (2013). Derivative-Enhanced Variable Fidelity
Surrogate Modeling for Aerodynamic Functions. AIAA Journal, 51(1), 126–
137. https://doi.org/10.2514/1.J051633

Yao, W., Chen, X., Ouyang, Q., & Van Tooren, M. (2012). A Surrogate Based
Multistage-Multilevel Optimization Procedure for Multidisciplinary Design
Optimization. Structural and Multidisciplinary Optimization, 45, 559–574.

Younis, A., & Dong, Z. (2010a). Metamodelling and Search Using Space Exploration
and Unimodal Region Elimination for Design Optimization. Engineering
Optimization, 42(6), 517–533.

Younis, A., & Dong, Z. (2010b). Trends, Features, and Tests of Common and Recently
Introduced Global Optimization Methods. Engineering Optimization, 42(8),
691–718. https://doi.org/10.1080/03052150903386674

Zhan, D., Qian, J., & Cheng, Y. (2017). Balancing Global and Local Search in Parallel
Efficient Global Optimization Algorithms. Journal of Global Optimization,
67, 873–892.

Zhang, Y., Zhu, P., Chen, G. L., & Lin, Z. Q. (2006). Study on Structural
Lightweight Design of Automotive Front Side Rail Based on Response
Surface Method. Journal of Mechanical Design, 129(5), 553–557. https://doi.
org/10.1115/1.2712223

https://doi.org/10.1080/03052150903386674
https://doi.org/10.2514/1.J051633
https://doi.org/10.1115/1.2712223
https://doi.org/10.1115/1.2712223

C H A P T E R 2

Data-Driven

Optimization Framework

2.1 SAMPLING METHODS

Data-driven optimization (DDO) begins with the use of experimental

design methods (design of experiment, DOE) to perform initial data sam-

pling. DOE is a mathematical and statistical approach for planning and

analyzing experiments (Myers et al., 2016), primarily aimed at obtaining

ideal experimental results with a minimal number of experiments, shorter

experimental duration and lower costs.

2.1.1 Traditional Design of Experiment Methods

Traditional DOE methods include full factorial design, fractional fac-

torial design, central composite design (CCD) (Chen, 1995) and Box–

Behnken design (BBD) (Box & Behnken, 1960). Full factorial design

considers all possible combinations of design factors and levels. Here,

factors refer to design parameters or variables, while levels represent spe-

cific values assigned to a given factor within the design space. The main

advantage of full factorial design is its ability to provide comprehensive

information, allowing for a robust estimation of both the main effects

of design variables on the response and the interaction effects between

variables. However, the primary drawback is the substantial increase in

the number of required experiments, which results in higher labor and

resource consumption. The goal of fractional factorial design is to select

a subset of valuable information from the full factorial design, making

17DOI: 10.1201/9781003636267-2

https://doi.org/10.1201/9781003636267‑2

18 ◾ Data-Driven Global Optimization Methods and Applications

the experiment more efficient. A fractional factorial design can be viewed

as a subset of a full factorial experiment.

BBD was proposed by George in 1960 and is primarily applied in PRS

design. BBD is a standalone second-order design that does not include

embedded fractional factorial designs. It selects the midpoint of the

boundaries of the design space as well as the center point of the entire

design, typically choosing three design levels for each dimension. BBD is

particularly useful for problems where design variables have a nonlinear

relationship with the response values. Similarly, CCD is also applied to

nonlinear problems and is mainly used in PRS design. However, CCD

typically requires the inclusion of axial points. Figures 2.1 and 2.2 illus-

trate the sampling methods of BBD and CCD in three-dimensional

space, showing that both DOE methods provide good coverage of the

entire design space.

The GS method is similar to the previously described full factorial

design. GS divides each dimension of the design space into several equal

parts, and all grid points obtained by intersecting the divisions across

FIGURE 2.1 BBD sampling method.

Data-Driven Optimization Framework ◾ 19

dimensions are considered as design points. It is important to note that at

least two nodes are selected for each dimension. Equation (2.1) provides the

relationship between the number of design points m and the dimensional-

ity n, where q(i) denotes the number of design nodes in the i-th dimension.

 ∏ ()=
=1

m q i
i

n

 (2.1)

There are various experimental design methods, and choosing an appro-

priate one typically involves considering the following factors: (1) the cost

of a single experiment, (2) the size of the design space, and (3) the type of

surrogate model the designer needs to construct.

If the experimental cost is high, it is preferable to choose a DOE strategy

that generates fewer sample points. If the experimental cost is relatively low,

increasing the sample size can be considered, and even full factorial design or

GS may be viable options. If the design space is large (i.e., the design dimen-

sionality is high), DOE methods that correlate the number of sample points

with the number of dimensions should not be used. Different surrogate mod-

eling techniques are suited to different DOE strategies. For instance, PRSs are

FIGURE 2.2 CCD sampling method.

20 ◾ Data-Driven Global Optimization Methods and Applications

often combined with CCD sampling methods to construct approximation

models. In summary, experimental design is the first step in the DDO frame-

work, and its choice should be based on the overall design process.

2.1.2 Latin Hypercube Sampling

LHS is a widely used statistical sampling method (Iman, 2008). Figure 2.3

illustrates 25 sample points from an LHS process, while Figure 2.4 shows

25 sample points from a GS for comparison. In the statistical sampling

process, each row and column of the grid can contain only one sample

point. LHS refers to a square matrix in which no two elements in the same

row or column are identical. Figure 2.5 provides a visual representation of

the Latin hypercube and LHS.

Figure 2.5a shows one possible arrangement of the four letters ‘LHSD’

in a Latin hypercube. As seen in figure, each row and column contains a

unique permutation of the letters ‘LHSD,’ ensuring that each letter occu-

pies a distinct row and column in the matrix. Figure 2.5b–d shows the

three random outcomes of LHS with four points.

By combining Figures 2.3 and 2.5, it is evident that LHS is random but

effectively covers the entire design space. For continuous design problems,

FIGURE 2.3 LHS (25 samples).

Data-Driven Optimization Framework ◾ 21

FIGURE 2.4 Grid sampling (25 samples).

FIGURE 2.5 Explanation of Latin hypercube and Latin hypercube sampling. (a)

Permutation without repetition. (b) Random situation 1. (c) Random situation 2.

(d) Random situation 3.

22 ◾ Data-Driven Global Optimization Methods and Applications

LHS divides each dimension of the space into m equal parts (consider-

ing a two-dimensional space), and the design points are randomly placed

within m × m grid areas.

As mentioned earlier, GS evenly covers the design space, but this

comes at the cost of a significant increase in the number of experiments.

Figure 2.6 shows 225 sample points obtained through GS, with 15 design

levels for each dimension. Executing all 225 sample points can lead to a

costly computation. A key focus of sampling strategy research is how to

effectively reduce the number of sample points while retaining valuable

information. Typically, when a large sample set is obtained in a practi-

cal problem, a selection strategy is needed to identify a smaller, more effi-

cient subset. One such mature sampling strategy is the ‘max–min’ strategy,

where the ‘min’ refers to the smallest distance between any two sample

points, and the ‘max’ aims to maximize this minimum distance.

 ()−



≠

max min =dis P P
i j

ij i j (2.2)

Equation (2.2) provides the calculation formula for the max–min strategy.

Figures 2.7–2.9 show the optimal results selected by the max–min criterion

for 100, 1,000 and 10,000 iterations, respectively.

FIGURE 2.6 Grid sampling (225 samples obtained).

Data-Driven Optimization Framework ◾ 23

FIGURE 2.7 After 100 iterations using max–min criterion.

FIGURE 2.8 After 1,000 iterations using max–min criterion.

24 ◾ Data-Driven Global Optimization Methods and Applications

Suppose that 25 points are to be selected from 225 sample points, where

Pi and Pj represent any two distinct points from the 25 selected points.

The minimization process involves finding the smallest distance among

all pairwise combinations of the 25 points. The maximization process

involves selecting the 25 points from the 225 sample points in such a way

that the minimum distance between any two selected points is maximized.

To achieve this process, typically two nested loops are required: an inner

loop for minimization and an outer loop for maximization. It is evident

that as the number of iterations increases, the sample points become more

evenly distributed across the entire design space.

Currently, many SBO methods tend to employ modified LHS as the

DOE process to obtain initial samples. Modified LHS typically retains the

randomness of LHS while more evenly filling the design space. Symmetric

Latin hypercube sampling (SLHS) (Kenny et al., 2000) is a popular sam-

pling method, and it can be considered one of the best results produced by

LHS. The term ‘symmetric’ refers to any point in the space being symmet-

ric about the central position. For example, in a two-dimensional space,

suppose six design samples are needed. The first dimension is divided into

FIGURE 2.9 After 104 iterations using max–min criterion.

Data-Driven Optimization Framework ◾ 25

six equal parts, with levels 1, 2, 3, 4, 5 and 6 assigned in order. The second

dimension randomly generates a sequence from 1 to 3, here given as 3, 1, 2.

The remaining numbers of three are calculated as (6 + 1 − 2), (6 + 1 − 1) and

(6 + 1 − 3). Additionally, there is a 50% chance that any of the first three

numbers in this sequence will be swapped with their corresponding coun-

terparts in the last three, and in this case, the second and fifth numbers are

exchanged. The final sequence for the second dimension becomes three,

(6 + 1 − 1), 2, (6 + 1 − 2), 1, (6 + 1 − 3). Figure 2.10a shows the final result of

SLHS in a two-dimensional space for six points. When an odd number of

points is required, the central point is selected, and the remaining points

are symmetrically distributed about the center. Figure 2.10b illustrates the

situation for seven sample points.

Similarly, the optimal Latin hypercube sampling (OLHS) algorithm

has been widely adopted for optimization purposes, such as genetic algo-

rithm-optimal Latin hypercube sampling (GA-OLHS) and enhanced

stochastic evolutionary algorithm-optimal Latin hypercube sampling

(ESEA-OLHS) (Jin et al., 2005). To ensure the sample points uniformly

fill the design space, OLHS typically utilizes a global optimization solver

to determine an optimal criterion, such as the aforementioned max–min

criterion, entropy principle or centered discrepancy criterion L2.

Shannon (1948) quantified information content using entropy, where a

lower entropy value indicates more precise information. Minimizing the

‘posterior entropy’ is equivalent to finding a set of experimental design

FIGURE 2.10 Symmetric Latin hypercube sampling points for even and odd

cases. (a) Even case. (b) Odd case.

26 ◾ Data-Driven Global Optimization Methods and Applications

points with the least amount of information. Koehler and Owen (1996)

further demonstrated that the entropy principle criterion is equivalent to

the following minimization expression:

 log10 R− (2.3)

where R is the correlation matrix with elements defined in Eq. (2.4).

 ∑θ= −








 ≤ ≤ ≤ ≤

=

exp , 1 , ; 1 2
1

R x x i j n tij k ik jk

t

k

m

 (2.4)

where θ ()= 1, ,k mk  is the correlation coefficient.

The centered discrepancy criterion L2 is a method for measuring the

difference between the empirical cumulative distribution function and

the uniform cumulative distribution function of an experimental design.

In other words, L2 is used to express the non-uniformity of an experimen-

tal design. Hickernell (1998) proposed three formulas for L2, among which

the centered L2 formula is the most expressive.

13

12

2
1

1

2
0.5

1

2
0.5

1
1

1

2
0.5

1

2
0.5

1

2

2

2
2

11

2

111

X ∏∑

∏∑∑

() = 



 − + − − −





+ + − − − − −





==

===

CL
n

x x

n
x x x x

ik ik

k

m

i

n

ik jk ik jk

k

m

j

n

i

n

(2.5)

Minimizing Eq. (2.5) ensures that the experimental design’s non-unifor-

mity is minimized.

For comparison with other DOE methods, Figure 2.11 presents the

results of SLHS with 25 sample points, while Figure 2.12 shows the results

of OLHS with 25 sample points. It is evident that SLHS performs well, but

OLHS provides a more uniform spatial distribution. Compared to previ-

ous methods, it is clear that OLHS provides the best space-filling capabil-

ity while retaining the randomness characteristic of LHS.

2.2 SURROGATE MODEL CONSTRUCTION

Common surrogate models include PRS, RBF, Kriging, and SVR. All of

these methods generally incorporate interpolation and regression con-

cepts. RBF and Kriging are commonly used interpolation methods, PRS

Data-Driven Optimization Framework ◾ 27

uses polynomial least squares regression, and SVR is a regression analysis

method derived from machine learning for classification.

2.2.1 Polynomial Response Surface

PRS has been widely and effectively applied in numerous engineering

designs, as it can accurately represent convex function problems. The

approximate expression of PRS is obtained through least squares. The

first-order and second-order polynomial functions of PRS are shown in

Eqs. (2.6) and (2.7).

 ∑β β() = +

=

ˆ 0

1

y xi i

i

n

x (2.6)

 ∑ ∑ ∑∑β β β β() = + +

= =

ˆ +0

1

2

1

y x x x xi i

i

n

ii i

i

n

ij i j

ji

x (2.7)

 > + +
1

2

3

2
12N d dsampling (2.8)

FIGURE 2.11 SLHS with 25 samples.

28 ◾ Data-Driven Global Optimization Methods and Applications

where n represents the number of design variables. βi denotes the coeffi-

cients of univariate polynomials. βii represents the coefficients of the qua-

dratic terms. βij indicates the coefficients of the hinge terms between two

variables. y(x) is the true function, while ˆ()y x is its approximate expres-

sion. Nsampling denotes the number of samples. Generally, if Nsampling does

not satisfy the condition in Eq. (2.8), the PRS model will exhibit significant

prediction errors.

Given the sample points and corresponding response values, the poly-

nomial parameters can be determined based on Eq. (2.9):

 β []= ′ ′−1
X X X y (2.9)

where X represents the design matrix of the sample points. y contains the

response values for all the sample points. PRS is relatively easy to con-

struct, and its continuous and smooth nature aids in the rapid convergence

of optimization problems with noise. However, due to its simplicity, it is

often difficult for PRS to accurately predict and express nonlinear prob-

lems. PRS has a wide range of applications, including robust optimization,

FIGURE 2.12 OLHS with 25 samples.

Data-Driven Optimization Framework ◾ 29

multidisciplinary optimization, adaptive strategies for global optimiza-

tion and manufacturing analysis.

2.2.2 Radial Basis Function

RBF was initially proposed by Hardy as an interpolation strategy. Then

Dyn made the RBF method more practical, smoothing the data while

retaining the interpolation function. RBF expresses the overall approxi-

mation function as a weighted sum of a series of basis functions, where the

basis functions are derived from the Euclidean distance between known

sample points or between known sample points and the points to be tested.

Given a set of sample points { }= , , ,(1) (2) ()x x x n T
X and the corre-

sponding real response values { }= , , ,(1) (2) ()y y y n T
y , the approximate

expression is given by Eq. (2.10):

1

()∑ψ ψ ()() = = −
∧

=

y x w w x cT
i

i

n

i

c

 (2.10)

where c(i) represents the center of the i-th basis dunction, ψ (•) is the basis

function, x means a unobserved point; wi denotes the weight coefficients.

There are various forms of basis functions commonly used in RBF inter-

polation, each defined by different mathematical expressions. Some of the

most widely used forms include

Linear function:

 ψ () =r r (2.11)

Cubic function:

 ψ () = 3r r (2.12)

Thin-plate splines:

 ψ () = ln2r r r (2.13)

Gaussian function:

 ψ () = σ− /22 2

r e r (2.14)

Multiquadric function:

 ψ σ()() = +2 2 1/2
r r (2.15)

30 ◾ Data-Driven Global Optimization Methods and Applications

Inverse multiquadric function:

 ψ σ()() = +
−2 2 1/2

r r (2.16)

The weight coefficients w in Eq. (2.10) can be obtained through the inter-

polation conditions.

 ˆ , 1, , .
1

x x c ∑ ψ ()() = − = =() () ()()

=

y w y j n
j

i
j i

i

n

j
c

 (2.17)

In Eqs. (2.10) and (2.17), nc = n and x(i) = c(i), then the Kram matrix can be

represented as:

 ψψ ψ ()− ()()= x xij
i j

 (2.18)

Thus, the weight coefficient matrix can be easily obtained:

 1w yψψ= − (2.19)

By observing Eqs. (2.10)–(2.19), it can be observed that RBF is highly simi-

lar to artificial neural networks. In fact, RBF is essentially a simple sin-

gle-layer neural network.

2.2.3 Kriging

In statistics, specifically in geostatistics, Kriging (also known as Gaussian

process regression) is an interpolation strategy that is fundamentally dif-

ferent from piecewise-polynomial spline methods. This strategy is mod-

eled through Gaussian process interpolation and is influenced by the

prior covariance. Under suitable prior assumptions, Kriging provides the

best linear unbiased prediction for the interpolated values, which has led

to its widespread application in statistical sciences. Another important

and rapidly developing application is in engineering, where determin-

istic computer simulation outputs are used as the interpolation targets.

In this context, Kriging is employed as a surrogate model tool to address

black-box problems. In many engineering design problems, a single simu-

lation analysis can take several hours or even days. Therefore, the Kriging

interpolation method can quickly predict the response to inputs, signifi-

cantly reducing the number of costly simulation runs.

Data-Driven Optimization Framework ◾ 31

The Kriging surrogate model has been widely applied due to its excep-

tional ability to solve nonlinear problems. To construct a Kriging model

for a function f(x), where x is an n-dimensional vector, the function F(x) is

defined to represent the deterministic response of f(x), as expressed in the

following formula:

 () ()x xµ= +F Z (2.20)

where μ is defined as a constant. Z(x) is a stochastic process with the fol-

lowing statistical behavior:

∏

σ

θ

=

′ = Θ ′

Θ ′ = − ′

=

[()] 0

Cov[(), ()] (, ,)

(, ,) (,)

2

1

E Z

Z Z R

R R x xj j j j

j

n

x

x x x x

x x

 (2.21)

where σ2 represents the process variance of the response value. Θ ′(, ,)R x x

is the correlation model between any two points x and ′x . θ θ θΘ = { , , , }1 2 n

is the parameter of the correlation model, namely the correlation param-

eters. In this book, the Gaussian correlation function is used for modeling.

 θ θ()′ = − − ′(, ,) exp
2

R x x x xj j j j j j (2.22)

Next, assume there are N sample points , , ,(1) (2) ()Nx x x , and the corre-

sponding response values for the function f(x) are calculated. According

to Eq. (2.20), the Kriging model is represented as:

 µ() () ()= = +() () ()f F Zi i ix x x (2.23)

In the Kriging model, the three parameters , ,2µ σ Θ are obtained through

maximum likelihood estimation (MLE):

T

ˆ

ˆ (ˆ) (ˆ)

ln()
2

ln(2)
2

ln ˆ 1

2
ln | |

1

1

2
1

2

R f

R

f R f

R

11

11 11

11 11

µ

σ
µ µ

σ

=

=
− −

Θ = − π − −

−

−

−

N

N N

T

T

 (2.24)

32 ◾ Data-Driven Global Optimization Methods and Applications

where = [(), (), , ()](1) (2) ()f f f N Tf x x x . R is a covariance matrix of size

N × N, where the element in the i-th row and j-th column is ΘΘ(, ,)() ()i jx xR .

Finally, the mean square error (MSE) is minimized.

 = −





ˆ () Var ˆ() ()2s f Fx x x (2.25)

Meanwhile, the following non-Bayesian constraint needs to be satisfied:

 



 =ˆ() [()]E f E Fx x (2.26)

The predicted function, ˆ()f x , obtained through the best linear unbiased

estimation, is expressed as:

 ˆ() ˆ () (ˆ)1x r x R f 11µ µ= + −−f T (2.27)

where r(x) is a N-dimensional vector. The i-th element of r(x) is ΘΘ(, ,)()ix xR .

x is any sample point for which prediction is required. The final form of

the estimated MSE is

T

T
ˆ () ˆ 1 () ()

(1 ())2 2 1
1 2

1x r x R r x
R r x

R

11

11 11
σ= − +

−









−
−

−s T (2.28)

Figure 2.13 illustrates the prediction diagram of Kriging in a one-dimen-

sional example. The circles represent the known samples, the curve indi-

cates the predicted function values, and the surrounding area represents

the prediction uncertainty. From the figure, it can be observed that the

uncertainty is close to 0 at the known sample points, and the uncertainty

increases as the distance from the known sample points grows.

2.3 DYNAMIC SAMPLING TECHNIQUES

In most cases, a surrogate model is constructed using known sample data.

However, if optimization is performed solely on the surrogate model to

obtain the optimal solution, this optimal solution may not correspond to

the true global optimum. This is because the surrogate model is constructed

based on available information, and while it has predictive capabilities, it

is not always perfectly accurate. To improve the accuracy of the surrogate

model, one approach is to increase the initial sample size—by adding more

samples during the experimental design phase—so that the model utilizes

Data-Driven Optimization Framework ◾ 33

more real data. However, this typically results in a significant increase in

computational cost. Another approach is to construct a rough surrogate

model that captures the general trend of the original model. Such a model

typically requires fewer samples. Then, promising regions of the surrogate

model are identified to select new sample points. The previous samples are

stored in a database, and new samples are chosen iteratively to update the

database, with the surrogate model being updated accordingly. This itera-

tive process improves the accuracy of the model at certain preferred loca-

tions. This second approach avoids large-scale blind sampling in the early

stages and adopts a strategy of optimizing while incrementally adding new

samples, thus saving significant computational costs.

2.3.1 Minimizing the Predictor

Minimizing the predictor (MP), namely a constructed surrogate, to obtain

a new sample is a commonly used updating strategy (Hastie et al., 2004),

as illustrated in Figure 2.14. Suppose the surrogate model is sufficiently

accurate, and a robust optimization solver is used to find the minimum

of this surrogate model. After many iterations, the global optimum will

be reached. At this point, high-precision computational simulations are

performed at the predicted optimal solution, and the high-precision

response obtained will often differ from the response predicted by the

surrogate model. This set of high-precision results is then added to the

FIGURE 2.13 Illustration of Kriging prediction on a 1D example.

34 ◾ Data-Driven Global Optimization Methods and Applications

original database, and the surrogate model is reconstructed. This process is

repeated, gradually reducing the deviation between the predicted and true

values, ultimately obtaining the true minimum. MP strategy is a relatively

simple and intuitive sample update strategy, where the predicted optimal

solution or a nearby solution is used as the update sample. However, a

drawback of this approach is that the optimization process may become

trapped in local optimum regions and fail to escape. After constructing

the surrogate models for the objective function and constraint functions,

the following optimization problem is solved, where n represents the num-

ber of constraint functions.

()

≤ =

∧

∧

0, 1,2, ,

Minimize y X

st g i ni 

 (2.29)

When the objective is a smooth and continuous function, the MP sampling

method will at least find a local optimal solution of the surrogate model.

However, the convergence rate depends on the properties of the function.

2.3.2 Maximum Improvement Probability Criterion

Maximum improvement probability criterion (MIPC) aims to find the next

sample point x that maximizes the probability of improving the current

FIGURE 2.14 MP strategy.

Data-Driven Optimization Framework ◾ 35

best observed value, ymin. Let ~ [ˆ(), ()]2Y N y x s x be a random variable fol-

lowing a normal distribution, and the improvement degree over ymin is

denoted as = − ()minI y Y x . Therefore, the probability that the predicted

objective value is better than the current best observed value is given by:

 [] ()
()

< = Φ
−











∧

min
min

P Y y
y y x

s x
 (2.30)

 ∫[]() =
π

()

∧

− −








 (

−∞

∧

1

2

2)0
2

2

P I x
s

e dI
I y x s

 (2.31)

Figure 2.15 provides a graphical interpretation of Eq. (2.30), along with a

Gaussian normal distribution in the vertical direction, where the mean

is ˆ()y x and the variance is ()2s x . This Gaussian distribution represents the

uncertainty of the predicted result ˆ()y x . The area below the dashed line

indicates the probability of improvement over the current best value, and

the enclosed area represents the improvement probability.

FIGURE 2.15 MIPC strategy.

36 ◾ Data-Driven Global Optimization Methods and Applications

2.3.3 Maximum Improvement Expectation Criterion

Maximum improvement expectation criterion (MIEC) refers to the

expected improvement at an unobserved point x. Let ~ [ˆ(), ()]2Y N y x s x be

a random variable following a normal distribution, ŷ is the predicted value

from the surrogate model, 2s is the estimated MSE. Given ŷ and 2s , not

only can the probability of improvement be calculated, but the expected

improvement can also be estimated. The expected improvement calcula-

tion is shown in Eq. (2.32).

φ[]() =

−



 Φ

−











+
−











>

=










∧
∧ ∧

()
()

()

()

()
, 0

0 0

min
min

2

min

2E I x
y y x

y y x

s x
s

y y x

s x
s

s

(2.32)

where Φ ⋅() and ()φ ⋅ represent the cumulative distribution function and

the probability density function of the standard normal distribution,

respectively.

In Figure 2.16, the expected improvement can be intuitively understood

as the area below the current optimal value, which represents the average

FIGURE 2.16 MIEC strategy.

Data-Driven Optimization Framework ◾ 37

value of the integral of the probability density under the Gaussian distri-

bution function. When =ˆ () 02s x , = =[()] [()] 0P I x E I x .

Another classic update method is the trust-region method (TR).

Alexandrov et al. (1998) have rigorously proven that the TR method can

converge to a local optimum, regardless of the starting point, under the

condition that the gradient information of the real model at the interpola-

tion points is available. TR can also match the gradient of the objective

function using the first-order scaling method suggested by Haftka (1991)

or the second-order scaling method proposed by Eldred et al. (2004). In

general, both TR and MP belong to strategies that exploit the design space

through the use of surrogate models, often referred to as exploitation-based

infill criteria. While MP can easily miss the true global optimum when

dealing with highly nonlinear problems, TR guarantees the search for a

local optimum from any starting point, although it does not ensure find-

ing the global optimum.

To determine the global optimum, a new element, namely space explora-

tion, needs to be introduced. Pure design space exploration can essentially

be viewed as filling gaps between known design points with new samples.

The simplest approach is a sequential space sampling plan, such as Sobol

sequences or LP arrays, although these methods perform poorly when the

number of samples is small (Sobol, 1979; Statnikov & Matusov, 2012). New

sample points can also be determined by the max–min criterion. If the

residual estimate of the surrogate model is available, selecting the loca-

tion with the largest residual to add a new sample is also a viable strategy.

However, pure space exploration can sometimes be time- consuming, as

designers are typically less concerned with the overall accuracy of the sur-

rogate model and more focused on the precision at the global optimum

location.

2.4 CHAPTER SUMMARY

This chapter provides an overview of the DDO process, detailing the initial

sampling techniques, surrogate modeling methods and dynamic sampling

strategies employed in DDO. The initial sampling methods, as the founda-

tion of DDO, determine the distribution of the initial samples. Surrogate

modeling, as the key component of the process, ensures the accuracy of

the model predictions. Dynamic sampling strategies, as the core of DDO,

guarantee a thorough search of the design space.

38 ◾ Data-Driven Global Optimization Methods and Applications

REFERENCES
Alexandrov, N. M., Dennis Jr, J. E., Lewis, R. M., & Torczon, V. (1998). A

Trust-Region Framework for Managing the Use of Approximation Models in
Optimization. Structural Optimization, 15(1), 16–23.

Box, G. E., & Behnken, D. W. (1960). Some New Three Level Designs for the Study
of Quantitative Variables. Technometrics, 2(4), 455–475.

Chen, W. (1995). A robust concept exploration method for configuring complex sys-
tems. Georgia Institute of Technology.

Eldred, M., Giunta, A., & Collis, S. (2004). Second-order corrections for sur-
rogate-based optimization with model hierarchies. 10th AIAA/ISSMO
Multidisciplinary Analysis and Optimization Conference, Albany, New York,
August 30 to September 1, 2004.

Haftka, R. T. (1991). Combing Global and Local Approximations. AIAA Journal,
29(9), 1523–1525.

Hastie, T., Tibshirani, R., & Friedman, J. (2004). The Elements of Statistical
Learning. 2001. Journal of the Royal Statistical Society, 167(1), 192–192.

Hickernell, F. (1998). A Generalized Discrepancy and Quadrature Error Bound.
Mathematics of Computation, 67(221), 299–322.

Iman, R. L. (2008). Latin hypercube sampling. In E. L. Melnick & B. S. Everitt
(Eds.), Encyclopedia of quantitative risk analysis and assessment. John Wiley
& Sons, Ltd. https://doi.org/10.1002/9780470061596.risk0299

Jin, R., Chen, W., & Sudjianto, A. (2005). An efficient Algorithm for Constructing
Optimal Design of Computer Experiments. Journal of Statistical Planning
and Inference, 134(1), 268–287.

Kenny, Q. Y., Li, W., & Sudjianto, A. (2000). Algorithmic Construction of Optimal
Symmetric Latin Hypercube Designs. Journal of Statistical Planning and
Inference, 90(1), 145–159.

Koehler, J., & Owen, A. (1996). Computer Experiments. In S. Ghosh & C. R. Rao
(Eds.), Handbook of statistics (pp. 261–308). Elsevier Science New York.

Myers, R. H., Montgomery, D. C., & Anderson-Cook, C. M. (2016). Response sur-
face methodology: Process and product optimization using designed experi-
ments. John Wiley & Sons.

Shannon, C. E. (1948). A Mathematical Theory of Communication. The Bell System
Technical Journal, 27(3), 379–423.

Sobol, I. M. (1979). On the Systematic Search in a Hypercube. SIAM Journal on
Numerical Analysis, 16(5), 790–793. https://doi.org/10.1137/0716058

Statnikov, R. B., & Matusov, J. B. (2012). Multicriteria optimization and engineer-
ing. Springer Science & Business Media.

https://doi.org/10.1137/0716058
https://doi.org/10.1002/9780470061596.risk0299

C H A P T E R 3

Benchmark Functions

for Data-Driven

Optimization Methods

3.1 INTRODUCTION

In recent years, various optimization algorithms have rapidly developed,

addressing optimization problems that are challenging for traditional

numerical optimization methods. Benchmark function testing is one of the

most commonly used methods by researchers to assess the performance

and robustness of optimization algorithms. In the subsequent chapters of

this book, a wide range of benchmark functions is employed to validate

the accuracy and efficiency of various optimization methods. This chapter

provides a comprehensive summary and classification of these functions.

Specifically, it introduces single-objective optimization test functions

(Jamil & Yang, 2013; Surjanovic & Bingham, 2013), constrained and uncon-

strained optimization test functions (Adorio & Diliman, 2005; Akbari &

Kazerooni, 2020; Jamil & Yang, 2013; Liang et al., 2006; Liu et al., 2021;

Liu et al., 2017; Mezura-Montes & Cetina-Domínguez, 2012; Surjanovic &

Bingham, 2013), discrete optimization test functions (Dong et al., 2020; Li

et al., 2013; Müller et al., 2013; Müller et al., 2014; Pichitlamken et al., 2006)

and high-dimensional optimization test functions (Adorio & Diliman,

2005; Jamil & Yang, 2013; Surjanovic & Bingham, 2013).

39DOI: 10.1201/9781003636267-3

https://doi.org/10.1201/9781003636267‑3

40 ◾ Data-Driven Global Optimization Methods and Applications

Besides, functions that possess multiple local optima are referred to as

multimodal functions. These functions are used to test an algorithm’s abil-

ity to escape local minima. If the exploration process of an algorithm is

poorly designed, it will fail to effectively search for the global optimum,

causing the algorithm to become trapped in local minima. For many algo-

rithms, escaping from multimodal functions with numerous local minima

represents a major challenge. Another difficulty is the search process for

plate-shaped functions, as the minimal variation in the function makes it

difficult for the algorithm to gather useful information to guide the search

process.

For any new optimization algorithm, it is essential to compare it with

other existing algorithms using a wide range of test functions to validate

its performance. If the problems are overly simplified and lack diversity,

the effectiveness of the algorithm in comparison to other methods may not

be accurately evaluated. Therefore, to assess the quality of an algorithm,

it is necessary to identify the specific problems on which it performs bet-

ter. This helps describe the types of problems the algorithm is suited for.

The results can be considered reliable only when the number of bench-

mark functions is sufficiently large and the types of problems covered are

diverse, such as unimodal, multimodal, discrete, and high-dimensional

problems. Without loss of generality, this book focuses on minimization

problems, as maximization problems can be transformed into minimiza-

tion problems by changing the sign of the objective function. The math-

ematical definitions of the test functions used in this book are provided

below.

3.2 UNCONSTRAINED OPTIMIZATION PROBLEMS
3.2.1 Unconstrained Low-Dimensional Problems

3.2.1.1 Generalized Polynomial Function

The generalized polynomial function, as shown in Figure 3.1, is defined by

the following mathematical expression:

() ()()= − − + − − + − −

= − ≤ ≤ − ≤ ≤

() 1.5 (1) 2.25 (1) 2.625 (1)

2 2 2, 2 2

1 2
2

1 2
2 2

1 2
3 2

1 2

f x x x x x x

n x x

x

(3.1)

Design objective: Single objective

Function characteristics: Continuous, unimodal

Benchmark Functions for Data-Driven Optimization Methods ◾ 41

Dimensions: 2-Dimensional

Optimal value: 0.523

3.2.1.2 Zakharov Function

The Zakharov function is shown in Figure 3.2, and its mathematical

expression is given by Eq. (3.2).

()

1

2

1

2

2 5 10, 5 10

2

1

2

1

2 2

1

2 4

1 2

x ∑ ∑ ∑= +








 +











= − ≤ ≤ − ≤ ≤

= = =

f x ix ix

n x x

i

i

i

i

i

i
 (3.2)

Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.3 Beale Function

The Beale function is shown in Figure 3.3, and its mathematical expression

is given by Eq. (3.3).

FIGURE 3.1 Generalized polynomial function.

42 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 3.3 Beale function.

FIGURE 3.2 Zakharov function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 43

= − + + − + + − +

= − ≤ ≤ − ≤ ≤

() (1.5) (2.25) (2.625)

2 4.5 4.5, 4.5 4.5

1 1 2
2

1 1
2 2

1 1
3 2

1 2

2 2f x x x x x x x x x

n x x

x

(3.3)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.4 Six-Hump Camel-Back Function

The six-hump camel-back function is shown in Figure 3.4, and its math-

ematical expression is given by Eq. (3.4).

= − + + − +

= − ≤ ≤ =

() 4 2.1
1

3
4 4

2 2 2, 1,2

1
2

1
4

1
6

1 2 2
2

2
4f x x x x x x x

n x ii

x
 (3.4)

Design objective: Single objective

Function characteristics: Continuous

FIGURE 3.4 Six-hump camel-back function.

44 ◾ Data-Driven Global Optimization Methods and Applications

Dimensions: 2-Dimensional

Optimal value: −1.0320

3.2.1.5 Branin Function

The mathematical expression of the Branin function is given as follows:

= − π + π − + − π +

= − ≤ ≤ =

≤ ≤ =

() (5.1(2) 5 6) 10(1 1 8)cos() 10

2 5 10, 1

0 15, 2

2 1
2

1
2

1f x x x x

n x i

x i

i

i

x

 (3.5)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: 0.397

3.2.1.6 Leon Function

The Leon function is shown in Figure 3.5, and its mathematical expression

is given by Eq. (3.6).

FIGURE 3.5 Leon function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 45

= − + −

= − ≤ ≤ =

() 100() (1)

2 10 10, 1,2

2 1
3 2

1
2f x x x

n x ii

x
 (3.6)

Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.7 Griewank Function

The mathematical expression is given as follows:

∑ ∏ ()= +

= − ≤ ≤ =

= =

()
200

+ cos 1

2 100 100, 1,2

2

1

2

1

1

2

f
x

x i

n x i

i

i i

i

x
 (3.7)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.8 Ackley Function

The Ackley function is shown in Figure 3.6, and its mathematical expres-

sion is given by Eq. (3.8).

 = + −
∑

−
∑

= − ≤ ≤ =

− − π

= =() 20 20

2 30 30, 1, ,

1

5

1 1
cos(2)

2

1 1f e e e

n x i n

n
x

n
x

i

i
i

n

i

i

n



x (3.8)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 0

Description: The Ackley function features an almost flat outer region

with a large hole at its center. This function possesses numerous local

minima.

46 ◾ Data-Driven Global Optimization Methods and Applications

3.2.1.9 Griewank Function

The Griewank function (GW/GW2/GW10) is shown in Figure 3.7, and its

mathematical expression is given by Eq. (3.9).

∑ ∏= − 





+

= − ≤ ≤ =

= − ≤ ≤ =

= =

()
4,000

cos 1

2 10 10, 1, ,

10 600 600, 1, ,

2

1 1

f
x x

i

n x i n

n x i n

i

i

n

i

i

n

i

i





x

 (3.9)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional

version, and this book uses both two-dimensional and ten-dimen-

sional versions)

Optimal value: 0

Description: The GW function possesses several local minima.

Although there is only one global optimum, the nearby peaks are

extremely close, posing a significant challenge to the algorithm’s

ability to escape from local minima.

FIGURE 3.6 Ackley function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 47

3.2.1.10 Peaks Function

The Peaks function is shown in Figure 3.8, and its mathematical expres-

sion is given by Eq. (3.10).

() 3(1) 10

5

1

3

2 3 3, 4 4

1
2 (1) 1

1
3

2
5 (1)

1 2

1
2

2
2

1
2

2
2

1
2

2
2

x = − − − −



 −

= − ≤ ≤ − ≤ ≤

− − + − − − + −f x e
x

x x e e

n x x

x x x x x x

 (3.10)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: −6.551

3.2.1.11 Styblinski–Tang Function

The graph of the Styblinski–Tang function (ST/ST5) is shown in Figure 3.9,

and its mathematical expression is given in Eq. (3.11).

FIGURE 3.7 Griewank function.

48 ◾ Data-Driven Global Optimization Methods and Applications

()

1

2
16 5

2 5 5, 1, ,

4 2

1

x



∑()= − +

= − ≤ ≤ =

f x x x

n x i n

i i i

n

i

 (3.11)

FIGURE 3.8 Peaks function.

FIGURE 3.9 Styblinski–Tang function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 49

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional

version, and this book uses both two-dimensional and five-dimen-

sional versions)

Optimal value: −78.332 (two-dimensional); −195.831 (five-dimensional)

3.2.1.12 Alpine Function

The graph of the Alpine function is shown in Figure 3.10, and its math-

ematical expression is given in Eq. (3.12).

() sin()

2 0 10, 0 10

1

2

1 2

x ∏=

= ≤ ≤ ≤ ≤

=

f x x

n x x

i

i

i

 (3.12)

Design objective: Single objective

Function characteristics: Continuous, multimodal

FIGURE 3.10 Alpine function.

50 ◾ Data-Driven Global Optimization Methods and Applications

Dimensions: 2-Dimensional

Optimal value: −6.130

3.2.1.13 F1 Function

The graph of the F1 function is shown in Figure 3.11, and its mathematical

expression is given in Eq. (3.13).

() cos(18) (18)

2 1 1, 1 1

1
2

2
2

1 2

1 2

x = + − −

= − ≤ ≤ − ≤ ≤

f x x x x

n x x
 (3.13)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: −2

FIGURE 3.11 F1 function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 51

3.2.1.14 Himmelblau Function

The graph of the Himmelblau function is shown in Figure 3.12, and its

mathematical expression is given in Eq. (3.14).

() 3(1) 10

5

1

3

2 3 3, 4 4

1
2 (1) 1

1
3

2
5 (1)

1 2

1
2

2
2

1
2

2
2

1
2

2
2

x = − − − −



 −

= − ≤ ≤ − ≤ ≤

− − + − − − + −f x e
x

x x e e

n x x

x x x x x x

(3.14)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 0

Description: The function has four extrema, all of which are global

optimal points.

FIGURE 3.12 Himmelblau function.

52 ◾ Data-Driven Global Optimization Methods and Applications

3.2.1.15 Shubert Function

The graph of the Shubert function is shown in Figure 3.13, and its math-

ematical expression is given in Eq. (3.15).

() cos((1)) cos((1))

2 2 2, 2 2

1

1

5

2

1

5

1 2

x ∑ ∑= + +








 + +











= − ≤ ≤ − ≤ ≤

= =

f i i x i i i x i

n x x

i i (3.15)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: −186.7309

3.2.1.16 Banana Function

The graph of the Banana function (BA/Rosenbrock) is shown in Figure 3.14,

and its mathematical expression is given in Eq. (3.16).

() 100() (1)

2 2 2, 1, ,

1
2 2 2

1

1

x



∑= − + − 

= − ≤ ≤ =

+

=

−

f x x x

n x i n

i i

i

n

i

i

 (3.16)

FIGURE 3.13 Shubert function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 53

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional

version, and this book uses its two-dimensional version)

Optimal value: 0

3.2.1.17 Sasena Function

The graph of the Sasena function is shown in Figure 3.15, and its math-

ematical expression is given in Eq. (3.17).

() 2 0.01() (1) 2(2) 7sin(0.5)sin(0.7)

2 0 5, 0 5

2 1
2 2

1
2

2
2

1 1 2

1 2

x = + − + − + − +

= ≤ ≤ ≤ ≤

f x x x x x x x

n x x

(3.17)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: −1.457

FIGURE 3.14 Banana function.

54 ◾ Data-Driven Global Optimization Methods and Applications

3.2.1.18 Goldstein–Price Function

The Goldstein–Price function is shown in Figure 3.16, and its mathemati-

cal expression is given in Eq. (3.18).

= + + + − + − + + 

× + − − + + − + 

= − ≤ ≤ − ≤ ≤

() 1 (1) (19 14 3 14 6 3)

30 (2 3) (18 32 12 48 36 27

2 2 2, 2 2

1 2
2

1
2

2 1 2 2
2

1 2
2

1
2

2 1 2 2
2

1 2

1

1

f x x x x x x x x

x x x x x x x x

n x x

x

(3.18)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 3

3.2.1.19 Rastrigin Function

The Rastrigin function is shown in Figure 3.17, and its mathematical

expression is given in Eq. (3.19).

FIGURE 3.15 Sasena function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 55

FIGURE 3.16 Goldstein–Price function.

FIGURE 3.17 Rastrigin function.

56 ◾ Data-Driven Global Optimization Methods and Applications

() 20 10cos(2)

2 5.12 5.12, 5.12 5.12

2

1

2

1 2

x ∑()= + − π

= − ≤ ≤ − ≤ ≤

=

f x x

n x x

i i

i (3.19)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.20 Alpine1 Function

The Alpine1 function is shown in Figure 3.18, and its mathematical expres-

sion is given in Eq. (3.20).

() sin() 0.1

2 10 10, 10 10

1

2

1 2

x ∑= +

= − ≤ ≤ − ≤ ≤

=

f x x x

n x x

i i i

i (3.20)

FIGURE 3.18 Alpine1 function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 57

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.21 Alpine2 Function

The Alpine2 function is shown in Figure 3.19, and its mathematical expres-

sion is given in Eq. (3.21).

() sin()

2 0 10, 0 10

1

2

1 2

x ∏=

= ≤ ≤ ≤ ≤

=

f x x

n x x

i i

i (3.21)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: −6.13

FIGURE 3.19 Alpine2 function.

58 ◾ Data-Driven Global Optimization Methods and Applications

3.2.1.22 Bird Function

The Bird function is shown in Figure 3.20, and its mathematical expres-

sion is given in Eq. (3.22).

() sin() cos() ()

2 2 2 , 2 2

1
(1 cos())

2
(1 sin())

1 2
2

1 2

2
2

1
2

x = + + −

= − π ≤ ≤ π − π ≤ ≤ π

− −f x e x e x x

n x x

x x

 (3.22)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: −106.76

3.2.1.23 Easom Function

The Easom function is shown in Figure 3.21, and its mathematical expres-

sion is given in Eq. (3.23).

() cos()cos()

2 10 10, 10 10

1 2
(() ())

1 2

1
2

2
2

x = −

= − ≤ ≤ − ≤ ≤

− −π − −πf x x e

n x x

x x

 (3.23)

FIGURE 3.20 Bird function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 59

Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: 2-Dimensional

Optimal value: −1

3.2.1.24 Schaffer2 Function

The Schaffer2 function is shown in Figure 3.22, and its mathematical

expression is given in Eq. (3.24).

() 0.5

sin () 0.5

1 0.001()

2 2 2, 2 2

2
1
2

2
2

1
2

2
2 2

1 2

x = +
− −

+ + 

= − ≤ ≤ − ≤ ≤

f
x x

x x

n x x

 (3.24)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 0

FIGURE 3.21 Easom function.

60 ◾ Data-Driven Global Optimization Methods and Applications

3.2.1.25 Levy Function

The Levy function is shown in Figure 3.23, and its mathematical expres-

sion is given in Eq. (3.25).



∑= π + − + π + 

+ − + π = +
−

= − ≤ ≤ =

=

−

() sin () (1) (1 10sin (1))

(1) (1 10sin (2)) 1
1

4

4 10 10, 1, ,

2
1

2 2

1

1

2 2

f y y y

y y y
x

n x i n

i i

i

n

n n i
i

i

x

 (3.25)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional

version, and this book uses its four-dimensional version)

Optimal value: 0

FIGURE 3.22 Schaffer2 function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 61

3.2.1.26 Dixon–Price Function

The Dixon–Price function is shown in Figure 3.24, and its mathematical

expression is given in Eq. (3.26).

() (1) 2

4 10 10, 1, ,

1
2 2

1

2

2

x



∑ ()= − + −

= − ≤ ≤ =

−

=

f x i x x

n x i n

i i

i

n

i

 (3.26)

Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional

version, and this book uses its four-dimensional version)

Optimal value: 0

3.2.1.27 Shekel Function

The mathematical expression is given in Eq. (3.27).

FIGURE 3.23 Levy function.

62 ◾ Data-Driven Global Optimization Methods and Applications

 () ()2

1

4

1

10
1

x ∑∑= − + −












==

−

f c x ai j ji

ji

 []

=























=

≤ ≤ =

4 1 8 6 3 2 5 8 6 7

4 1 8 6 7 9 5 1 2 3.6

4 1 8 6 3 2 3 8 6 7

4 1 8 6 7 9 3 1 2 3.6

0.1 0.2 0.2 0.4 0.4 0.6 0.3 0.7 0.5 0.5

0 10, 1,2,3,4

a

c

x ii

 (3.27)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 4-Dimensional

Optimal value: −10.1532

FIGURE 3.24 Dixon–Price function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 63

3.2.1.28 Hartman6 Function

The mathematical expression is given in Eq. (3.28).

() exp ()

1,1.2,3,3.2 ,

10 3 17 3.5 1.7 8

0.05 10 17 0.1 8 14

3 3.5 1.7 10 17 8

17 8 0.05 10 0.1 14

10

1,312 1,696 5,569 124 8,283 5,886

2,329 4,135 8,307 3,736 1,004 9,991

2,348 1,451 3,522 2,883 3,047 6,650

4,047 8,828 8,732 5,743 1,091 381

6 0 1, 1, ,

2

1

6

1

4

4

f a B x Q

a B

Q

n x i n

i ij j ij

ji

T

i

x



∑∑

[]

= − − −














= =























=























= ≤ ≤ =

==

−

 (3.28)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 6-Dimensional

Optimal value: −3.322

3.2.2 Unconstrained High-Dimensional Problems

3.2.2.1 Schwefel3 Function

The Schwefel3 function is shown in Figure 3.25, and its mathematical

expression is given in Eq. (3.29).

() (1) ()

8 0 5, 1, ,

2

2

1
2 2x



∑= − + −

= ≤ ≤ =

=

f x x x

n x i n

i

i

n

i

 (3.29)

Design objective: Single objective

64 ◾ Data-Driven Global Optimization Methods and Applications

Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (this book uses its eight-dimensional version)

Optimal value: 0

3.2.2.2 Convex Function

The mathematical expression is given in Eq. (3.30).

min () 3.1 +7.6 +6.9 +0.004 +19 +3 + + 4

. . 10,9, ,9,10 , 1, ,8

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2x

 { }

=

∈ − =

f x x x x x x x x

s t x ii

(3.30)

Design objective: Single objective

Function characteristics: Discrete

Dimensions: 8-Dimensional

3.2.2.3 Nvs09 Function

The mathematical expression is given in Eq. (3.31).

min () 3.1 +7.6 +6.9 +0.004 +19 +3 + + 4

. . 10,9, ,9,10 , 1, ,8

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2x

 { }

=

∈ − =

f x x x x x x x x

s t x ii

(3.31)

FIGURE 3.25 Schwefel3 function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 65

Design objective: Single objective

Function characteristics: Discrete

Dimensions: 10-Dimensional

3.2.2.4 AlteredNvs09 Function

The mathematical expression is given in Eq. (3.32).

min () log(2) log(10)

. . 3,4, ,99 , 1, ,10

2 2

1

10

1

10 0.2

x

 

∑ ∏()

{ }

= − + − −










∈ =

= =

f x x x

s t x i

i i

i

i

i

i

 (3.32)

Design objective: Single objective

Function characteristics: Discrete

Dimensions: 10-Dimensional

3.2.2.5 Paviani Function

The mathematical expression is given in Eq. (3.33).

() log(2) log(10)

10 2.1 9.9, 1, ,

2 2

1 1

0.2

x



∑ ∏()= − + − −










= ≤ ≤ =

= =

f x x x

n x i n

i i

i

n

i

i

n

i

 (3.33)

Design objective: Single objective

Function characteristics: Discrete

Dimensions: 10-Dimensional

Optimal value: −45.8

3.2.2.6 Trid Function

The Trid function (Trid/Trid6/Trid10) is shown in Figure 3.26, and its

mathematical expression is given in Eq. (3.34).

66 ◾ Data-Driven Global Optimization Methods and Applications

() (1)

10 , 1, ,

6 , 1, ,

2

1

1

2

2 2

2 2

x





∑ ∑= − −

= − ≤ ≤ =

= − ≤ ≤ =

=

−

=

f x x x

n n x n i n

n n x n i n

i

i

n

i i

i

n

i

i

 (3.34)

Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (this book uses its six- and ten- dimensional

versions)

Optimal value: −50 (six-dimensional); −210 (ten-dimensional)

3.2.2.7 Rastrigin01 Function

The mathematical expression is given in Eq. (3.35).

min () cos(2)

. . 1,0,1,2,3 , 1, ,12

2

1

x



∑

{ }

= − π

∈ − =

=

f x x

s t x i

i

i

n

i

i

 (3.35)

FIGURE 3.26 Trid function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 67

Design objective: Single objective

Function characteristics: Discrete

Dimensions: 12-Dimensional

3.2.2.8 Rastrigin02 Function

The mathematical expression is given in Eq. (3.36).

min () cos(2)

. . 10, 9, ,29,30 , 1, ,12

2

1

x

 

∑

{ }

= − π

∈ − − =

=

f x x

s t x i

i

i

n

i

i

 (3.36)

Design objective: Single objective

Function characteristics: Discrete

Dimensions: 12-Dimensional

3.2.2.9 Sum Squares Function

The sum squares function is shown in Figure 3.27, and its mathematical

expression is given in Eq. (3.37).

FIGURE 3.27 Sum squares function.

68 ◾ Data-Driven Global Optimization Methods and Applications

()

15 5 5, 1, ,

20 10 10, 1, ,

2

1

x





∑=

= − ≤ ≤ =

= − ≤ ≤ =

=

f ix

n x i n

n x i n

i

i

n

i

i

 (3.37)

Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (this book uses its 15- and 20-dimensional

versions)

Optimal value: 0

3.2.2.10 Sphere Function

The sphere function is shown in Figure 3.28, and its mathematical expres-

sion is given in Eq. (3.38).

FIGURE 3.28 Sphere function.

Benchmark Functions for Data-Driven Optimization Methods ◾ 69

()

20 5.12 5.12, 1, ,

15 5.12 5.12, 1, ,

10 5.12 5.12, 1, ,

2

1

x







∑=

= − ≤ ≤ =

= − ≤ ≤ =

= − ≤ ≤ =

=

f x

n x i n

n x i n

n x i n

i

i

n

i

i

i

 (3.38)

Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (this book uses its 10-, 15- and 20-

dimensional versions)

Optimal value: 0

3.2.2.11 F16 Function

The mathematical expression is given in Eq. (3.39).

() (1)(1)

1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 1

0 1 1 0 0 0 1 0 0 1 0 0 0 0 0 0

0 0 1 0 0 0 1 0 1 1 0 0 0 1 0 0

0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0

0 0 0 0 1 1 0 0 0 1 0 1 0 0 0 1

0 0 0 0 0 1 0 1 0 0 0 0 0 0 1 0

0 0 0 0 0 0 1 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 0 1 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

16 1 1, 1, ,

1

16

1

16

2 2

(1 8) (9 16)

x



∑∑= + + + +

=





































=





































= − ≤ ≤ =

==

− −

f a x x x x

a a

n x i n

ij

ji

i i j j

ij row ij row

i

(3.39)

Design objective: Single objective

Function characteristics: Continuous

70 ◾ Data-Driven Global Optimization Methods and Applications

Dimensions: 16-Dimensional

Optimal value: 25.875

3.3 CONSTRAINED OPTIMIZATION PROBLEMS
3.3.1 Constrained Low-Dimensional Problems

3.3.1.1 g06

The mathematical expression of g06 is given in Eq. (3.40).

()

()

()

= − + −

= − − − − + ≤

= − + − − ≤

= ≤ ≤ =

≤ ≤ =

(10) (20)

:

(5) (5) 100 0

(5) (5) 82.81 0

2 13 100(1)

0 100(2)

1
3

2
3

1 1
2

2
2

2 1
2

2
2

f x x

subject

g x x

g x x

n x i

x i

i

i

x

x

x
 (3.40)

Design objective: Single objective

Function characteristics: Continuous or discrete

Dimensions: 2-Dimensional

Optimal value: −6,961.8138 (when the functions are continuous)

Active constraints: g1, g2

Description: In the discrete case, the range of values for design vari-

ables is x1 ∈ {13, 14, …, 100}, x2 ∈ {0, 1, 2, …, 100}.

3.3.1.2 g08

The mathematical expression of g08 (G8) is given in Eq. (3.41).

()

()

()

= −
π π

+

= − + ≤

= − + − ≤

= ≤ ≤ =

sin (2)sin(2)

()

:

1 0

1 (4) 0

2 0 10(1,2)

3
1 2

1
3

1 2

1 1
2

2

2 1 2
2

f
x x

x x x

subject

g x x

g x x

n x ii

x

x

x

 (3.41)

Benchmark Functions for Data-Driven Optimization Methods ◾ 71

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: −0.0958

3.3.1.3 g24

The mathematical expression of g24 is given in Eq. (3.42).

()

()

= − −

= − + − + − ≤

= − + − + + − ≤

= ≤ ≤ =

≤ ≤ =

()

:

2 8 8 2 0

4 32 88 96 36 0

2 0 3(1)

0 4(2)

1 2

1 1
4

1
3

1
2

2

2 1
4

1
3

1
2

1 2

f x x

subject

g x x x x

g x x x x x

n x i

x i

i

i

x

x

x
 (3.42)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: −5.5080

3.3.1.4 Gomez

The mathematical expression of Gomez is given in Eq. (3.43).

= − +




 + + − +

− π + π ≤

= − ≤ ≤ =

− ≤ ≤ =

() 4 2.1
1

3
(4 4)

:

sin(4) 2sin (2) 0

2 0.5 0.5(1)

1 0(2)

2 4 2
1 2

2
2
2

1
2

2

1 1 1 2f x x x x x x x

subject

x x

n x i

x i

i

i

x

 (3.43)

Design objective: Single objective

Function characteristics: Continuous

72 ◾ Data-Driven Global Optimization Methods and Applications

Dimensions: 2-Dimensional

Optimal value: −0.9711

3.3.1.5 Sasena

The mathematical expression of Sasena is given in Eq. (3.44).

= + − + − + − +

− − − π ≤

= ≤ ≤ =

() 2 0.01() (1) 2(2) 7sin(0.5)sin(0.7)

:

sin(8) 0

2 0 5(1,2)

2 1
2 2

1
2

2
2

1 1 2

1 2

f x x x x x x x

subject

x x

n x ii

x

(3.44)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: −1.1743

3.3.1.6 Brianin

The mathematical expression of Brianin is given in Eq. (3.45).

= −
π

+
π

−



 + −

π




 +

= =
π

= −
π

= = =
π

− − − + − − + ≤

= − ≤ ≤ =

≤ ≤ =

()
5.1

4

5
6 10 1

1

8
cos() 10

:

1;
5.1

4
;

5
; 6; 10;

1

8

() (1)cos 5 0

2 5 10(1)

0 15(2)

2 2 1
2

1

2

1

2

2 1
2

1 1

f x x x x

subject

a b c d h ff

a x bx cx d h ff x h

n x i

x i

i

i

x

 (3.45)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: 0.3979

Benchmark Functions for Data-Driven Optimization Methods ◾ 73

3.3.1.7 g12

The mathematical expression of g12 is given in Eq. (3.46).



()

()

= − − − − − − −

= − + − + − − ≤

= ≤ ≤ = =

(100 (5) (5) (5))/100

:

() () () 0.0625 0

3 0 10(1,2,3); , , 1,2, ,9

1
2

2
2

3
2

1 1
2

2
2

3
2

f x x x

subject

g x p x q x r

n x i p q ri

x

x
 (3.46)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 3-Dimensional

Optimal value: −1

3.3.1.8 g04

The mathematical expression of g04 (g04/G4/Him) is given in Eq. (3.47).

()

()

()

()

()

()

()

= + + −

= + + − − ≤

= − − − + ≤

= + + + − ≤

= − − − − + ≤

= + + + − ≤

= − − − − + ≤

= ≤ ≤ =

≤ ≤ =

≤ ≤ =

5.3578547 0.8356891 37.293239 40792.141

:

85.334407 0.0056858 0.0006262 0.0022053 92 0

85.334407 0.0056858 0.0006262 0.0022053 0

80.51249 0.0071317 0.0029955 0.0021813 110 0

80.51249 0.0071317 0.0029955 0.0021813 90 0

9.300961 0.0047026 0.0012547 0.0019085 25 0

9.300961 0.0047026 0.0012547 0.0019085 20 0

5 78 102(1)

33 45(2)

27 45(3,4,5)

3
2

1 5 1

1 2 5 1 4 3 5

2 2 5 1 4 3 5

3 2 5 1 2
2

4 2 5 1 2
2

5 3 5 1 3 3 4

6 3 5 1 3 3 4

3

3

f x x x x

subject

g x x x x x x

g x x x x x x

g x x x x x

g x x x x x

g x x x x x x

g x x x x x x

n x i

x i

x i

i

i

i

x

x

x

x

x

x

x

(3.47)

Design objective: Single objective

Function characteristics: Continuous or discrete

74 ◾ Data-Driven Global Optimization Methods and Applications

Dimensions: 5-Dimensional

Optimal value: −30,665.5386 (when the functions are continuous)

Active constraints: g1, g6

3.3.1.9 Ex1221

The mathematical expression of Ex1221 is given in Eq. (3.48).

{ } { }

= + + + −

+ ≤ + ≤

+ ≤ − − + ≤

+ ≤

∈ ∈

min () 2 3 1.5 2 0.5

. . 1.25, 1.333 3

1.5 3, 0

1.6,

, , 0,1, ,10 , 0,1

1 2 3 4 5

2
3 2 4

2
1.5

4 3 4 5

1 3

1 2 3 4 5

1

f x x x x x

s t x x x x

x x x x x

x x

x x x x x

x

 (3.48)

Design objective: Single objective

Function characteristics: Discrete

Dimensions: 5-Dimensional

3.3.1.10 Altered ex1221

The mathematical expression of Altered ex1221 is given in Eq. (3.49).

min () 2 3 1.5 2 0.5

. . 1.6, 1.333 3

0

, 0,1, ,10 , 0,1

1 2 3 4 5

1 3 2 4

3 4 5

1 2, 3 4 5

x

{ } { }

= − − − − +

+ ≤ + ≤

− − + ≤

∈ ∈

f x x x x x

s t x x x x

x x x

x x x x x

 (3.49)

Design objective: Single objective

Function characteristics: Discrete

Dimensions: 5-Dimensional

3.3.1.11 g16

The mathematical expression of g16 is given in Eq. (3.50).

Benchmark Functions for Data-Driven Optimization Methods ◾ 75

()

() () ()

() () ()

() () ()

() () ()

() () ()

() () ()

() () ()

= + + + +

+ + + −

= − ≤ = − ≤ = − ≤

= + − ≤ = − ≤ = − ≤

= − ≤ = − ≤ = − ≤

= − ≤ = − ≤ = − ≤

= − ≤ = − ≤ = − ≤

= − ≤ = − ≤ = − ≤

= − ≤ = − ≤ = − ≤

0.000117 0.1365 0.00002358 0.000001502 0.0321

0.004323 0.0001 37.48 0.0000005843

:

0.28

0.72
0, 1.5 0, 3,496 12 0,

110.6
62,212

0, 213.1 0, 405.23 0,

17.505 0, 1,053.6667 0, 11.275 0,

35.03 0, 214.228 0, 665.585 0,

7.458 0, 584.463 0, 0.961 0,

265.916 0, 1.612 0, 7.046 0,

0.146 0, 0.222 0, 107.99 0,

14 13 16 12

5
15

16

2

12
17

1 5 4 2 3 2 3
2

12

4 1
17

5 1 6 1

7 2 8 2 9 3

10 3 11 4 12 4

13 5 14 5 15 6

16 6 17 7 18 7

19 8 20 8 21 9

f y y y y

y
c

c

y

c
y

subject

g y y g x x g
y

c

g y
c

g y g y

g y g y g y

g y g y g y

g y g y g y

g y g y g y

g y g y g y

x

x x x

x x x

x x x

x x x

x x x

x x x

x x x

273.366 0, 922.693 0,

1,286.105 0, 926.832 0,

1,444.046 0, 18.766 0,

537.141 0, 1,072.163 0,

3,247.039 0, 8,961.448 0,

26,844.086 0, 0.063 0,

0.386 0, 71,084.33 0,

140,000 0, 2,802,713 0,

12,146,108 0,

22 9 23 10

24 10 25 11

26 11 27 12

28 12 29 13

30 13 31 14

32 14 33 15

34 15 3 16

36 16 37 17

38 17

x x

x x

x x

x x

x x

x x

x x

x x

x

() ()

() ()

() ()

() ()

() ()

() ()

() ()

() ()

()

= − ≤ = − ≤

= − ≤ = − ≤

= − ≤ = − ≤

= − ≤ = − ≤

= − ≤ = − ≤

= − ≤ = − ≤

= − ≤ = − ≤

= − ≤ = − ≤

= − ≤

g y g y

g y g y

g y g y

g y g y

g y g y

g y g y

g y g y

g y g y

g y

 (3.50)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 5-Dimensional

Optimal value: −1.9051

76 ◾ Data-Driven Global Optimization Methods and Applications

3.3.1.12 g09

The mathematical expression of g09 (G9) is given in Eq. (3.51).



()

()

()

()

()

= − + − + + − + +

+ − − −

= − + + + + + ≤

= − + + + + − ≤

= − + + + − ≤

= + − + + − ≤

= − ≤ ≤ =

(10) 5(12) 3(11) 10 7

4 10 8

:

127 2 3 4 5 0

282 7 3 10 5 0

196 23 6 8 0

4 3 2 5 11 0

7 10 10(1, ,7)

1
2

2
2

3
4

4
2

5
6

6
2

7
4

6 7 6 7

1 1
2

2
4

3 4
2

5

2 1 2 3
2

4 5

3 1 2
2

6
2

7

4 1
2

2
2

1 2 3
2

6 7

f x x x x x x

x x x x x

subject

g x x x x x

g x x x x x

g x x x x

g x x x x x x x

n x ii

x

x

x

x

x

 (3.51)

Design objective: Single objective

Function characteristics: Continuous or discrete

Dimensions: 7-Dimensional

Optimal value: 680.6300 (when the functions are continuous)

Description: In the discrete case, the range of values for design vari-

ables is xi ∈ {−10, −9, …, 9, 10}, i = 1, …, 7.

3.3.2 Constrained High-Dimensional Problems

3.3.2.1 g10

The mathematical expression of g10 is given in Eq. (3.52).

Benchmark Functions for Data-Driven Optimization Methods ◾ 77



()

()

()

()

()

()

()

= + +

= − + + ≤

= − + + − ≤

= − + − ≤

= − + + − ≤

= − + + − ≤

= − + + − ≤

= ≤ ≤ =

≤ ≤ =

≤ ≤ =

:

1 0.0025() 0

1 0.0025() 0

1 0.01() 0

833.33252 100 83,333.333 0

1,250 1,250 0

1,250,000 2,500 0

8 100 10,000(1)

1,000 10,000(2,3)

10 1,000(4, ,8)

1 2 3

1 4 6

2 5 7 4

3 8 5

4 1 5 4 1

5 2 7 5 2 4 4

6 3 8 3 5 5

f x x x

subject

g x x

g x x x

g x x

g x x x x

g x x x x x x

g x x x x x

n x i

x i

x i

i

i

i

x

x

x

x

x

x

x

 (3.52)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 8-Dimensional

Optimal value: 7,049.248

3.3.2.2 g18

The mathematical expression of g18 is given in Eq. (3.53).

() = − − + − + −0.5()1 4 2 3 3 9 5 9 5 8 6 7f x x x x x x x x x x x xx

78 ◾ Data-Driven Global Optimization Methods and Applications



() () ()

() () () () ()

() () () () () ()

() () () () ()

() () ()

()

= + − ≤ = − ≤ = + − ≤

= + − − ≤ = − + − − ≤

= − + − − ≤ = − + − − ≤

= − + − − ≤ = + − − ≤

= − ≤ = − ≤ = ≤

= − ≤

= − ≤ ≤ =

≤ ≤ =

:

1 0, 1 0, 1 0,

1 0, 1 0,

1 0, 1 0,

1 0, 1 0,

0, 0, 0,

0.

9 10 10(1, ,8)

0 20(9)

1 3
2

4
2

2 9
2

3 5
2

6
2

4 1
2

2 9
2

5 1 5
2

2 6
2

6 1 7
2

2 8
2

7 3 5
2

4 6
2

8 3 7
2

4 8
2

9 7
2

8 9
2

10 2 3 1 4 11 3 9 12 5 9

13 6 7 5 8

subject

g x x g x g x x

g x x x g x x x x

g x x x x g x x x x

g x x x x g x x x

g x x x x g x x g x x

g x x x x

n x i

x i

i

i

x x x

x x

x x

x x

x x x

x

(3.53)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 9-Dimensional

Optimal value: −0.866

3.3.2.3 g07

The mathematical expression of g07 is given in Eq. (3.54).

()

()

()

()

()

= + + − − + − + − + −

+ − + + − + − + − +

= − + + − + ≤

= − − + ≤

= − + + − − ≤

= − + − + − − ≤

14 16 (10) 4(5) (3)

2(1) 5 7(11) 2(10) (7) 45

:

105 4 5 3 9 0

10 8 17 2 0

8 2 5 2 12 0

3(2) 4(3) 2 7 120 0

2 2
1 2 1 2 3

2
4

2
5

2

6
2

7
2

8
2

9
2

10
2

1 1 2 7 8

2 1 2 7 8

3 1 2 9 10

4 1
2

2
2

3
2

4

1 2f x x x x x x x x x

x x x x x

subject

g x x x x

g x x x x

g x x x x

g x x x x

x

x

x

x

x

Benchmark Functions for Data-Driven Optimization Methods ◾ 79

5 8 (6) 2 40 0

2(2) 2 14 6 0

0.5(8) 2(4) 3 30 0

3 6 12(8) 7 0

10 10 10(1, ,)

5 1 2 3
2

4

6 1
2

2
2

1 2 5 6

7 1
2

2
2

5
2

6

8 1 2 9
2

10

x

x

x

x



()

()

()

()

= + + − − − ≤

= + − − + − ≤

= − + − + − − ≤

= − + + − − ≤

= − ≤ ≤ =

g x x x x

g x x x x x x

g x x x x

g x x x x

n x i ni

 (3.54)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 10-Dimensional

Optimal value: 24.3062

3.3.2.4 g01

The mathematical expression of g01 (G1/G1m) is given in Eq. (3.55).



∑ ∑ ∑()

()

()

()

()

()

()

()

()

()

= − −

= + + + − ≤

= + + + − ≤

= + + + − ≤

= − + ≤

= − + ≤

= − + ≤

= − − + ≤

= − − + ≤

= − − + ≤

= ≤ ≤ =

≤ ≤ =

≤ ≤ =

= = =

5 5

:

2 2 10 0

2 2 10 0

2 2 10 0

8 0

8 0

8 0

2 0

2 0

2 0

13 0 1(1, ,9)

0 100(10,11,12)

0 1(13)

1

4

2

1

4

5

13

1 1 2 10 11

2 1 3 10 12

3 2 3 11 12

4 1 10

5 2 11

6 3 12

7 4 5 10

8 6 7 11

9 8 9 12

f x x x

subject

g x x x x

g x x x x

g x x x x

g x x

g x x

g x x

g x x x

g x x x

g x x x

n x i

x i

x i

i

i i

i

i

i

i

i

ix

x

x

x

x

x

x

x

x

x

 (3.55)

80 ◾ Data-Driven Global Optimization Methods and Applications

Design objective: Single objective

Function characteristics: Continuous or discrete

Dimensions: 13-Dimensional

Optimal value: −15 (when the functions are continuous)

Description: In the discrete case, the range of values for design variables is

xi ∈ {0, 1}, i = 1, …, 9, 13, and xi ∈ {0, 1, …, 100}, i = 10, 11, 12. When xi ∈ {0,

1, …, 100}, i = 1, …, 10, 13, the corresponding problem is denoted as G1m.

3.3.2.5 g19

The mathematical expression of g19 is given in Eq. (3.56), and the param-

eters of g19 are given in Table 3.1.



∑∑ ∑ ∑

∑ ∑

()

()

= + −

= − − − + ≤ =

+ +

==

+

= =

+

=

+

=

2

:

2 3 0 1, ,5

(10) (10)

1

5

1

5

(10)
3

1

5

1

10

(10)

1

5

(10)
2

1

10

f c x x d x b x

subject

g c x d x e a x j

ij i j

ij

j j

j

i i

i

j ij i

i

j j j ij i

i

x

x

 (3.56)


[]= − − − − − − − −

= ≤ ≤ =

:

40, 2, 0.25, 4, 4, 1, 40, 60,5,1

15 0 10(1, ,15)

where

n x ii

b

TABLE 3.1 Parameters for g19

j 1 2 3 4 5

ej −15 −27 −36 −18 −12

c1j 30 −20 −10 32 −10

c2j −20 39 −6 −31 32

c3j −10 −6 10 −6 −10

c4j 32 −31 −6 39 −20

c5j −10 32 −10 −20 30

dj 4 8 10 6 2

a1j −16 2 0 1 0

a2j 0 −2 0 0.4 2

a3j −3.5 0 2 0 0

a4j 0 −2 0 −4 −1

a5j 0 −9 −2 1 −2.8

a6j 2 0 −4 0 0

a7j −1 −1 −1 −1 −1

a8j −1 −2 −3 −2 −1

a9j 1 2 3 4 5

a10j 1 2 1 1 1

Benchmark Functions for Data-Driven Optimization Methods ◾ 81

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 15-Dimensional

Optimal value: 32.6555

3.3.2.6 Hmittelman

The mathematical expression of Hmittelman is given in Eq. (3.57).

min () 10 7 12 8 3 5 3

. . 3 12 8 7 2 2,

10 5 7 1,

5 3 2 1,

4 2 5 9 2 3,

9 12 7 6 2 15 3 7,

5 8 2 7 5 10 1,

, ,

, ,

, ,

, ,

, .

0,1 , 1, ,16

1 2 3 4 5 6 7 8 9

1 2 3 4 9 10

2 3 5 6 7 8

1 2 3 8 10

3 4 6 7 8 9

2 4 5 6 8 9 10

2 1 3 4 5 7 9

1 5 7 9 10 14 15 16 6 6 7 9 14 16

2 1 2 3 4 8 11 7 9 10 14 16

3 3 4 6 7 8 8 5 10 14 15 16

4 3 4 8 11 9 1 2 11 12

5 6 7 8 12 10 13 14 15 16

x

{ }

= + + + + + + + +

− − + − + ≤ −

− − + + + ≤ −

− − − + ≤ −

− − − + − − ≤ −

− − + + − + ≤ −

− + − − − − ≤ −

= =

= =

= =

= =

= =

∈ =

f y y y y y y y y y

s t y y y y y y

y y y y y y

y y y y y

y y y y y y

y y y y y y y

y y y y y y y

y x x x x x x x y x x x x x

y x x x x x x y x x x x

y x x x x x y x x x x x

y x x x x y x x x x

y x x x x y x x x x

x ii

 (3.57)

Design objective: Single objective

Function characteristics: Discrete

Dimensions: 16-Dimensional

3.3.2.7 g02

The mathematical expression of g02 is given in Eq. (3.58).

∏∑

∑
= −

−
==

=

x()
cos () 2 cos ()4 2

11

2

1

f
x x

ix

i i
i

n

i

n

i
i

n

82 ◾ Data-Driven Global Optimization Methods and Applications



∏

∑

()

()

= − ≤

= − ≤

= < ≤ =

=

=

:

0.75 0,

0.75 0

20 0 10(1, ,)

1

1

2

1

subject

g x

g x n

n x i n

i

i

n

i

i

n

i

x

x

 (3.58)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 20-Dimensional

Optimal value: −0.8036

3.4 ENGINEERING APPLICATION CASES
3.4.1 Tension/Compression Spring Design (TSD)

The design of tension/compression springs (TSD), as shown in Figure 3.29,

aims to minimize the spring’s weight while being constrained by minimum

deflection, shear force, frequency, outer diameter, and lateral constraints.

min () (2)

. . () 1
71,785

0,

()
4

12,566 ()

1

5,108
1 0,

() 1
140.45

0,

()
1.5

1 0.

0.05 2; 0.25 1.3; 2 15

1
2

2 3

1
2
3

3

4

2
2
2

1 2

1
3

2 1 1
2

3
1

3 2
2

4
1 2

1 2 3

1

x

x

x

x

x

= +

= − ≤

=
−

−
+ − ≤

= − ≤

=
+

− ≤

≤ ≤ ≤ ≤ ≤ ≤

f x x x

s t g
x x

x

g
x x x

x x x x

g
x

x x

g
x x

x x x

 (3.59)

FIGURE 3.29 TSD.

Benchmark Functions for Data-Driven Optimization Methods ◾ 83

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 3-Dimensional

Optimal value: 0.01267

3.4.2 Welded Beam Design (WBD)

The welded beam design (WBD/WB4), as shown in Figure 3.30, aims to

minimize design cost while being constrained by shear force, bending

stress within the beam, buckling load on the bar, lateral constraints, and

deflection at the end of the beam.

min () 1.10471 0.04811 (14)

. . () () 0,

() () 0,

() 0,

() 0.10471 0.04811 (14) 5 0,

() 0.125 0,

() () 0,

() () 0,

1
2

2 3 4 2

1 max

2 max

3 1 4

4 1
2

3 4 2

5 1

6 max

7

x

x x

x x

x

x

x

x x

x x

τ τ

σ σ

δ δ

= + +

= − ≤

= − ≤

= − ≤

= + + − ≤

= − ≤

= − ≤

= − ≤

f x x x x x

s t g

g

g x x

g x x x x

g x

g

g P Pc

FIGURE 3.30 WBD.

84 ◾ Data-Driven Global Optimization Methods and Applications

() () 2
2

() ,
2

, ,

2
,

4 2
, ()

6
,

()
4

, 2 2
12 2

,

()
4.013

1
2 4

, 12 10 psi,

600 lb, 14 in, 0.25 in, 30 10 psi,

13,600 psi, 30,000 psi.

0.1 , 2; 0.1 , 10

2 2 2

1 2

2 2
2

1 3
2

4
2

3

3
3

4
1 2

2
2

1 3
2

3
2

4
6

2

3 6

max
6

max max

1 4 2 3

3

x

x

x

τ τ τ τ τ τ τ

σ

δ

δ

τ σ

= ′ + ′ ′′ + ′′ ′ = ′′ =

= +




 = +

+



 =

= = +
+



























=
/ 36

−






= ×

= = = = ×

= =

≤ ≤ ≤ ≤

where

x

R

P

x x

MR

J

M P L
x

R
x x x

x
PL

x x

PL

Ex x
J x x

x x x

P
E x x

L

x

L

E

G
G

P L E

x x x x

c

 (3.60)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 4-Dimensional

Optimal value: 1.7249

3.4.3 Pressure Vessel Design (PVD)

The pressure vessel design (PVD), as shown in Figure 3.31, aims to mini-

mize the design cost of a cylindrical vessel, including material cost,

FIGURE 3.31 PVD.

Benchmark Functions for Data-Driven Optimization Methods ◾ 85

forming cost, and welding cost. The four design variables are the thickness

of the pressure vessel, the thickness of the head, the internal radius of the

vessel, and the length of the vessel.

min () 0.6224 1.7781 3.1661 19.84

. . () 0.0193 0,

() 0.00954 0,

()
4

3
1,296,000 0,

() 240 0.

1 0.0625 , 99 0.0625; 10 , 200

1 3 4 2 3
2 2

4
2

3

1 1 3

2 2 3

3 3
2

4 3
3

4 4

1 2 3 4

1 1x

x

x

x

x

= + + +

= − + ≤

= − + ≤

= −π − π + ≤

= − ≤

× ≤ ≤ × ≤ ≤

f x x x x x x x x x

s t g x x

g x x

g x x x

g x

x x x x

 (3.61)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 4-Dimensional

Optimal value: 5,885.33

3.4.4 Speed Reducer Design (SRD/SR7)

The speed reducer design (SRD/SR7) aims to minimize the total weight

of the reducer while being subject to 11 constraints, including limits on

the bending stress of gear teeth, surface stress, and the lateral deflection

of the shaft.

= + − − +

+ + + +

= − ≤ =
+ ×  − ≤

= − ≤ = − ≤ = − ≤

= − ≤ = − ≤ =
+

− ≤

= − ≤ =
+

− ≤

min () 0.7854 (3.3333 14.9334 43.0934) 1.508 ()

7.4777() 0.7854()

. . ()
27

1 0, ()
(745 ()) 157.5 10

85
1 0,

()
397.5

1 0, ()
40

1 0, ()
5

1 0,

()
1.93

1 0, ()
12

1 0, ()
1.5 1.9

1 0,

()
1.93

1 0, ()
1.1 1.9

1 0,

1 2
2

3
2

3 1 6
2

7
2

6
3

7
3

4 6
2

5 7
2

1
1

2 2 6

5 2 3
2 6

7
3

1 2

2
1

2 2 7
2 3

8
2

1

3
4
3

2 3
4 9

1

2
10

6

4

4
5
3

2 3
4 11

7

5

2 3

2 3

6

7

f x x x x x x x

x x x x x x

s t g
x x x

g
x x x

x

g
x x x

g
x x

g
x

x

g
x

x x x
g

x

x
g

x

x

g
x

x x x
g

x

x

x

x x

x x x

x x x

x x

86 ◾ Data-Driven Global Optimization Methods and Applications

()
(745 ()) 16.9 10

110
1 0,

2.6 3.6; 0.7 0.8; 17 28; 7.3 , 8.3;

2.9 3.9; 5.0 5.5.

5

4 2 3
2 6

6
3

1 2

1 2 3 4 5

6 7

x =
+ ×  − ≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤

g
x x x

x

x x x x x

x x

 (3.62)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 7-Dimensional

Optimal value: 2,994.4711

3.4.5 Stepped Cantilever Beam Design (SCBD)

The stepped cantilever beam design (SCBD), as shown in Figure 3.32, aims

to minimize the volume of a five-step cantilever beam with a total length

of L = 500 cm. The material has an elastic modulus E of 200 GPa, and a con-

centrated load of 50,000 N is applied at the free end of the beam. There are

11 constraints in total, including 5 bending stress constraints, 1 displace-

ment constraint, and 5 length-to-width ratio constraints.

min ()

. . ()
6

14,000 0, 2 11 =1

()
6 ()

14,000 0,

1 1 1 2 2 2 3 3 3 4 4 4 5 5 5

1
5

5 5
2

2
5 4

4 4
2

x

x

= + + + +

= − ≤ =

=
+

− ≤

V D b h l b h l b h l b h l b h l

s t g
Pl

b h
E e D

g
P l l

b h

FIGURE 3.32 SCBD.

Benchmark Functions for Data-Driven Optimization Methods ◾ 87

()
6 ()

14,000 0,

()
6 ()

14,000 0,

()
6 ()

14,000 0,

()
6 ()

14,000 0,

()
3

1 7 19 37 61
2.7 0,

() 20 0,
12

() 20 0,
12

() 20 0,
12

() 20 0,
12

() 20 0,
12

(~) = (, , , , , , , , ,)

2
5 4

4 4
2

3
5 4 3

3 3
2

4
5 4 3 2

2 2
2

5
5 4 3 2 1

1 1
2

6

3

5 4 3 2 1

7
5

5
1

5
3

8
4

4
2

4
3

9
3

3
3

3
3

10
2

2
4

2
3

11
1

1
5

1
3

1 10 1 1 2 2 3 3 4 4 5 5

5

4

3

2

1

x

x

x

x

x

x

x

x

x

x

=
+

− ≤

=
+ +

− ≤

=
+ + +

− ≤

=
+ + + +

− ≤

= + + + +






− ≤

= − ≤ =

= − ≤ =

= − ≤ =

= − ≤ =

= − ≤ =

g
P l l

b h

g
P l l l

b h

g
P l l l l

b h

g
P l l l l l

b h

g
Pl

E I I I I I

g
h

b
I

b h

g
h

b
I

b h

g
h

b
I

b h

g
h

b
I

b h

g
h

b
I

b h

x x b h b h b h b h b h

 (3.63)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 10-Dimensional

Optimal value: 62,791

3.5 CHAPTER SUMMARY

This chapter provides an overview of benchmark test functions for

data-driven optimization methods, covering unconstrained low-

dimensional cases, unconstrained high-dimensional cases, constrained

low- dimensional cases, constrained high-dimensional cases, and engi-

neering application cases. These benchmark test functions are suitable for

testing algorithms that solve constrained and unconstrained problems, as

well as discrete and high-dimensional problems. They can effectively help

researchers verify the efficiency and robustness of their algorithms.

88 ◾ Data-Driven Global Optimization Methods and Applications

REFERENCES

Adorio, E. P., & Diliman, U. (2005). MVF-multivariate test functions library in c for
unconstrained global optimization. Quezon City, Metro Manila, Philippines,
44, accessed January 14, 2005.

Akbari, H., & Kazerooni, A. (2020). KASRA: A Kriging-based Adaptive Space
Reduction Algorithm for Global Optimization of Computationally Expensive
Black-Box Constrained Problems. Applied Soft Computing, 90, 106154.

Dong, H., Wang, P., Song, B., Zhang, Y., & An, X. (2020). Kriging-Assisted Discrete
Global Optimization (KDGO) for Black-Box Problems with Costly Objective
and Constraints. Applied Soft Computing, 94, 106429.

Jamil, M., & Yang, X.-S. (2013). A Literature Survey of Benchmark Functions
for Global Optimisation Problems. International Journal of Mathematical
Modelling and Numerical Optimisation, 4(2), 150–194.

Li, F.-F., Shoemaker, C. A., Wei, J.-H., & Fu, X.-D. (2013). Estimating Maximal
Annual Energy Given Heterogeneous Hydropower Generating Units with
Application to the Three Gorges System. Journal of Water Resources Planning
and Management, 139(3), 265–276.

Liang, J. J., Runarsson, T. P., Mezura-Montes, E., Clerc, M., Suganthan, P. N., Coello,
C. C., & Deb, K. (2006). Problem Definitions and Evaluation Criteria for the
CEC 2006 Special Session on Constrained Real-Parameter Optimization.
Journal of Applied Mechanics, 41(8), 8–31.

Liu, C., Wan, Z., Liu, Y., Li, X., & Liu, D. (2021). Trust-Region Based Adaptive
Radial Basis Function Algorithm for Global Optimization of Expensive
Constrained Black-Box Problems. Applied Soft Computing, 105(1), 107233.

Liu, H., Xu, S., Chen, X., Wang, X., & Ma, Q. (2017). Constrained Global
Optimization via a DIRECT-Type Constraint-Handling Technique and
an Adaptive Metamodeling Strategy. Structural and Multidisciplinary
Optimization, 55, 155–177.

Mezura-Montes, E., & Cetina-Domínguez, O. (2012). Empirical Analysis of a
Modified Artificial Bee Colony for Constrained Numerical Optimization.
Applied Mathematics and Computation, 218(22), 10943–10973.

Müller, J., Shoemaker, C. A., & Piché, R. (2013). SO-MI: A Surrogate Model
Algorithm for Computationally Expensive Nonlinear Mixed-Integer
Black-Box Global Optimization Problems. Computers & operations research,
40(5), 1383–1400.

Müller, J., Shoemaker, C. A., & Piché, R. (2014). SO-I: A Surrogate Model Algorithm
for Expensive Nonlinear Integer Programming Problems Including Global
Optimization Applications. Journal of Global Optimization, 59(4), 865–889.

Pichitlamken, J., Nelson, B. L., & Hong, L. J. (2006). A Sequential Procedure
for Neighborhood Selection-of-the-Best in Optimization via Simulation.
European Journal of Operational Research, 173(1), 283–298.

Surjanovic, S., & Bingham, D. (2013). Virtual library of simulation experiments:
test functions and datasets. Simon Fraser University, Burnaby, BC, Canada,
accessed May, 13, 2015.

C H A P T E R 4

MSSR

Multi-Start Space Reduction
Surrogate-Based Global
Optimization Method1

4.1 INTRODUCTION

Surrogate-based optimization (SBO) is a technique that leverages surro-

gate models to predict objective and constraint functions, significantly

reducing the need for direct evaluations (Edke & Chang, 2011; Queipo

et al., 2005). This chapter focuses on applying SBO methods to address

black-box optimization problems effectively.

Since surrogate models are typically smooth and continuous functions,

directly optimizing them can yield locally optimal solutions. However, these

solutions are based on predictions and may significantly deviate from the

true solutions. A critical research focus in recent years has been on select-

ing informative samples to enhance surrogate models and accurately iden-

tifying the global optimal region. Numerous scholars have advanced this

field, contributing to the ongoing development of surrogate-based global

optimization algorithms. Jones et al. (1998) presented a widely cited global

optimization algorithm for expensive black-box problems, which is known

as EGO. EGO constructs the surrogate model by Kriging and updates the

surrogate model by maximizing an expected improvement function. Gary

Wang et al. (2001) provided an adaptive response surface method (ARSM),

89DOI: 10.1201/9781003636267-4

https://doi.org/10.1201/9781003636267‑4

90 ◾ Data-Driven Global Optimization Methods and Applications

which creates a quadratic approximation model for the expensive objec-

tive function in a reduced space. Gutmann (2001) introduced a global

optimization method based on RBF to solve problems with expensive

function evaluations. Jin et al. (2001) explored the accuracy of surrogate

models and how they affect the sampling strategies. Wang and Simpson

(2004) utilized a fuzzy clustering method to get a reduced search space,

which can efficiently find the global optimum on nonlinear constrained

optimization problems. A stochastic RBF method for the global optimiza-

tion of expensive functions was proposed by Regis and Shoemaker (2007),

who also improved the Gutmann-RBF method by varying the size of the

subdomain in different iterations. Younis and Dong (2010) developed a

kind of space reduction method called space exploration and unimodal

region elimination (SEUMRE), which establishes a unimodal region to

speed up the search. SEUMRE has successfully been used for black-box

engineering applications. Gu et al. (2012) invented the hybrid and adaptive

meta-model-based (HAM) method to divide the design space into sev-

eral subdomains with different weights. In every iteration, sample points

are obtained from these regions based on the size of the weights. At last,

HAM performed well on a crash simulation of vehicles. Long et al. (2015)

combined a kind of intelligent space exploration strategy with ARSM to

provide reduced regions for global optimization. As we can see, the space

reduction method is a high-efficiency way to realize global optimization of

computationally expensive problems.

In this chapter, a new multi-start space reduction (MSSR) surrogate-

based search algorithm is introduced for global optimization problems

with computationally expensive black-box objective functions and con-

straints. The algorithm divides the design space into three regions: global

space (GS), medium space (MS) and local space (LS). GS represents the

original design region, MS narrows the focus to a promising subset and LS

concentrates on the vicinity of the current best solution. The search pro-

cess employs a Kriging-based multi-start optimization method for local

optimization, sample selection and exploration. Latin hypercube sampling

is used to generate starting points, while sequential quadratic program-

ming (SQP) refines local solutions. A newly introduced selection strategy

identifies high-quality sample points to enhance the Kriging model, and

the estimated mean square error guides the exploration of unexplored

regions in the design space. The search alternates among GS, MS and LS

until the global optimum is located.

MSSR ◾ 91

4.2 KRIGING-BASED MODEL

To validate the accuracy of the surrogate model, this chapter uses the

Banana function as an example. Fifteen experimental design points are

generated using optimal Latin hypercube sampling (OLHS), and a Kriging

surrogate model is constructed. The detailed formulas of Kriging are pro-

vided in Section 2.2. As shown in Figures 4.1 and 4.2, the 15 triangular

markers represent the experimental design points. Overall, the Kriging

model closely aligns with the original function, though minor deviations

are observed in some regions.

4.3 THE PROPOSED MULTI-START OPTIMIZATION PROCESS

The proposed multi-start optimization process for the Kriging-based

model comprises three key components: local optimization using the sur-

rogate model, selection of high-potential sample points and exploration of

uncharted areas within the design space.

To ensure randomly selected starting points that adequately cover the

search space, Latin hypercube sampling (LHS) is employed. These selected

starting points are used iteratively during the search process. Sequential

quadratic programming (SQP) is applied to the Kriging surrogate model

to identify local optimal solutions, which are stored in a database of

FIGURE 4.1 Original Banana function.

92 ◾ Data-Driven Global Optimization Methods and Applications

“Potential Sample Points.” However, SQP may converge to the same local

optimum from different starting points, resulting in duplicates in the

database. Additionally, local optima may coincide with existing sample

points. To mitigate these issues, new sample points are required to main-

tain a defined distance from previously obtained points. Furthermore, in

cases where no suitable local optima exist within the defined space, the

multi-start optimization process maximizes the Kriging model’s esti-

mated mean squared error (MSE) to explore uncharted areas. A special

selection strategy is employed to extract the most promising results from

the “Potential Sample Points.” The pseudo-codes summarizing the pro-

cesses of optimization, selection and exploration of unknown areas are

presented as follows.

4.1 Optimization:

(01) Begin

(02) Initialize Dimension n, Database “Potential Samples,” Design

Space, Kriging Predictor, MSE;

(03) Acquire m starting points by LHS; (Here, it is suggested that m can

be defined in the range [20, 40] on two-dimensional problems, [6n,

8n] when the dimension of the problem is 2<n<10 and [50, 70] on

high-dimensional problems.)

FIGURE 4.2 Kriging prediction with 15 samples.

MSSR ◾ 93

(04) for i=1: m

(05) Employ SQP algorithm;

(06) Optimize the Kriging Predictor from the ith starting point;

(07) Store the local optimal solutions and their predicted values in the

database “Potential Samples;”

(08) end

(09) “Potential Samples” is a matrix with (1)× +m n elements;

(10) end

/* The design space is selected among GS, MS and LS, which will change

with the iteration going on. The Kriging predictor and its estimated MSE

can be obtained by the DACE toolbox (Lophaven et al. 2002). The “fmin-

con” function of MATLABÒ can be employed to realize the SQP algorithm

(The Mathworks 2015). */

4.2 Selection:

(01) Begin

(02) Sort the predicted values in “Potential Samples” and get the maxi-

mum (Xpsmax Ypsmax) and minimum (Xpsmin, Ypsmin); (The

sample and the predicted value in “Potential Samples” are expressed

as (Xps, Yps))

(03) Initialize parameters k = 1, flag_repeat = 0, flag_stop = 0, e_

error = 0.00001 (If n>= 10, e_error = 0.0001), MAXK; /*MAXK is a

parameter that decides how many points can be sampled at most in

one iteration. Here, MAXK equals to 3 on two-dimensional prob-

lems and equals to 4 on higher-dimensional problems. For nonlin-

ear constrained optimization problems, MAXK equals to 3. */

(04) Acquire the size of the expensive samples set S as m_size;

(05) While _<k MAXK flag stopand == 0

(06) for i=1: m_size

(07) if square of the distance between Xpsmin and the sample S(i)

<= e_error

(08) flag_ repeat =1;

(09) end

(10) end

/* Here, the new promising samples that go much close to the existing

points will be flagged. */

94 ◾ Data-Driven Global Optimization Methods and Applications

(11) if flag_ repeat ==0

(12) record the current sample Xpsmin; k=k+1;

(13) end

(14) for i=1: m

(15) if |Yps (i) –Ypsmin | <=0.0001

(16) Yps (i) = Ypsmax+10;

(17) end

(18) end

/* At each iteration, just one local optimal solution from the Kriging model

is selected and the same results are covered by a big value “Ypsmax+10.”

When the next iteration comes, the bigger values are ignored. */

(19) Sort the predicted values Yps in “Potential Samples” again and

update (Xpsmin, Ypsmin);

(20) If Ypsmin == Ypsmax+10

(21) flag_stop = 1

(22) end

(23) flag_ repeat =0;

(24) end

(25) if k>1

(26) Store the selected samples and evaluate the true function values.

(27) end

(28)end

4.3 Explore Unknown Area:

(01) Begin

(02) if k ==1

(03) Implement the above-mentioned Optimization method to get

the local maximums of the MSE function.

(04) Get two new samples and evaluate the true function values.

(05) end

(06) end

/* If the algorithm cannot find a satisfactory solution by the above-

mentioned selection process, the estimated MSE can be maximized to

acquire new samples which must be located in an unexplored area. */

MSSR ◾ 95

FIGURE 4.3 Estimated MSE of Kriging.

The estimated MSE function of the Kriging model is illustrated in

Figure 4.3, where local maxima of the MSE consistently appear in unex-

plored areas. The MSE value increases with distance from known sample

points and approaches zero at the locations of these points. Selecting one of

the locally maximal MSE solutions for sample updates typically enhances

space-filling. An optimization process that effectively leverages these

properties of the Kriging model can fully exploit its potential. Figure 4.4

demonstrates the multi-start optimization process on a Kriging model,

starting with 30 initial points. Eventually, two local optimal solutions are

selected, both situated in the valley of the Banana function—a region asso-

ciated with better solutions.

4.4 SPACE REDUCTION APPROACH

A sample set obtained using the design of experiments (DOE) method

is used to store the data from expensive evaluations. Based on the val-

ues of these samples, three spaces—GS, MS and LS—are defined for

the multi-start optimization process. GS represents the entire region

of the original design space. MS is based on the portion of design space

of the current better samples. LS is the neighborhood area of the best

current sample point. During the iterative search process, the sample set

96 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 4.4 Multi-start process on Kriging.

is continuously updated with new samples, and the better-performing

samples are refined. MS and LS dynamically adjust as iterations progress

until the optimization process concludes. The detailed definitions of MS

and LS are provided below.

max 1: min 1: , 1,2, ,

, min

min , min

, max

max , max

_ ,

() ()

()

() ()

()

() ()

[]

() ()= − =

=
− − ≥

− ≤







=
+ + ≤

+ ≥







=

S Sdis k k i n

Lob
S dis S dis range

range S dis range

Ub
S dis S dis range

range S dis range

range local Lob Ub

i i i

i

i
best

i i
best

i i

i i
best

i i

i

i
best

i i
best

i i

i i
best

i i

i i i

 (4.1)

min 1:

max 1:

_ , , 1,2, ,

SS

SS



()

()

()

()

[]

=

=

= =

Lob p

Ub p

range medium Lob Ub i n

i i

i i

i i i

 (4.2)

MSSR ◾ 97

where n is the dimension of a problem. S(1:k)i is the i-th dimension of the

top k samples selected from the ranked sample set. rangei is the i-th dimen-

sion of the original design range. Si
best is the i-th dimension of the current

best sample. Equations (4.3) and (4.4) define the LS and MS, respectively.

If the distance of Lobi and Ubi in Eq. (4.3) or (4.4) is smaller than 1e-5, it is

suggested that setting a smaller space to search:

0.025 max min

0.025 max min

()

()

() ()

() ()

= − × −

= + × −

Lob Lob range range

Ub Ub range range

i i i i

i i i i

 (4.3)

Meanwhile, the new range should also be the subset of the original design

range. Both of the two spaces change their scopes based on the better sam-

ples acquired from the design space. Here, k and p are two user-defined

parameters, which represent the number of the better samples. In MSSR,

we define k and p as follows:

3, 2 150

/ 30 , 2 150

5, 2 150

/ 30 , 2 150

()

()

=

≤ ≤

≤ >

> ≤

> >














k

n and CS

round CS n and CS

n and CS

round CS n and CS

 (4.4)

/ 3 , 2

3 , 2 60

/ 3 , 2 60

()

()

=

≤

> ≤

> >










p

round CS n

n n and CS

round CS n and CS

 (4.5)

where CS is the number of current sample points. k will be smaller than p

with continuous iterations. According to Eq. (4.1) to (4.5), MS can give a

reduced region that may include several promising solutions and LS can

make the search focus on one of them quickly. In some cases, when LS

turns into a tiny space or the search in LS, MS or GS repeats around a local

optimal solution, there are no appropriate locations that can be selected

as new samples. Or if new samples cannot be found after optimization

and selection, the estimated MSE of Kriging can be used to explore the

unknown area. The ranges for getting the local maximums of MSE in

local, medium and global searches are defined as follows:

98 ◾ Data-Driven Global Optimization Methods and Applications

max min , 1,2, ,

0.5 , 0.5 min

min , 0.5 min

0.5 , 0.5 max

max , 0.5 max

_ _ ,

_ _ _

_ _

() ()

()

() ()

()

() ()

[]

= − =

=
− × − × ≥

− × ≤








=
+ × + × ≤

+ × ≥







=

=

=

mse

mse

mse

dis range range i n

Lob
S dis S dis range

range S dis range

Ub
S dis S dis range

range S dis range

range local Lob Ub

range medium range medium

range global range

i i i

i

i
best

i i
best

i i

i i
best

i i

i

i
best

i i
best

i i

i i
best

i i

i i i

i i

i i

 (4.6)

The parameters in Eq. (4.6) share the same definitions as those in

Eqs. (4.1) and (4.2). Intuitively, the defined ranges enclose the current

best solution and dynamically adjust as iterations progress. The algo-

rithm effectively combines GS, MS and LS to fully leverage the Kriging

predictor, accelerating convergence toward the global optimum.

Simultaneously, it explores unknown areas, enabling the current best

solution to escape potential local optima and improve the overall search

performance.

4.5 THE ENTIRE OPTIMIZATION PROCESS

The complete MSSR global optimization process is illustrated by the flow-

chart in Figure 4.5. The key steps in this process are summarized as follows:

/* The initial process */

 1. Apply OLHS to generate DOE sample points over the entire design

space.

 2. Evaluate the expensive function using the DOE sample points and

store the results in the sample set. (For nonlinear constrained prob-

lems, expensive functions include objective and constraint functions.)

 3. Rank all expensive samples based on their function values. (Here, if a

sample point does not satisfy the true constraints, the sample values

should add a large penalty factor of 1e6.)

MSSR ◾ 99

/* The search loop */

 4. Construct the Kriging-based surrogate model. (For nonlinear con-

strained problems, surrogate models of objective and constraint

functions are built, respectively. Here, sample values use the true

objective values without the additional penalty factor.)

 5. Determine which space should be explored based on the present

number of iterations. The global search, medium-sized search and

local search will be implemented alternatively in the process.

FIGURE 4.5 Flowchart of the MSSR optimization process.

100 ◾ Data-Driven Global Optimization Methods and Applications

 6. Define the size of the search space, according to the expensive sample

set.

 7. Use the chosen multi-start optimization approach, SQP, to optimize

the Kriging-based surrogate model in the defined space.

 8. Store the local optimal solutions in the database “Potential Sample

Points” and select the better samples. If there is not a better sample,

select two new samples from the unknown area.

 9. Evaluate the expensive function value of the selected samples and

update the order of the expensive samples like step (3).

 10. If the current best sample value satisfies the stopping criteria, termi-

nate the loop. Otherwise, update the surrogate model and repeat the

steps (4) to (9) until the global stopping criteria are satisfied.

The commonly used global stopping criteria are:

1% 0

0.001 0

−
< ≠

< =










y y

y
if y

y if y

best optimal

optimal

optimal

best optimal

 (4.7)

Figure 4.5 illustrates the overall design optimization process for MSSR:

To better demonstrate the MSSR search process, generations and

updates of the sample points during the global optimization on a Banana

function are graphically illustrated using Figure 4.6a–e. Each figure con-

tains three iterations which involve the GS, MS and LS. At the start, the

region of LS is larger than that of MS. As the iteration goes on and the

expensive sample points increase, LS quickly shrinks to focus on the region

around the global optimum. MS always provides a medium-sized region

that includes the current best solution. The MS and LS are getting smaller

and smaller when more and more points are supplemented. Intuitively, LS

can make the search concentrate on the current most promising region

and accelerate the convergence. MS can provide a promising region that

may include several true local optimal solutions. And GS can guarantee

that the multi-start optimization process will explore the entire design

space. As Figure 4.6a, c shows, sometimes, LS may not include the true

global optimal position, but LS will eventually get close to it with the cur-

rent best sample point moving. Ultimately, 15 iterations and 37 expensive

MSSR ◾ 101

FIGURE 4.6 (a–e) MSSR optimization process on benchmark Banana function.

sample points are used to find a satisfactory global solution. Initially, with

only eight DOE samples, the basic shape of the surrogate model was quite

different from the real situation, but with the addition of new samples, the

surrogate model gradually approached the real function, especially near

the global optimum region.

102 ◾ Data-Driven Global Optimization Methods and Applications

TABLE 4.1 Bound-Constrained Benchmark Problems for Global Optimization

Category Func. Number of Dims. Design Space

Analytic Global

Minimum

Low-dimensional
problems (n = 2–6)

Banana 2 [−2, 2]2 0.0000

Peaks 2 [−3 3]×[−4 4] −6.5511

GP 2 [−2, 2]2 3.0000

SC 2 [−2, 2]2 −1.0320

Shub 2 [−10, 10]2 −186.7309

GF 2 [−2, 2]2 0.5233

HM 2 [−6, 6]2 0.0000

Leon 2 [−10, 10]2 0.0000

Shekel 4 [0, 10]4 −10.1532

Levy 4 [−10, 10]4 0.0000

HN6 6 [0, 1]6 −3.3220

Trid6 6 [−36, 36]6 −50.0000

High-dimensional
problems (n >= 10)

Sphere 10 [−5.12, 5.12]10 0.0000

Trid10 10 [−100, 100]10 −210.0000

F16 16 [−1, 1]16 25.8750

4.6 TEST CASES AND RESULTS

To verify the capabilities and demonstrate the advantages of the new MSSR

algorithm, various commonly used global optimization benchmarks

which encompass bound and nonlinear constrained problems were used

during the tests. The dimensions of these problems range from 2 to 16.

For bound-constrained problems, there are eight two-dimensional cases

(Banana, Peaks, GP, SC, Shub, GF, HM, Leon), two four-dimensional

cases (Shekel and Levy), two six-dimensional cases (HN6 and Trid6), two

ten-dimensional cases (Sphere and Trid10) and one 16-dimensional case

F16 (Wang & Simpson, 2004; Younis & Dong, 2010). All of these prob-

lems have their own structures and characteristics, and in combination

they can better represent many situations in engineering optimization.

The detailed forms of these functions are given in Table 4.1. For non-

linear constrained problems, two representative mathematical cases and

four commonly used benchmark engineering cases were employed. Ten

runs on each of these benchmark problems have been made using the

new MSSR search program. The obtained statistical results were com-

pared with the results from the other recently introduced space reduction

search methods for global optimization to judge their relative efficiency

and robustness.

MSSR ◾ 103

TABLE 4.2 Preliminary Comparison Results on Seven Representative Benchmark
Functions

Algorithms Banana GP SC Shub Shekel HN6 F16

HS NFE 9,122 512 310 450 10,000 698 915

Min 8.84e-4 3.0164 −1.0276 −185.6736 −2.6829 −3.3033 26.1207

DE NFE 1,390 830 450 3,070 3,730 3,660 3,690

Min 4.05e-4 3.0075 −1.0299 −185.3988 −10.0930 −3.3085 26.1022

DIRECT NFE 603 101 117 2,883 103 213 6,439

Min 3.01e-4 3.0073 −1.0248 −185.5823 −10.0934 −3.2975 26.0884

MPS NFE 145 134 35 545 680 783 3,319

Min 0.0358 3.0014 −1.0311 −186.7119 −5.0473 −3.3205 29.7177

EGO NFE 216 167 35 227 250 54 200

Min 9.67e-4 3.0323 −1.0297 −181.0324 −7.5345 −3.3152 27.4815

MS NFE 61 124 25 117 289 121 161

Min 2.51e-4 3.0065 −1.0299 −186.4286 −10.0863 −3.2973 26.1116

MSSR NFE 41 82 22 115 197 83 138

Min 3.45e-4 3.0049 −1.0303 −186.4203 −10.0829 −3.2967 26.1257

4.6.1 The Algorithmic Test

At first, Harmony Search (Yang, 2010) and Differential Evolution (Storn &

Price, 1997) algorithms were selected as reference cases to demonstrate

that nature-inspired global optimization methods commonly have larger

computation costs on expensive black-box problems. An effective space

reduction algorithm DIRECT (Björkman & Holmström, 1999), and a

widely cited surrogate-based space exploration method MPS (Wang et al.,

2004) were also employed for comparison. Meanwhile, EGO that uses the

Kriging model for expensive functions was compared to prove the advan-

tage of the proposed algorithm. Here, Mueller’s surrogate model toolbox

(Mueller, 2012) was used to realize the “Expected Improvement” strategy

in the EGO algorithm. Finally, a comparison with a multi-start optimiza-

tion algorithm that does not use a spatial reduction strategy is made to

demonstrate the importance of spatial reduction.

For MSSR, 3n + 2 DOE sample points have been generated to construct

the initial surrogate model. Seven representative functions from Table 4.1

were used as test cases, and the seven algorithms have been used to run the

tests for ten times. Table 4.2 shows the collected median values of the num-

ber of function evaluations (NFE) and obtained minimum values (Min).

The seven algorithms tried to get the values that satisfy the condition of

Eq. (4.8). It is worth mentioning that EGO has much higher CPU time

than other algorithms when the samples and dimensions increase. Hence,

104 ◾ Data-Driven Global Optimization Methods and Applications

a maximum allowable NFE (250 for low-dimensional problems. 200 for

high-dimensional problems) was given when EGO was tested. As shown

by the results listed in Table 4.2, HS and DE consistently had larger NFE

than the other algorithms. DIRECT performed well on most cases except

for the Banana, Shub and F16 functions. Basically, EGO and MPS could

easily get the approximate global optimal values on simpler cases like GP

and SC, but most of the time they needed larger NFE on complex cases like

Shub, Shekel and F16. From Table 4.2, it can be found that the proposed MS

and MSSR algorithms had better performance in all these cases. Moreover,

MSSR used fewer NFE than MS and has shown its advantage. Obviously,

the “Space Reduction” strategy improves the presented multi-start opti-

mization algorithm. In summary, nonsurrogate-based methods generally

have larger NFE, since they directly call the exact function when searching

the optimal solutions. Surrogate-based methods are guided by predictive

models to explore the design space, which effectively decrease NFE.

In summary, nonsurrogate-based methods generally have larger NFE,

since they directly call the exact function when searching the optimal

solutions. Surrogate-based methods are guided by predictive models to

explore the design space, which effectively decrease NFE. Upon compari-

son with nature-inspired global optimization methods as well as existing

optimization methods for classical agent models, it can be initially seen

that the MSSR algorithm proposed in this chapter has some superiority.

However, once these surrogate models focus on the same region, the

algorithm will converge to a local optimal location and can hardly explore

other promising areas. In this chapter, SEUMRE and HAM used Eq.

(4.8) as the termination criteria, and all the user-defined parameters were

assigned based on the two original papers (Gu et al., 2012; Younis & Dong,

2010). Since grid sampling can find the global optimal positions of GP and

Banana by luck before the iteration process of SEUMRE begins, the DOE

ranges of SEUMRE were changed as 95% of the original ranges on the

two problems. To deal with the randomness of these methods, each of the

experiment tests was done ten times.

Table 4.3 provides the mean values of NFE and the range of the obtained

best values. Table 4.4 shows the statistical results of NFE, which involve the

minimum NFE, maximum NFE and the median. The NFE values with the

“>” sign indicate that at least one of the tests could not satisfy the stopping

criteria within 500 function evaluations, and the numbers in the brackets

represent how many failures it had. As indicated by Tables 4.3 and 4.4,

the MSSR method has successfully found the global optimum in all cases

MSSR ◾ 105

within 500 function evaluations and used the least NFE. SEUMRE could

perform well on Banana, Peaks, GP and SC, but it had difficulties in solv-

ing the multimodal and high-dimensional problems. As Table 4.4 shows,

SEUMRE just succeeded one time on Shekel, four times on Levy and six

times on HN6, but it failed all the ten runs on Trid6, Sphere, Trid10 and

F16. The best value SEUMRE obtained on F16 is 27.5243 with 500 function

evaluations, which is much larger than the results from MSSR and HAM.

HAM is an effective method that could perform better on Banana, GP, SC,

TABLE 4.3 Mean Values of NFE and Ranges of Optimal Values Obtained by the Three
Algorithms

Func.

MSSR SEUMRE HAM

NFE Obtained Value NFE Obtained Value NFE Obtained Value

Banana 42.8 [1.91e-5,
7.32e-4]

90.9 [4.75e-5,
6.37e-4]

68.3 [1.27e-5,
6.34e-4]

Peaks 28.1 [−6.5477,
−6.5007]

42.7 [−6.5509,
−6.4868]

>228.5 [−6.5510,
−3.0498]

GP 87.1 [3.0001,
3.0273]

133.6 [3.0002,
3.0191]

122 [3.0001,
3.0227]

SC 22.5 [−1.0316,
−1.0274]

48.8 [−1.0307,
−1.0241]

33.9 [−1.0316,
−1.0259]

Shub 122.9 [−186.7259,
−184.9656]

>329.5 [−186.4404,
−117.0721]

168.4 [−186.7209,
−185.9839]

GF 34.2 [0.5233,
0.5277]

>208.4 [0.5259,
0.5350]

94.1 [0.5238,
0.5283]

HM 40.3 [7.79e-5,
7.56e-4]

>266.8 [1.04e-5,
0.0028]

120 [1.01e-4,
9.08e-4]

Leon 181.7 [8.88e-5,
9.68e-4]

>253.9 [1.12e-4,
0.3207]

239.4 [1.21e-4,
9.58e-4]

Shekel 207.1 [−10.1486,
−10.0716]

>471.7 [−10.0546,
−2.6303]

>458.1 [−10.1472,
−2.6166]

Levy 218.5 [3.96e-4,
8.04e-4]

>358.1 [6.63e-4,
0.1103]

>341.7 [2.96e-5,
2.26e-2]

HN6 84.8 [−3.3119,
−3.2890]

>282.5 [−3.3009,
−3.1046]

93.5 [−3.3194,
−3.2967]

Trid6 92.1 [−49.9021,
−49.5544]

>500 [−47.5255,
−7.9626]

127.5 [−49.9614,
−49.6379]

Sphere 115.4 [4.57e-4,
9.98e-4]

>500 [1.8147,
17.2568]

>288.3 [4.20e-4,
0.1847]

Trid10 142.4 [−208.9614,
−208.0416]

>500 [−83.0087,
990.0295]

>500 [−166.6914,
−48.9592]

F16 137.7 [26.1053,
26.1307]

>500 [27.5243,
29.5178]

>249.8 [26.0410,
26.6333]

106 ◾ Data-Driven Global Optimization Methods and Applications

TABLE 4.4 Specific Statistical Results of NFE Obtained by MSSR, SEUMRE and HAM

Func.

MSSR SEUMRE HAM

Min Max Median Min Max Median Min Max Median

Banana 24 66 41 72 114 86 45 104 62

Peaks 18 50 24 37 44 44 34 >500(4) 73

GP 51 141 82 79 359 93 82 195 117

SC 18 27 22 44 58 49 26 52 29

Shub 24 215 115 68 >500(3) 377 86 315 160

GF 15 64 29 65 >500(2) 100 46 281 76

HM 22 95 32 65 >500(4) 157 46 288 66

Leon 67 408 146 142 >500(2) 194 102 433 233

Shekel 68 415 197 217 >500(9) >500 269 >500(8) >500

Levy 89 376 181 119 >500(6) >500 104 >500(5) >370

HN6 52 117 83 125 >500(4) 149 87 108 91

Trid6 63 146 85 >500 >500(10) >500 106 144 130

Sphere 94 145 117 >500 >500(10) >500 180 >500(3) 198

Trid10 125 162 139 >500 >500(10) >500 >500 >500(10) >500

F16 103 168 138 >500 >500(10) >500 136 >500(2) 201

Shub, GF, HM, Leon, HN6 and Trid6, but it had a poor performance on

Shekel and Trid10. For high-dimensional problems Sphere and F16, HAM

could get satisfactory solutions most of the time.

Figure 4.7a–f provide the main iterative results of the three methods

on the high-dimensional problems with the obtained best objective func-

tion value and increasing NFE. To improve the readability, two adjacent

iterative results have a small interval that is basically more than two units

of NFE. Figure 4.7a, c, e shows the entire search process within the 200

function evaluations, and Figure 4.7b, d, f gives a clearer comparison on

the results of HAM and MSSR from the NFE values of 100–200. It can be

found that MSSR got closer to the true global optimal solutions quicker

than HAM and SEUMRE. In addition, only MSSR could satisfy the stop-

ping criteria of Eq. (4.8) within 200 function evaluations. All these meth-

ods were run on a computer with a Core i7–4720HQ CPU (2.60 GHZ) and

16 GB memory. The execution time the three algorithms averagely spent

on these test functions has also been recorded. Figure 4.8 shows that MSSR

and HAM spent more time than SEUMRE on two-dimensional problems.

This is due to the fact that MSSR needs to call the SQP solver many times

in one loop and HAM needs to construct three surrogate models in each

iteration. Furthermore, the three methods have the common feature that

MSSR ◾ 107

they will be more time-consuming on higher-dimensional and multi-

modal problems.

In summary, NFE is always the most important evaluation indicator

for the algorithm’s performance on expensive black-box problems. HAM

presents a good performance most of the time, but it may be trapped

around some local optima sometimes. SEUMRE can perform better on

low-dimensional problems, but it cannot work well on multimodal and

FIGURE 4.7 (a–f) Iterative results on high-dimensional problems.

108 ◾ Data-Driven Global Optimization Methods and Applications

0

20

40

60

80

100

120

Banana Peaks GP SC Shub GF HM Leon Shekel Levy HN6

MSSR

SEUMRE

HAM

R
u
n
 t

im
e(

In
 S

ec
o
n
d
s)

FIGURE 4.8 Execution time of MSSR, SEUMRE and HAM on benchmark

functions.

high-dimensional problems. The new MSSR method satisfies the given

stopping criteria with the least NFE and has the highest robustness, pre-

senting to be the most promising black-box global optimization technique.

4.6.2 Engineering Case Testing

In this chapter, six classical nonlinear constrained problems were used

to test the MSSR method. One of the test problems (G6) comes from

the well-known constrained optimization problems that were used by

Coello Coello (2002), Abdel-Rahman (2004) and Egea (2008). Another

one comes from the widely used Himmelblau’s nonlinear problems (Gen

& Cheng, 1999; Himmelblau, 1972). Four structural engineering appli-

cations are Tension/Compression Spring Design (TSD), Welded Beam

Design (WBD), Pressure Vessel Design (PVD) and Speed Reducer Design

(SRD), respectively (Coello Coello, 2002; Gen & Cheng, 1999). All of these

six test problems’ objectives and constraints were regarded as expensive

black-box functions. The dimensions of these test cases (G6, TSD, WBD,

PVD, Him, SRD) range from 2 to 7, and their numbers of constraints are

2, 4, 7, 4, 6 and 11.

Figure 4.9a, b, d, f shows that MSSR usually could not find the feasible

solutions at the beginning, but it would eventually acquire the global opti-

mum. According to the references in these test cases, the obtained values

in Table 4.5 and Figure 4.9 are sufficiently accurate and the corresponding

NFEs are much smaller.

To verify the robustness of MSSR in dealing with nonlinearly con-

strained optimization problems, the results of ten independent runs of the

M
SSR

 ◾

1
0

9

TABLE 4.5 Global Optimal Results Obtained by MSSR on Nonlinear Constrained Problems

Problems

Design Variables

f(x)x1 x2 x3 x4 x5 x6 x7

G6 14.097149 0.847352 −6,956.8719

TSD 0.0516827 0.3565636 11.2980133 0.0126652

WBD 0.2056902 3.4683028 9.0445203 0.2056904 1.7256

PVD 0.778187 0.384658 40.320586 199.986548 5,885.3653

Him 78.000000 33.000000 27.072136 45.000000 44.967954 −31,025.3139

SRD 3.500177 0.700000 17.000000 7.332558 7.715387 3.350284 5.286657 2,994.8487

110 ◾ Data-Driven Global Optimization Methods and Applications

computation are given in this chapter, and it is clear from Tables 4.6 and

4.7 that each time the results are very close to the true optimal solution

and the number of NFEs is sufficiently small.

Overall, MSSR can not only perform well on bound-constrained expen-

sive black-box optimization problems but also efficiently and robustly

obtain global optimal solutions on nonlinearly constrained problems.

FIGURE 4.9 (a–f) Iterative results obtained by MSSR on constrained optimiza-

tion problems.

MSSR ◾ 111

4.7 CHAPTER SUMMARY

In this work, a new multi-start optimization strategy is introduced to

search the three spaces. This strategy applies OLHS to provide multiple

starting points and then employs an SQP solver to explore the surrogate

model using these starting points in the defined space. The other two vary-

ing spaces, namely, MS and LS, are two reduced regions that include the

promising solutions and adjust their positions and boundaries automati-

cally during the search. Each of the three spaces has its own functions.

GS ensures that the true global solution will not be missed. MS plays an

important role in providing a promising region that involves several cur-

rent best solutions. And LS is an accelerator to finish the search around

TABLE 4.6 Summary of Results Obtained by MSSR on G6, TSD and Him

Exp.

G6 TSD Him

NFE Opt. Value NFE Opt. Value NFE Opt. Value

No.1 62 −6,957.3896 81 0.0126664 60 −31,025.5575

No.2 79 −6,958.4628 213 0.0126817 61 −31,025.2482

No.3 19 −6,955.8152 139 0.0126817 48 −31,025.5270

No.4 44 −6,958.2769 97 0.0126654 93 −31,025.0141

No.5 20 −6,958.2769 97 0.0126653 100 −31,021.3633

No.6 53 −6,957.8394 140 0.0126655 69 −31,023.6350

No.7 39 −6,958.0899 114 0.0126670 57 −31,023.9933

No.8 40 −6,961.2597 66 0.0126698 63 −31,025.5595

No.9 29 −6,955.2008 109 0.0126654 51 −31,025.5557

No.10 63 −6,955.2106 108 0.0126652 51 −31,023.2053

TABLE 4.7 Summary of Results Obtained by MSSR on WBD, PVD and SRD

Exp.

WBD PVD SRD

NFE Opt. Value NFE Opt. Value NFE Opt. Value

No.1 110 1.7253 88 5,885.4051 131 2,994.8493

No.2 133 1.7253 87 5,885.3782 164 2,996.4051

No.3 99 1.7249 75 5,885.3427 189 2,995.5840

No.4 162 1.7253 125 5,885.3979 134 2,994.4745

No.5 167 1.7560 107 5,885.3576 102 2,997.4988

No.6 201 1.7535 97 5,885.3658 102 2,997.4988

No.7 113 1.7256 91 5,885.3778 111 2,994.6535

No.8 100 1.7256 112 5,885.4247 96 2,997.0597

No.9 153 1.7256 98 5,885.3408 69 2,995.4729

No.10 105 1.7254 73 5,885.3993 71 2,997.3088

112 ◾ Data-Driven Global Optimization Methods and Applications

a true local optimum quickly. In this work, a new multi-start optimiza-

tion strategy is introduced to search the three spaces. This strategy applies

LHS to provide multiple starting points and then employs an SQP solver

to explore the surrogate model using these starting points in the defined

space. In each of the iterative search loops, a new selection scheme is

used to obtain several promising samples. This selection scheme ensures

that the Kriging-based surrogate model is sufficiently exploited, and the

unknown area of the surrogate model can be gradually explored. The esti-

mated MSE of the Kriging-based surrogate model is used as an important

tool to explore the unknown area of the design space.

The new algorithm has been applied to 15 benchmark bound- constrained

optimization examples, two nonlinear constrained optimization prob-

lems and four structural engineering applications. All the benchmark test

results showed MSSR’s superior performance and robustness in dealing

with expensive black-box optimization problems.

NOTE
 1 Based on “Multi-start Space Reduction (MSSR) Surrogate-based Global

Optimization Method,” published in [Structural and Multidisciplinary
Optimization], [2016]. Permission obtained from [Springer].

REFERENCES

Abdel-Rahman, A. (2004). Studies on metaheuristics continuous global optimiza-
tion problems. Kyoto University, Japan.

Björkman, M., & Holmström, K. (1999). Global Optimization Using DIRECT
Algorithm in Matlab. Advanced Model Optimization, 1(2), 17–37.

Coello Coello, C. A. (2002). Theoretical and Numerical Constraint-Handling
Techniques Used with Evolutionary Algorithms: A Survey of the State of
the Art. Computer Methods in Applied Mechanics and Engineering, 191(11),
1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-1

Edke, M. S., & Chang, K.-H. (2011). Shape Optimization for 2-D Mixed-Mode
Fracture Using Extended FEM (XFEM) and Level Set Method (LSM).
Structural and Multidisciplinary Optimization, 44(2), 165–181. https://doi.
org/10.1007/s00158-010-0616-5

Egea, J. (2008). New heuristics for global optimization of complex bioprocesses.
Universidade de Vigo, Galiza.

Gary Wang, G., Dong, Z., & Aitchison, P. (2001). Adaptive Response Surface
Method - A Global Optimization Scheme for Approximation-Based
Design Problems. Engineering Optimization, 33(6), 707–733. https://doi.
org/10.1080/03052150108940940

Gen, M., & Cheng, R. (1999). Genetic algorithms and engineering optimization
(Vol. 7). John Wiley & Sons.

https://doi.org/10.1016/S0045-7825(01)00323-1
https://doi.org/10.1080/03052150108940940
https://doi.org/10.1080/03052150108940940
https://doi.org/10.1007/s00158-010-0616-5
https://doi.org/10.1007/s00158-010-0616-5

MSSR ◾ 113

Gu, J., Li, G. Y., & Dong, Z. (2012). Hybrid and Adaptive Meta-Model-Based
Global Optimization. Engineering Optimization, 44(1), 87–104. https://doi.
org/10.1080/0305215x.2011.564768

Gutmann, H. M. (2001). A Radial Basis Function Method for Global Optimization.
Journal of Global Optimization, 19(3), 201–227.

Himmelblau, D. (1972). Applied nonlinear programming. McGraw-Hill.
Jin, R., Chen, W., & Simpson, T. W. (2001). Comparative studies of metamodelling

techniques under multiple modelling criteria. Structural and Multidisciplinary
Optimization, 23, 1–13.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient Global Optimization
of Expensive Black-Box Functions. Journal of Global Optimization, 13(4),
455–492. https://doi.org/10.1023/A:1008306431147

Long, T., Wu, D., Guo, X., Wang, G. G., & Liu, L. (2015). Efficient Adaptive Response
Surface Method Using Intelligent Space Exploration Strategy. Structural and
Multidisciplinary Optimization, 51(6), 1335–1362. https://doi.org/10.1007/
s00158-014-1219-3

Lophaven, S. N., & Nielsen, H. B., & Søndergaard J. (2002). DACE-A Matlab
Kriging toolbox. version 2.0.

Mueller, J. (2012). User guide for modularized surrogate model toolbox. T. U. o. T.
Department of Mathematics.

Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., & Kevin Tucker,
P. (2005). Surrogate-Based Analysis and Optimization. Progress in Aerospace
Sciences, 41(1), 1–28. https://doi.org/10.1016/j.paerosci.2005.02.001

Regis, R. G., & Shoemaker, C. A. (2007). A Stochastic Radial Basis Function
Method for the Global Optimization of Expensive Functions. Informs Journal
on Computing, 19(4), 497–509.

Storn, R., & Price, K. (1997). Differential Evolution – A Simple and Efficient
Heuristic for global Optimization over Continuous Spaces. Journal of Global
Optimization, 11(4), 341–359. https://doi.org/10.1023/A:1008202821328

Wang, G. G., & Simpson, T. (2004). Fuzzy Clustering Based Hierarchical
Metamodeling for Design Space Reduction and Optimization. Engineering
Optimization, 36(3), 313–335.

Wang, L., Shan, S., & Wang, G. G. (2004). Mode-Pursuing Sampling Method
for Global Optimization on Expensive Black-Box Functions. Engineering
Optimization, 36(4), 419–438.

Yang, X. (2010). Engineering optimization: An introduction with metaheuristic
applications. John Wiley & Sons.

Younis, A., & Dong, Z. (2010). Metamodelling and Search Using Space Exploration
and Unimodal Region Elimination for Design Optimization. Engineering
Optimization, 42(6), 517–533. https://doi.org/10.1080/03052150903325540

https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1016/j.paerosci.2005.02.001
https://doi.org/10.1080/03052150903325540
https://doi.org/10.1023/A:1008202821328
https://doi.org/10.1080/0305215x.2011.564768
https://doi.org/10.1080/0305215x.2011.564768
https://doi.org/10.1007/s00158-014-1219-3
https://doi.org/10.1007/s00158-014-1219-3

114

C H A P T E R 5

SOCE

Surrogate-Based Optimization with
Clustering-Based Space Exploration
for Expensive Multimodal Problems1

5.1 INTRODUCTION

In complex multidisciplinary designs, there exist a large number of com-

putationally intensive black-box problems involving expensive hardware or

software resources (Zeng et al., 2016). Commonly, response outputs from

an expensive analyzer form the objective and/or constraint functions of an

EBOP. Intuitively, the total number of objective or constraint function eval-

uations (NFE) reflects the computation load in an EBOP. Especially, when

the EBOP is nonconvex (Deshmukh & Allison, 2016; Yin et al., 2016), that

is, the expensive black-box problem has multiple locally optimal solutions,

the NFE will become larger (Alexandrov et al., 1998; Leifsson & Koziel, 2016;

Toropov et al., 1993). Traditional global optimization algorithms, such as

nature-inspired methods (Sadollah et al., 2015; Wang, 2010; Yang, 2009),

need to create a diverse population and meanwhile update generations to

explore the design space. In genetic algorithms (GA), the “promising par-

ents” have a bigger opportunity to pass their genetic information to the

children, which is inspired by evolutionary concepts. GA can find the opti-

mal fitness function value generation by generation with four main steps,

which are reproduction, crossover, mutation and selection (Al-Sultan &

Nizami, 1996). The particle swarm optimization (PSO) algorithm uses

DOI: 10.1201/9781003636267-5

https://doi.org/10.1201/9781003636267‑5

SOCE ◾ 115

simple formulas to imitate the social behavior patterns of organisms like

swarms, bats, bees and ants that can work in a team (Shi & Eberhart, 1998).

Recently, a remarkable algorithm called GWO was presented by Mirjalili

et al. (2014), which was inspired by gray wolves’ leadership hierarchy and

hunting strategies. Due to its efficiency and robustness, GWO has been

widely used in engineering applications. These nature-inspired algorithms

can effectively solve highly nonlinear, discrete, nonconvex optimization

problems; therefore, considerable contributions have been made in this

field. However, all the above-mentioned algorithms have difficulties in

dealing with EBOPs, because stochastic search produces substantial func-

tion evaluation (Weise et al., 2016).

To control the NFE in an expensive black-box optimization process,

surrogate-assisted global optimization algorithms have been developed

(Haftka et al., 2016; Zadeh et al., 2009). Jones et al. (1998) introduced an

efficient global optimization algorithm called EGO, which has shown its

excellent performance in comparison with other classical algorithms.

EGO combines the prediction uncertainty of Kriging and the current

best value to create an “expected improvement (EI) function,” and

updates the sample set by maximizing the EI function. Gutmann (2001)

utilized the radial basis function (RBF) to construct a surrogate model

and measured the bumpiness of the surrogate model. This algorithm

updates the sample set by selecting a new position with a hypothetical

value that yields the “least bumpiness” of these surrogate models. Regis

and Shoemaker (2013) provided a quasi-multi-start response surface

framework (AQUARS) for global optimization of EBOPs. This proposed

framework not only focuses on the current best local optimal region of

the surrogate model but also explores the neighborhoods of the least

explored local optimum. Finally, AQUARS was employed to solve a

watershed calibration problem and had a remarkable performance. Jie

et al. (2015) provided an adaptive meta-model-based global optimiza-

tion algorithm (AMGO) for unconstrained EBOPs. AMGO employs

Kriging and augmented RBF for modeling, and their weight factors are

dynamically selected with iterations increasing. With tests on differ-

ent benchmark examples, AMGO showed satisfactory precision and low

computation cost.

When it comes to constrained EBOPs, the state of the art is rela-

tively weak (Zhou et al., 2016). A lot of work has been done for con-

strained evolutionary optimization algorithms (Coello Coello, 2002),

but the huge NFE makes them hard to deal with constrained EBOPs.

116 ◾ Data-Driven Global Optimization Methods and Applications

The previously introduced surrogate-based algorithms had better per-

formances on unconstrained EBOPs, but they were not tested on bench-

mark constrained problems. Regis (2014) developed two algorithms

(COBRA and Extended ConstrLMSRBF) for constrained EBOPs. The

two algorithms follow a two-phase approach, in which the first one

guarantees the algorithm to find feasible solutions quickly and the sec-

ond one makes the feasible solution go close to the true global optimal

location. Cutbill and Wang (2016) introduced a probabilistic method

to reduce the redundant constraints for black-box optimization prob-

lems. They defined a series of rules to express the relationships among

constraints, but the accuracy of these rules depended on the number of

samples in a particular region.

In this chapter, a new surrogate-based global optimization algorithm

with clustering-based space exploration (SOCE) for multimodal and/or

constrained EBOPs is presented. This proposed algorithm uses QRS and

Kriging to construct two surrogate models. Based on the characteristics

of QRS and Kriging, two different optimizers (a multi-start local opti-

mizer and the GWO global optimizer) are connected to the two models,

respectively. In the employed multi-start local search, collected samples

need to keep a defined distance from each other to satisfy the diversity of

predicted local optima. Besides, SOCE suggests a local convergence cri-

terion to judge when to carry out space exploration. The presented space

exploration approach employs the k-means clustering algorithm to create

multiple subspaces and defines an iterative process to select the promis-

ing samples that are far away from the clustering centers. In addition, two

penalty function methods are proposed to make the algorithm applicable

to constrained optimization.

5.2 SOCE ALGORITHM
5.2.1 Surrogate Modeling and Optimization

In SOCE, Kriging and QRS models are constructed separately to approxi-

mate the true model. Each has distinct predictive characteristics. Kriging

is an interpolation method that commonly generates an approximation

model with multiple local optima. Owing to its remarkable capacity in

predicting nonconvex problems, Kriging has been widely used for com-

plex engineering applications. QRS belongs to one of the regression meth-

ods that generally can reflect the overall trend of a true model. Especially,

if it is a convex problem, QRS can accurately predict the global optimum.

However, it has difficulties in dealing with multimodal problems.

SOCE ◾ 117

Sequential quadratic programming (SQP) is a well-known local optimi-

zation algorithm that can search for the optimal solution from one given

starting point. The success rate that SQP finds the global optimum depends

on positions of starting points and the complexity of this problem. For a

multimodal function, it is hard for SQP to directly find the global opti-

mal solution. Hence, we utilized a multi-start SQP (MSSQP) algorithm to

realize the global optimization process. The MSSQP algorithm includes

two parts: the pre- and post-treatment parts. In the pre-treatment process,

Symmetric Latin Hypercube Sampling (SLHS) is employed to capture the

initial starting points. SLHS can make starting points have a random and

centro-symmetric distribution in a design space. On one hand, the random

nature increases the success rate of MSSQP to find the global optimum

when the main loop keeps running. On the other hand, a better coverage

rate can improve the probability of obtaining the global optimum in one

iteration. In the post-treatment process, the key point is how to get new

samples with diversity, which can avoid supplementing samples around

the same local optima. Here, we define an allowable minimum distance

between these promising local optimal locations as follows.

 max minRange Range() ()= −Dis w (5.1)

In Eq. (5.1), Range is a vector representing the range of a design space. The

default value of the coefficient w is 0.005 in SOCE and it affects the length of Dis.

GWO is a recently presented nature-inspired global optimizer, which

has been widely used. GWO divides the gray wolves into four types (alpha,

beta, delta and omega) based on their leadership hierarchy. The four types

correspond to different fitness values. Additionally, GWO simulates the

gray wolves’ hunting mechanism that includes encircling prey, hunting and

attacking, to get new samples. In summary, GWO is appropriate for mul-

timodal problems and can explore the QRS model efficiently. It is worth

noting that global optimization on QRS sometimes may produce repeated

samples in multiple iterations, thus the algorithm needs to delete redun-

dant samples in time. Besides, QRS needs at least 0.5n2 + 1.5n + 1 samples

to guarantee the predictive accuracy. Here, n represents the design dimen-

sion. Equation (5.2) describes the optimization on surrogate models.

min ˆ

min ˆ

x lb x ub

x lb x ub

()

()

→ ≤ ≤

→ ≤ ≤

MSSQP f

GWO f

Krg

QRS

 (5.2)

118 ◾ Data-Driven Global Optimization Methods and Applications

where ˆ x()fKrg and ˆ x()fQRS represent the Kriging and QRS models of an

objective function, respectively.

5.2.2 Initialization and Loop of SOCE

The optimization flow of SOCE includes initialization and loop. In SOCE,

the initialization process mainly defines some basic parameters and car-

ries out the design of experiments (DOEs). After the expensive sample

values are evaluated at these DOE sample points, two initial surrogate

models (Kriging and QRS) are constructed, respectively. Furthermore,

the initial expensive samples are sorted to get the current best value

for the following loop. Algorithms 5.1(a) and (b) show the main details

of this process.

In the loop process, the Kriging and QRS models are optimized by the

MSSQP and GWO algorithms, respectively. After a series of detections and

selections, the new samples are added into the sample set. At this moment,

if the algorithm satisfies a local convergence criterion, it will go on explor-

ing the unknown space. Finally, sample ranks, two surrogate models and

the design range will be updated for the next iteration.

Algorithm 5.1(a) is shown below.

Algorithm 5.1(a) The Proposed Optimization Flow—Initialization

(01) Begin

(02) Initialize Kriging and quadratic polynomial parameters, and set

the population size and max iterations of the gray wolf optimizer.

(03) Carry on the initial DOE process, evaluate the expensive function

values and construct the initial surrogate models.

(04) Set the structure variables of the Kriging and QRS predictors as

global variables for the subsequent optimization.

(05) n ← Get the dimension of design variables

(06) Iteration ← Count the iteration number

(07) Current_NFE ← Count the number of function evaluations

(08) Y_best ← Sort the initial sample values

(09) Range_new ← Set the new range as the initial space.

(10) End

SOCE ◾ 119

Algorithm 5.1(b) is shown below.

Algorithm 5.1(b) The Proposed Optimization Flow—Loop

(01) Begin

(02) while Y_best does not reach the target value and Current_NFE<300

(03) M ← Carry on SLHS to obtain multiple starting points.

(04) A ← Call SQP optimizer at M to obtain multiple locally opti-

mal solutions from the Kriging model.

(05) S_Kriging ← Find two promising locations from A that keep

a defined distance with each other and meanwhile cannot go

close to existing samples. The distance is w|| Max (Range_

new) – Min (Range_new) ||.

(06) if Current_NFE > 0.5n2 + 1.5n + 1

(07) S_QRS ← Call GWO optimizer to obtain the global optimal

location from the QRS model.

(08) end if

(09) S ← Promise that S_Kriging and S_QRS are not repeated sam-

ples and store them into the sample set.

(10) Y ← Evaluate the expensive objective function values.

(11) Local_error ← Sort the current sample values Y and obtain the

local convergence error.

(12) if Local_error satisfies the local convergence criteria

(13) S_explore ← Call Algorithm 5.2 to get several samples

from the unknown design space.

(14) Y_explore ← Evaluate the expensive function values.

(15) end if

(16) if Iteration>3

(17) if REM (Iteration, 2) == 0

(18) Range_new ← Keep the new range for Kriging as the

original design range.

(19) else

(20) Range_new ← The new range for Kriging is reduced to a

region that encloses the top 50% of samples. The minimum

and maximum X coordinates in each dimension are selected

to create this region. If this region focuses on a point or a

line, the new range is defined as the original design range.

(21) end if

(22) end if

(23) Update and obtain the algorithm parameters, Kriging and

QRS models.

120 ◾ Data-Driven Global Optimization Methods and Applications

(24) Y_best ← Get the current best function value

(25) end while

(26) End

5.2.3 Clustering-Based Space Exploration

As previously discussed, if the search falls into a local optimal region

for multiple iterations, the algorithm needs to jump out and explore the

sparsely sampled region. In the current work, the sparsely sampled regions

are defined based on the k-means clustering algorithm.

First, a local convergence criterion is proposed. In each iteration, the

mean value of the current top m samples is stored. When the iteration

number is more than 3, a local error is obtained by the difference of the

present and last mean values. If the error equals to zero, it means that

no better samples are added into the top m samples in this iteration. The

algorithm allows this case but it cannot continue for too many consec-

utive times. If this situation continues for the maximal times (here, the

threshold value is defined as 10), the algorithm will use Latin hypercube

sampling (LHS) to get new samples in a promising region. When the local

error drops below a user-defined small value, the clustering-based space

exploration is activated. In this work, a small value of 0.001 is defined as

the maximum error. The main steps are summarized below.

• Utilize the k-means clustering algorithm (Hartigan & Wong, 1979)

to produce multiple clustering centers.

• Evaluate the total length of the design range in each dimension and

set a small percentage. Create multiple small regions around these

clustering centers. The specific expressions can be found in Lines (14)

and (15) of Algorithm 5.2(a).

• Count the number of the samples being located in these created small

regions. If the proportion of the counted samples in the total samples

exceeds a user-defined value Ratio, the loop ends. Otherwise, the

percentage w gets increased and the loop continues.

• Generate new samples by LHS in the whole design range and delete

those samples located in the clustering-based regions.

• Finally, evaluate the expensive sample values and update the sample set.

SOCE ◾ 121

Algorithms 5.2(a) and (b) show the details of the clustering-based space

exploration.

Algorithm 5.2(a) Clustering-based Space Exploration—Search Strategy

(01) Begin

(02) if 0 < Local_error < 0.001

(03) S_explore_number ← Define the number of initial samples for

exploration.

(04) S_explore ← Call LHS to obtain the initial samples for

exploration.

(05) S_ number ← Count the number of the current samples.

(06) w ← Set the initial parameters for the size of clustering regions.

(07) Center_number ← Define the number of clustering centers.

(08) Center ← Employ the K-means algorithm to obtain clustering

centers.

(09) Ratio ← The defined percentage of S_ number.

(10) Sum_ratio ← 0

(11) dis_range ← Get the distance between low and up bounds in

the design range.

(12) while Sum_ratio < Ratio

(13) for each clustering center i

(14) Range_clusters (i) ← [Center (i)-w*dis_range; Center

(i) + w*dis_range]

(15) Keep the Range_clusters enclosed by the original design space.

(16) end for

(17) Call Algorithm 5.2(b) to sign the Samples of S located in

Range_clusters.

(18) Sum_in ← Count the number of the samples of S in these

Range_clusters.

(19) Sum_ratio ← Sum_in/ S_ number.

(20) w ← w + 0.025.

(21) end while

(22) Call Algorithm 5.2(b) to sign the Samples of S _explore located

in Range_clusters

(23) S_explore_save ← Save the S_explore samples outside the

Range_clusters.

(24) Make sure that S_explore_save keeps a small distance with exist-

ing samples S.

122 ◾ Data-Driven Global Optimization Methods and Applications

(25) Y_explore_save ← Evaluate the function values at samples S

_explore_save.

(26) [S, Y] ← Update the expensive samples set.

(27) else if Local_error == −1

(28) Range_promising ← Utilize the top 50% of samples to create a

promising range.

(29) S_explore ← Call LHS to obtain 3n+2 samples that cannot go

close to existing samples.

(30) Y_explore ← Evaluate the function values at samples S _explore.

(31) [S, Y] ← Update the expensive samples set.

(32) end if

(33) end if

(34) End

Algorithm 5.2(b) is a function of Algorithm 5.2(a). It describes how to

sign the samples in a particular region. Algorithm 5.2(b) will return a vec-

tor with logical values to identify whether the samples are in a particular

region. The details are as follows:

Algorithm 5.2(b) Check Samples in the Clustering Ranges or Not

(01) Begin

(02) S_Number ← Input the number of samples.

(03) Range_clusters ← Input the defined range.

(04) S _test ← Create a zero vector with the length of S_ Number.

(05) for each clustering range k

(06) for each existing expensive samples i

(07) if S_test (i)== 0

(08) IN ← Check the S (i) in the Range_clusters (k) or not.

(09) if IN == 1

(10) S_test (i) ← 1

(11) end if

(12) end if

(13) end for

(14) end for

(15) return S_test

(16) End

SOCE ◾ 123

To demonstrate it clearly, several graphic examples are provided. Figure 5.1

shows six groups of results with different parameters. The dots in Figure 5.1

are generated by LHS, among which light ones are located in these

FIGURE 5.1 (a–f) Clustering-based exploration on sparsely sampled regions.

124 ◾ Data-Driven Global Optimization Methods and Applications

clustering regions and black ones are outside of these regions. There are

20 dots in each following figure. Besides, the dashed rectangles describe

the dynamic updates of these regions, and the solid-line rectangles are the

final boundaries of the clustering regions. According to the previous dis-

cussion, the number of dashed rectangles reflects the number of iterations

in Algorithm 5.2a. Figures 5.1a and b just have one clustering center and

their parameters Ratio are 0.7 and 0.9, respectively. It is clear that the final

region will get bigger and the number of iterations will increase if Ratio is

larger. What is more, one clustering center cannot describe the distribution

of samples well. Figures 5.1c and d show the results when there are five cen-

ters. Compared with Figures 5.1a and b, the clustering regions in Figures

5.1c and d can better cover the clustering samples and the new samples can

also fill the sparsely sampled space well. Figures 5.1e and f show a similar

phenomenon. As observed in Figure 5.1, the number of clustering centers

and Ratio affect the exploration process. Intuitively, more clustering cen-

ters can make this strategy more accurate. In summary, if the number of

clustering centers is too small, this strategy cannot explore the sparsely

sampled space accurately. On the contrary, too many clustering centers will

increase the number of loops in Algorithm 5.2(a) and the computational

cost will get larger.

5.3 OVERALL OPTIMIZATION FRAMEWORK OF SOCE
5.3.1 Overall Optimization Process

The previous section described the specific process of the algorithm, and

this section describes the optimization process of the SOCE algorithm as

a whole, as shown in Figure 5.2.

As Figure 5.2 shows, SOCE is mainly composed of two parts: one is the

exploitation on surrogates; the other one is an exploration in the sparsely

sampled area. On one hand, SOCE can quickly identify a local optimum

with the help of surrogate models. On the other hand, the clustering-based

space exploration can make SOCE jump out of a local optimal region and

begin a new optimization search in the unexplored area.

The termination criterion of SOCE is suggested as Eq. (5.3).

1% 300, 0

0.001 300, 0

−
≤ > ≠

< > ==










y y

y
or NFE if y

y or NFE if y

optimal best

optimal

optimal

best optimal

 (5.3)

SOCE ◾ 125

Here, yoptimal is the analytical global optimum, ybest is the present best value

and NFE is the number of objective function evaluations.

To make SOCE easy to understand, a graphic example is shown to

demonstrate the capacity of the proposed algorithm. Figures 5.3 and 5.4

illustrate the search process of SOCE on a variety of nonlinear multi-peak

problems.

To increase difficulty, a group of DOE samples [−2, −0.857], [2, −0.286],

[0.286, 0.286], [0.857, −1.429], [1.429, 1.429], [−0.857, −2], [−1.429, 0.857],

FIGURE 5.2 Flowchart of SOCE.

126 ◾ Data-Driven Global Optimization Methods and Applications

[−0.286, 2] that do not locate in the neighborhoods of the global optimum

are selected. Figure 5.3a shows the true surface of Shubert and Figure 5.3b

presents the initial DOE samples on its contour plot. Figure 5.3c–f describes

the dynamic process of sample updating. Since the initial samples cannot

FIGURE 5.3 Optimization process of SOCE on Shubert.

SOCE ◾ 127

provide an accurate surrogate model, the first search focuses on the regions

far away from the true global optimum. From Figure 5.3e, it can be found

that new samples are filled in unexplored regions by the clustering-based

strategy when the algorithm gets trapped in local minima. Owing to the

newly supplemented samples in Figure 5.3e, the accuracy of local regions

around the global optimum gets improved. Finally, 89 samples are used in

total to find the global optimum.

FIGURE 5.4 Optimization process in other multimodal arithmetic cases.

128 ◾ Data-Driven Global Optimization Methods and Applications

In addition, the optimization search process of SOCE on some classical

nonlinear multi-peak problems is given in Figure 5.4, which shows that

SOCE has a strong global search capability.

5.3.2 Parameters Analysis of SOCE

Section 5.1 has mentioned some algorithm parameters, among which the

number of clustering centers (NCC), the percentage Ratio, the number of

starting points (NSP) and the max allowable number of supplementary

samples obtained from multi-start optimization (MANS) may have sig-

nificant effects on the whole algorithm. Therefore, the sensitivity of these

parameters will be analyzed in this section.

This chapter utilizes a representative multimodal function, Shubert,

which has a global optimum of −186.7309. To avoid the randomness asso-

ciated with DOEs, a DOE sample such as the one in Figure 5.3 is used as

the initial sample point. Since the initial surrogate models constructed by

the eight samples have poor approximation accuracy, SOCE is easy to get

trapped in the neighborhood of the local optimum −10.9786, which can

activate the clustering-based strategy and make all the parameters work

adequately. Considering the stochastic behavior of SOCE, each case needs

to be tested for ten times. For NCC and Ratio, 12 cases are given and the

statistical results are shown in Table 5.1, where the results with the symbol

“>” indicate that at least one test cannot find target values within 300 NFE.

In addition, the numbers in brackets reflect the failure times. In Table 5.1,

Cases 4, 8 and 12 show that the bigger Ratio always brings the worse result.

TABLE 5.1 Parametric Analysis of NCC and Ratio on Shubert

Cases

Parameters Test Results

NCC Ratio Min NFE Mean NFE Max NFE Obtained Values

Case 1 1 0.6 74 >159.9 >300 (1) [−186.710, −123.580]

Case 2 1 0.7 50 >117.9 >300(1) [−186.730, −123.580]

Case 3 1 0.8 50 124.9 274 [−186.730, −185.610]

Case 4 1 0.9 82 >176.1 >300(2) [−186.720, −79.330]

Case 5 5 0.6 100 143.2 217 [−186.640, −185.100]

Case 6 5 0.7 87 146.5 214 [−186.720, −185.070]

Case 7 5 0.8 94 146.4 263 [−186.730, −185.030]

Case 8 5 0.9 109 >184.4 >300(1) [−186.730, −79.330]

Case 9 10 0.6 54 121.7 197 [−186.720, −185.080]

Case 10 10 0.7 75 140.8 219 [−186.720, −185.480]

Case 11 10 0.8 77 127.6 171 [−186.720, −185.450]

Case 12 10 0.9 80 148 275 [−186.660, −185.120]

SOCE ◾ 129

It is clear that Case 4 fails to find satisfactory results within 300 NFE for

two times. Cases 9–12 where NCC equals to 10 have relatively smaller NFE

values in all the 12 cases. Furthermore, with NCC increasing, the failure

times decrease significantly. In conclusion, a Ratio with a value between

0.6 and 0.8 can make SOCE more efficient. Additionally, a bigger NCC

can make the exploration strategy more accurate, but the number of loops

in Algorithm 5.2(a) will increase. Therefore, the recommended parameter

ranges for NCC and Ratio are [5, 10] and [0.6, 0.8], respectively.

For the parameter NSP, seven cases are provided and the statistical

results are listed in Table 5.2. In this test, NCC is defined as 10 and Ratio

is 0.6. It is easy to find that all the cases can find satisfactory solutions

within 300 NFE. Mean NFE does not change too much but it gets smaller

gradually when NSP increases. It is worth noting that the CPU time is

significantly affected by NSP. This is because a bigger NSP can increase the

number of running the SQP optimizer. Eventually, we suggest the param-

eter range [30, 50] for NSP.

MANS is a main factor to affect the parallelism of SOCE. If MANS

gets bigger, the number of supplementary samples in each iteration may

increase. Analysis results of MANS are shown in Table 5.3. In this test,

TABLE 5.2 Parametric Analysis of NSP on Shubert

Cases NSP

Test Results

Min NFE Mean NFE Max NFE Obtained Values CPUt

Case 1 5 67 149.2 227 [−186.73, −185.03] 23.11s

Case 2 10 78 138.4 192 [−186.72, −185.00] 20.33s

Case 3 20 81 140.2 199 [−186.69, −185.34] 25.77s

Case 4 30 63 125.2 174 [−186.67, −185.53] 27.83s

Case 5 40 58 135.7 213 [−186.69, −184.96] 36.07s

Case 6 50 67 130.4 244 [−186.73, −184.87] 41.57s

Case 7 60 48 128.3 243 [−186.71, −185.12] 49.94s

TABLE 5.3 Parametric Analysis of MANS on Shubert

Cases MANS

Test Results

Min NFE Mean NFE Max NFE Obtained Values Iteration

Case 1 2 64 130.2 183 [−186.72, −184.88] 36.9

Case 2 3 85 144.8 248 [−186.73, −185.31] 31.9

Case 3 4 88 149.8 309 [−186.67, −185.47] 28.5

Case 4 5 121 185.7 323 [−186.72, −185.39] 31.4

Case 5 6 106 184 319 [−186.62, −185.08] 27.6

Case 6 7 121 183.8 248 [−186.67, −185.13] 27.3

130 ◾ Data-Driven Global Optimization Methods and Applications

NCC, Ratio and NSP are defined as 10, 0.6 and 30, respectively. As Table 5.3

shows, Mean NFE increases remarkably when MANS changes from 2 to 7.

Meanwhile, it can be found that the mean number of iterations has a nega-

tive correlation with MANS. In a parallel computing environment, users

can increase MANS properly to improve the parallelism of SOCE. To sum

up, in this work, the recommended parameter range for MANS is [2, 4].

To verify the recommended parameters, tests are carried out on a more

challenging problem (two-dimensional Griewank function with the range

X1 ∈ [−5, 15] and X2 ∈ [−15, 5]). Similarly, eight samples [15, −6.429],

[3.571, 5], [9.286, −12.143], [0.714, −15], [−5, −9.286], [12.143, 2.143], [−2.143,

−0.714], [6.429, −3.571] are given to construct the initial surrogate models

that make SOCE easily get trapped around a local optimal value 7.40e-3

at the beginning. The same cases in Tables 5.1–5.3 are tested on Griewank

and the specific results are shown in Tables 5.4–5.6. From Table 5.4, it can

be seen that Cases 1–4 have the worst performance and Cases 10, 9 and

5 can go close to the global optimum with fewer function evaluations.

Additionally, all the better parameter groups in Table 5.4 are located in the

recommended parameter ranges.

In Table 5.5, Case 3 has the smallest NFE value and the CPU time grad-

ually gets longer from Case 1 to Case 7. Besides, the results in Table 5.6

show that Cases 1 and 2 have the best performance. Like Tables 5.2 and 5.3,

Tables 5.5 and 5.6 also give the laws that a larger NSP value can cause longer

CPU time and a larger MANS value may bring more function evaluations.

In summary, the parametric analyses on the two representative multi-

modal problems Shubert and Griewank get similar laws, and meanwhile

TABLE 5.4 Parametric Analysis of NCC and Ratio on GW

Cases

Parameters Test Results

NCC Ratio Min NFE Mean NFE Max NFE Obtained Values

Case 1 1 0.6 206 >285.5 >300(8) [1.32e-5, 7.40e-3]

Case 2 1 0.7 166 >286.6 >300(9) [1.31e-4, 7.40e-3]

Case 3 1 0.8 >300 >300 >300(10) [7.40e-3, 7.40e-3]

Case 4 1 0.9 >300 >300 >300(10) [7.40e-3, 7.40e-3]

Case 5 5 0.6 112 >216.2 >300(3) [1.90e-6, 7.40e-3]

Case 6 5 0.7 184 >275.4 >300(6) [7.89e-6, 7.40e-3]

Case 7 5 0.8 107 >260.5 >300(6) [3.53e-5, 7.40e-3]

Case 8 5 0.9 269 >296.9 >300(9) [4.73e-5, 7.40e-3]

Case 9 10 0.6 80 >203.9 >300(2) [7.95e-6, 7.40e-3]

Case 10 10 0.7 82 >152.7 >300(1) [3.38e-5, 7.40e-3]

Case 11 10 0.8 133 >235.4 >300(5) [2.77e-6, 7.40e-3]

Case 12 10 0.9 151 >257.8 >300(6) [1.36e-5, 7.40e-3]

SOCE ◾ 131

the recommended parameter ranges can make SOCE work well. In the

subsequent comparison experiments, the four parameters NCC, Ratio,

NSP and MANS of SOCE are defined as 10, 0.6, 30 and 2, respectively.

5.4 EXPERIMENTS ON BENCHMARK EXAMPLES
5.4.1 Comparison Test on Bound-Constrained Examples

Considering that SOCE is a multi-point global optimization algorithm,

MSEGO supplements multiple samples in each cycle based on different

surrogate models and is tested as the preliminary comparison. The test

cases and the results of MSEGO come from Long et al. (2015). When ten

independent tests are finished, the statistical results are given in Tables 5.7

and 5.8. It is easy to find that SOCE has a better performance than MSEGO

on most cases (SE, PK, SC, BR, RS, GN and HN). SOCE can quickly go

close to the true global optimum within 40 function evaluations on SE,

PK, SC and BR, but MSEGO needs more than 100 function evaluations.

Furthermore, SOCE can get better values than MSEGO on RS, GN and

HN with fewer function evaluations. Although both SOCE and MSEGO

TABLE 5.5 Parametric Analysis of NSP on GW

Cases NSP

Test Results

Min NFE Mean NFE Max NFE Obtained Values CPUt

Case 1 5 147 >225.8 >300(2) [1.25e-5, 7.40e-3] 25.75s

Case 2 10 118 >192.2 >300(1) [4.79e-5, 7.40e-3] 23.75s

Case 3 20 88 >183 >300(2) [1.50e-5, 7.40e-3] 28.64s

Case 4 30 86 >179.8 >300(1) [5.36e-6, 7.40e-3] 35.82s

Case 5 40 72 >224.5 >300(3) [1.42e-6, 7.40e-3] 51.80s

Case 6 50 126 >221.2 >300(1) [2.60e-6, 7.40e-3] 58.55s

Case 7 60 101 >245.9 >300(2) [1.78e-6, 7.40e-3] 78.46s

TABLE 5.6 Parametric Analysis of MANS on GW

Cases MANS

Test Results

Min NFE Mean NFE Max NFE Obtained Values Iteration

Case 1 2 91 212.3 370 [1.17e-6, 5.28e-4] 46.0

Case 2 3 113 225 478 [6.54e-6, 9.43e-4] 41.3

Case 3 4 124 258.3 435 [4.51e-6, 9.72e-4] 38.1

Case 4 5 149 281.2 468 [2.26e-6, 6.96e-4] 36.9

Case 5 6 147 311.1 579 [2.34e-6, 8.56e-4] 36.0

Case 6 7 166 293.7 620 [1.51e-5, 9.83e-4] 30.2

132 ◾ Data-Driven Global Optimization Methods and Applications

can find a value close to 3 on GP, MSEGO has a smaller computation cost.

In summary, SOCE is more efficient and robust.

To further verify the algorithm’s efficiency and robustness, 15 represen-

tative benchmark problems are provided for comparison testing. Among

them, there are 12 low-dimensional problems and three high-dimensional

problems. More details about them are listed in Table 5.9. Since the sto-

chastic nature of SOCE, ten tests are carried out on these examples. In this

work, three surrogate-based algorithms EGO, HAM and KMS are tested

as contrast. EGO and HAM are two well-known global optimization algo-

rithms that have been widely cited. KMS is a Kriging-based multi-start

global optimization method, which employs the MSSQP algorithm pro-

posed in SOCE. In addition, KMS uses the same multi-start optimization

strategy as SOCE.

TABLE 5.7 Obtained Values of SOCE and MSEGO

Func.

SOCE MSEGO

Var. Range Median Var. Range Median

SE [−1.456, −1.448] −1.456 [−1.456, −1.454] −1.456

PK(Peaks) [−6.551, −6.494] −6.544 [−6.498, −5.979] −6.498

SC [−1.032, −1.030] −1.032 [−1.024, −0.987] −1.024

BR [0.398, 0.399] 0.399 [0.398, 0.431] 0.398

RS(F1) [−2.000, −1.980] −1.994 [−1.874, −1.636] −1.874

GF [0.003, 0.009] 0.007 [0.001,0.035] 0.001

GP [3.000, 3.029] 3.008 [3.002, 3.014] 3.002

GN [3.33e-15, 4.81e-3] 7.33e-4 [0.176, 0.627] 0.177

HN(HN6) [−3.317, −3.290] −3.306 [−3.208, −3.052] −3.145

TABLE 5.8 NFE of SOCE and MSEGO

Func.

SOCE MSEGO

Var. Range Mean Var. Range Mean

SE [29, 55] 33.4 [70, 123] 109.6

PK(Peaks) [29, 46] 37.3 [129, 132] 130.4

SC [26, 47] 34.9 [130, 132] 131.2

BR [22, 29] 25.9 [36, 132] 112.6

RS(F1) [29, 242] 108.5 [131, 132] 131.4

GF [47, 162] 113.5 [132, 132] 132.0

GP [68, 239] 145.9 [101, 132] 120.4

GN [11, 130] 95.7 [132, 132] 132.0

HN(HN6) [55, 149] 89.1 [176, 176] 176.0

SOCE ◾ 133

Table 5.10 shows the best values obtained by SOCE, KMS, EGO and

HAM within 300 function evaluations. Table 5.11 presents the NFE used

by the four algorithms in the experiments.

It is clear that the best values from SOCE mostly go much closer to the

true global optima with the fewest function evaluations and meanwhile it

has the fewest failure times. Since GW10 is a high-dimensional and multi-

modal problem, SOCE cannot find a value that is smaller than 0.001 within

300 NFE. However, SOCE can get satisfactory accuracy on GW10. KMS

can perform well on some problems that have fewer local optima, such as

SE, Peaks, Beales, levy and HN6, but most of the time it misses the global

optimum on more complex problems. EGO can solve low-dimensional

multimodal problems well, except Rast, GW2 and Beale. Moreover, EGO

has the worst performance on high-dimensional problems. Although the

hybrid meta-model technology improves the robustness of HAM, HAM

may still miss the global optimum. This is because HAM does not pro-

vide a search strategy to explore the sparsely sampled area. As observed

in Tables 5.10 and 5.11, HAM sometimes can just find a local optimum on

the multimodal problem, but HAM has a relatively robust performance on

most of the examples.

To improve readability, the mean values of NFE for the four algorithms

are given as a histogram in Figure 5.5. Meanwhile, the total ranks of the

TABLE 5.9 Bound-Constrained Benchmark Problems for Global Optimization

Category Func.

Number

of Dims. Design Space

Analytic Global

Minimum

Low-dimensional problems
(most of them are
multimodal problems with
lots of local minima)

Shub 2 [−2, 2]2 −186.731

GW2 2 [−10, 10]2 0.000

SE 2 [0, 5]2 −1.457

Peaks 2 [−3 3] × [−4 4] −6.551

Beale 2 [−4.5, 4.5]2 0.000

Alp 2 [0, 10]2 −6.130

F1 2 [−1, 1]2 −2.000

Rast 2 [−5.12, 5.12]2 0.000

Levy 2 [−10, 10]2 0.000

Zakh 2 [−5, 10]2 0.000

Shek10 4 [0, 10]4 −10.536

HN6 6 [0, 1]6 −3.322

High-dimensional problems
(n = 10–16)

GW10 10 [−600, 600]10 0.000

Sphere 15 [−5.12, 5.12]15 0.000

F16 16 [−1, 1]16 25.875

1
3
4

 ◾ D
ata-D

riven
 G

lo
b
al O

p
tim

izatio
n

 M
eth

o
d
s an

d
 A

p
p
licatio

n
s

TABLE 5.10 Best Values Obtained by SOCE, KMS, EGO and HAM

Func

SOCE KMS EGO HAM

Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst

Shub −186.701 −186.053 −185.342 −186.203 −101.456 −39.589 −186.664 −186.109 −184.941 −186.720 −119.826 −39.589

GW2 2.86e-6 2.14e-4 8.28e-4 7.40e-3 8.63e-3 1.97e-2 1.03e-6 5.73e-4 3.53e-3 2.30e-6 7.40e-3 9.86e-3

SE −1.456 −1.456 −1.448 −1.457 −1.454 2.866 −1.457 −1.455 −1.451 −1.457 −1.453 −1.447

Peaks −6.551 −6.544 −6.494 −6.550 −6.524 −6.492 −6.551 −6.549 −6.511 −6.551 −6.542 −3.050

Beale 4.19e-5 3.15e-4 8.37e-4 1.18e-4 7.09e-4 9.51e-4 2.35e-3 2.12e-2 8.27e-2 3.37e-7 2.54e-4 2.87e-3

Alp −6.127 −6.115 −6.084 −6.123 −6.080 −2.854 −6.129 −6.116 −6.089 −6.126 −6.121 −2.854

F1 −2.000 −1.994 −1.980 −1.997 −1.879 −0.660 −2.000 −1.997 −1.985 −2.000 −1.991 −1.879

Rast 4.26e-14 1.78e-4 8.79e-4 1.40e-12 0.995 3.980 2.02e-3 1.00e-2 7.92e-2 1.40e-5 1.05e-4 8.84e-4

Levy 9.83e-6 3.10e-4 6.85e-4 1.07e-5 3.90e-4 9.20e-4 5.13e-5 4.48e-4 1.23e-3 6.03e-7 5.33e-5 9.29e-4

Zakh 7.58e-6 2.72e-4 8.47e-4 2.32e-5 5.04e-4 2.80e-3 6.31e-6 7.68e-4 7.71e-3 3.31e-6 7.51e-5 2.35e-4

Shekel −10.523 −10.486 −2.871 −10.507 −9.998 −5.126 −10.523 −10.169 −5.029 −10.517 −9.753 −2.427

HN6 −3.317 −3.306 −3.290 −3.312 −3.308 −3.291 −3.318 −3.298 −3.201 −3.316 −3.2945 −3.159

GW10 1.18e-2 3.28e-2 9.75e-2 0.912 1.093 1.367 13.968 28.083 56.223 9.88e-3 2.39e-2 0.585

Sphere 2.09e-10 2.33e-8 5.74e-5 1.29e-3 3.06e-3 7.00e-3 0.180 0.562 0.863 5.31e-4 3.24e-3 0.154

F16 26.073 26.109 26.130 26.096 26.122 26.876 26.356 26.668 27.270 26.061 26.129 26.323

SO
C

E

 ◾

1
3
5

TABLE 5.11 Specific Statistical Results of NFE Obtained by SOCE, KMS, EGO and HAM

Func

SOCE KMS EGO HAM

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Shub 14 138 68 14 >300(8) >243.7 29 111 71 34 >300(5) >208.7

GW2 32 273 140.3 >300 >300(10) >300 24 >300(3) >157.3 58 >300(7) >244

SE 29 55 33.4 20 >300(1) >57.4 30 123 54.2 21 73 41.5

Peaks 29 46 37.3 17 92 39.8 21 45 34 21 >300(1) >67

Beale 58 249 151.9 80 237 156.1 >300 >300(10) >300 114 >300(1) >185.2

Alp 23 68 38.4 23 >300(4) >176.5 15 43 23.8 21 >300(1) >75.4

F1 29 242 108.5 56 >300(7) >235.5 39 105.1 155 30 >300(1) >93.7

Rast 10 64 25.6 11 >300(7) >214.9 >300 >300(10) >300 46 171 102.4

Levy 16 74 38.6 19 71 41.2 18 >300(1) >103.1 37 76 50.9

Zakh 63 231 134.8 54 >300(1) >198 28 >300(4) >157.5 42 63 48.2

Shekel 107 >300(2) >166.1 245 >300(9) >294.5 240 >300(5) >282.5 108 >300(8) >263.3

HN6 55 149 89.1 70 112 87.3 37 >300(3) >123.4 68 >300(3) >151.1

GW10 >300 >300(10) >300 >300 >300(10) >300 >300 >300(10) >300 >300 >300(10) >300

Sphere 138 141 138.6 >300 >300(10) >300 >300 >300(10) >300 261 >300(5) >286.5

F16 111 265 176.8 114 >300(1) >182.4 >300 >300(10) >300 187 >300(4) >252.8

136 ◾ Data-Driven Global Optimization Methods and Applications

four algorithms are evaluated. Among them, SOCE performs the best. It is

worth noting that all the four algorithms have the same NFE on GW10. In

Table 5.10, the median values of SOCE, KMS, EGO and HAM on GW10

are 3.28e-2, 1.093, 28.083 and 2.39e-2, respectively. Hence, the accuracy of

their results is used for ranking. In summary, SOCE is a promising global

optimization algorithm for expensive black-box multimodal problems.

Although Kriging-based optimization technologies commonly can-

not work well on high-dimensional problems, the proposed SOCE is still

tested on the 50-dimensional Rosenbrock function in this work. Here,

the maximal NFE is defined as 1,500. Figure 5.6 shows the true func-

tion values obtained by SOCE within 1,500 function evaluations. As

discussed previously, QRS begins to work after 1,326 (0.5n2 + 1.5n + 1)

samples are added.

In Figure 5.6, the best value changes slightly between 2.5e6 and 2e7

within 1,326 function evaluations. It demonstrates that Kriging cannot

efficiently guide SOCE to search the design space anymore. The combina-

tion of QRS and Kriging makes the overall trend begin to decrease after

1,400 samples. However, the obtained best value 1.81e6 after 1,500 samples

is still far away from the true global optimum 0. The essential reason for

the poor performance is that the approximation accuracy of the two sur-

rogates is not good enough on 50-dimensional problems. Hence, SOCE

0

50

100

150

200

250

300

350

Shub GW2 SE Peaks Beale Alp F1 Rast Levy Zakh Shekel HN6 GW10 Sphere F16

SOCE

KMS

EGO

HAM

1 2

3

4

1

2

3

4

1

2

3
4

12 3

4

1
2

3

2

4

1

3

4

1
2

3

4

1

3

4

12

3

4

1

2

3

4

1

2

3

4

12

3

4

1

2

1
2

3

43 412 34

2

SOCE Total Ranks=21 KMS Total Ranks=47 EGO Total Ranks=45 HAM Total Ranks=37

FIGURE 5.5 Histogram of mean values of NFE.

SOCE ◾ 137

is not appropriate for high-dimensional problems (with 50+ design vari-

ables) and its better scope of application is lower than 20 dimensions.

5.4.2 Comparison Test on Nonlinear-Constrained Examples

Based on the overall optimization flow in Figure 5.2, a penalty strategy is

suggested to make SOCE applicable for nonlinear-constrained optimiza-

tion. This strategy involves two penalty functions as follows.

 10 max ,0 1,2, ,10

1

∑ ()= + ⋅ =

=

F Y Z i mobj i

i

m

 (5.4)

0 1,2,

10 0 1,2, ,10




=

∀ ≤ =

+ ∃ > =







F

Y if Z i m

Y if Z i m

obj i

obj i

 (5.5)

Yobj refers to the true objective value and Zi is one of the constraint values.

As previously discussed, SOCE needs to sort samples to get the local con-

vergence criterion and update promising regions in Algorithm 5.1. Hence,

Eq. (5.4) is employed to get the actual function value with the penalty term

FIGURE 5.6 Test results of SOCE on 50-dimensional Rosenbrock.

138 ◾ Data-Driven Global Optimization Methods and Applications

for ranking. Besides, Eq. (5.4) is also used to select promising solutions in the

multi-start optimization process. On the other side, Eq. (5.5) is used to get the

present best value for the termination judgment. For nonlinear-constrained

optimization problems, SOCE constructs surrogate models for objective

and constraint functions, respectively. Equations (5.6) and (5.7) describe the

optimization process on surrogate models.

 ˆ 10 max ˆ ,010

1

∑ ()() ()→ +
=

x xGWO Minimize f gQRS Krg
i

i

m

 (5.6)

ˆ

ˆ 0

. . ˆ 0

ˆ 0 1,2, ,

1

2

⋮

…

()

()

()

()

→

≤

≤

≤ =

x

x

x

MSSQP Minimize f x

g

s t g

g i m

Krg

Krg

Krg

Krg
m

 (5.7)

where ˆ ()xg Krg
i is the Kriging model of the ith constraint. ˆ ()xfQRS and

ˆ ()f xKrg are the QRS and Kriging models of objective functions, respec-

tively. In this section, SOCE is tested on nonlinearly constrained problems

(Zhang et al., 2008; Regis, 2014), which include five complex mathematical

examples (G6, G7, G8, G9, G10) and two engineering problems (welded

beam design (WB4) and speed reducer design (SR7)). The target values

are given in Table 5.12. In the same way, all the tests are repeated ten

times. Additionally, as contrast, KMS, EGO and HAM utilize Eq. (5.4)

to deal with these constrained benchmark examples. Figure 5.7 presents

the representative results of SOCE on these problems. Since G7 is a high-

dimensional problem, the clear results close to the present best value are

TABLE 5.12 Nonlinear-Constrained Benchmark Problems for Global Optimization

Problems

Number of

Design Variables

Number of

Constraints

Best Known

Value

Target

Value

Benchmark
mathematical
examples

G6 2 2 −6,961.8139 −6,800

G7 10 8 24.3062 25

G8 2 2 −0.0958 −0.09

G9 7 4 680.6301 1,000

G10 8 6 7,049.3307 8,000

Engineering
examples

WB4 4 7 1.7250 2.5

SR7 7 11 2,994.42 2,995

SOCE ◾ 139

FIGURE 5.7 SOCE on nonlinearly constrained problems.

140 ◾ Data-Driven Global Optimization Methods and Applications

also provided. It is clear that SOCE can quickly focus on the boundaries

of constraints and find feasible solutions. Especially, SOCE can get accu-

rate results with fewer function evaluations on G6, G8, WB4 and SR7. For

high-dimensional examples G7, G9 and G10, SOCE can mostly find their

target values but higher computation cost is required.

Tables 5.13 and 5.14 give the statistical results including the obtained

function values and NFE. SOCE has excellent performances on G6, G8,

WB4 and SR7. For G9 and G10, SOCE just fails two times within 300

function evaluations, but it still gets the acceptable results 1,012.288 and

8,260.758 that are quite close to their target values. Additionally, it can

TABLE 5.13 Statistical Results of Function Values on Nonlinear-Constrained Problems

Problems G6 G7 G8 G9 G10 WB4 SR7

SOCE Best Value −6,961.813 24.644 −0.0958 772.220 7,109.074 1.726 2,994.471

Med. value −6,953.338 26.208 −0.0937 927.255 7,767.577 2.205 2,994.471

Worst value −6,872.775 28.571 −0.0902 1,012.288 8,260.758 2.349 2,994.657

HAM Best Value −6,339.926 602.933 −0.0950 966.166 1.28e11 2.934 3,124.147

Med. value −3,338.948 1.54e10 −0.0940 1,294.343 2.21e11 3.191 3,222.033

Worst value −1,356.719 4.13e10 −0.0912 1,740.238 3.71e11 8.272 3,401.861

KMS Best value −6,073.916 169.209 −0.0943 825.588 1.65e11 2.314 3,041.883

Med. value −1,500.888 398.865 −0.0738 1,403.688 2.66e11 5.097 3,112.072

Worst value 1.15e10 2,088.117 −0.0579 3,083.203 3.87e11 1.45e9 3,191.210

EGO Best value 1.36e9 385.207 −0.091 763.358 6.30e10 2.654 3,051.468

Med. value 1.16e10 622.641 −0.057 1,033.078 1.88e11 5.142 3,070.588

Worst value 3.52e10 1,178.897 −0.015 1,295.343 2.58e11 7.511 3,151.450

TABLE 5.14 Statistical Results of NFE on Nonlinear-Constrained Problems

Problems G6 G7 G8 G9 G10 WB4 SR7

SOCE Min NFE 20 117 35 79 156 34 39

Mean NFE 43.9 >266.4 57 >170.7 >241.2 57.3 62.9

Max NFE 65 >300(8) 114 >300(1) >300(1) 100 85

HAM Min NFE >300 >300 69 295 >300 >300 >300

Mean NFE >300 >300 115.8 >299.5 >300 >300 >300

Max NFE >300(10) >300(10) 192 >300(9) >300(10) >300(10) >300(10)

KMS Min NFE >300 >300 16 71 >300 17 >300

Mean NFE >300 >300 >271.6 >218.3 >300 >271.7 >300

Max NFE >300(10) >300(10) >300(9) >300(6) >300(10) >300(9) >300(10)

EGO Min NFE >300 >300 10 29 >300 >300 >300

Mean NFE >300 >300 >243.6 >207.9 >300 >300 >300

Max NFE >300(10) >300(10) >300(8) >300(6) >300(10) >300(10) >300(10)

SOCE ◾ 141

be seen that SOCE cannot find its target value within 300 function eval-

uations on G7 in most cases. However, the range of the optimal values

[24.644, 28.571] obtained by SOCE on G7 is satisfactory. HAM, EGO and

KMS sometimes can reach the target value within 300 NFE on G8 and

G9, but all of them cannot go close to the target value on G7 and G10.

Especially on G10, HAM, EGO and KMS can hardly find feasible solutions

within 300 NFE. Although KMS and HAM also failed on G6, they have

almost reached the target. HAM, EGO and KMS have acceptable perfor-

mance on WB4 and SR7, but few of them can complete the mission within

the maximal NFE. After the comparison test, it can be found that SOCE is

also an efficient and robust algorithm for nonlinear-constrained EBOPs.

5.5 CHAPTER SUMMARY

In SOCE, a surrogate-based global optimization algorithm SOCE is pre-

sented, which can solve multimodal EBOPs and constrained EBOPs.

SOCE employs Kriging and QRS to construct two surrogate models. Since

Kriging models can always generate multiple predictive optimal loca-

tions, an MSSQP is suggested to find them as supplementary samples. To

guarantee the diversity of the new samples, MSSQP defines an allowable

distance to eliminate redundant samples. QRS models can predict the

overall trend of a true model, thus the nature-inspired global optimiza-

tion algorithm GWO is utilized to capture the global optimum of QRS

models. When the optimization process gets trapped in a local optimum, a

clustering-based space exploration strategy is activated to make the search

focus on unexplored regions. This proposed strategy includes four steps:

(1) Generate multiple clustering centers; (2) Create small regions around

these centers; (3) Count the current samples located in these regions and

update regions until a defined ratio is reached; (4) Generate new samples

and delete the samples outside of these regions. In this work, the specific

pseudo is provided and a graphic example is shown to demonstrate the

remarkable capacity of SOCE on multimodal EBOPs. To verify the robust-

ness of SOCE, tests were repeated ten times on 15 benchmark examples.

Besides, three surrogate-based global optimization algorithms EGO,

HAM and KMS were compared with SOCE. The results showed the pow-

erful capacity of SOCE in dealing with multimodal EBOPs. Finally, two

penalty functions were proposed to make SOCE applicable for constrained

optimization. In the tests of seven nonlinear-constrained examples, SOCE

successfully found satisfactory solutions with fewer function evaluations.

In summary, SOCE is a promising global optimization algorithm for mul-

timodal EBOPs and constrained EBOPs.

142 ◾ Data-Driven Global Optimization Methods and Applications

NOTE
 1 Based on “Surrogate-based Optimization with Clustering-based Space

Exploration for Expensive Multimodal Problems,” published in [Structural and
Multidisciplinary Optimization], [2018]. Permission obtained from [Springer].

REFERENCES

Al-Sultan, K. S., & Nizami, M. F. H. S. (1996). A Genetic Algorithm for the Set
Covering Problem. Journal of the Operational Research Society, 47(5),
702–709.

Alexandrov, N. M., Dennis, J. E., Lewis, R. M., & Torczon, V. (1998). A Trust-Region
Framework for Managing the Use of Approximation Models in Optimization.
Structural Optimization, 15(1), 16–23. https://doi.org/10.1007/BF01197433

Coello Coello, C. A. (2002). Theoretical and Numerical Constraint-Handling
Techniques Used with Evolutionary Algorithms: A Survey of the State of
the Art. Computer Methods in Applied Mechanics and Engineering, 191(11),
1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-1

Cutbill, A., & Wang, G. G. (2016). Mining Constraint Relationships and
Redundancies with Association Analysis for Optimization Problem
Formulation. Engineering Optimization, 48(1), 115–134. https://doi.org/10.
1080/0305215X.2014.995177

Deshmukh, A. P., & Allison, J. T. (2016). Multidisciplinary Dynamic Optimization
of Horizontal Axis Wind Turbine Design. Structural and Multidisciplinary
Optimization, 53(1), 15–27. https://doi.org/10.1007/s00158-015-1308-y

Gutmann, H. M. (2001). A Radial Basis Function Method for Global
Optimization. Journal of Global Optimization, 19(3), 201–227. https://doi.
org/10.1023/A:1011255519438

Haftka, R. T., Villanueva, D., & Chaudhuri, A. (2016). Parallel Surrogate-Assisted
Global Optimization with Expensive Functions – A Survey. Structural
and Multidisciplinary Optimization, 54(1), 3–13. https://doi.org/10.1007/
s00158-016-1432-3

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-Means Clustering
Algorithm. Journal of the Royal Statistical Society, Series C (Applied Statistics),
28(1), 100–108.

Jie, H., Wu, Y., & Ding, J. (2015). An Adaptive Metamodel-Based Global
Optimization Algorithm for Black-Box Type Problems. Engineering
Optimization, 47(11), 1459–1480.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient Global Optimization
of Expensive Black-Box Functions. Journal of Global Optimization, 13(4),
455–492. https://doi.org/10.1023/A:1008306431147

Leifsson, L., & Koziel, S. (2016). Surrogate Modelling and Optimization Using
Shape-Preserving Response Prediction: A Review. Engineering Optimization,
48(3), 476–496. https://doi.org/10.1080/0305215X.2015.1016509

Long, T., Wu, D., Guo, X., Wang, G. G., & Liu, L. (2015). Efficient Adaptive Response
Surface Method Using Intelligent Space Exploration Strategy. Structural and
Multidisciplinary Optimization, 51(6), 1335–1362. https://doi.org/10.1007/
s00158-014-1219-3

https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1011255519438
https://doi.org/10.1023/A:1011255519438
https://doi.org/10.1016/S0045-7825(01)00323-1
https://doi.org/10.1080/0305215X.2015.1016509
https://doi.org/10.1080/0305215X.2014.995177
https://doi.org/10.1080/0305215X.2014.995177
https://doi.org/10.1007/s00158-014-1219-3
https://doi.org/10.1007/BF01197433
https://doi.org/10.1007/s00158-015-1308-y
https://doi.org/10.1007/s00158-016-1432-3
https://doi.org/10.1007/s00158-016-1432-3
https://doi.org/10.1007/s00158-014-1219-3

SOCE ◾ 143

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer.
Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.
advengsoft.2013.12.007

Regis, R. G. (2014). Constrained Optimization by Radial Basis Function
Interpolation for High-Dimensional Expensive Black-Box Problems with
Infeasible Initial Points. Engineering Optimization, 46(2), 218–243. https://
doi.org/10.1080/0305215X.2013.765000

Regis, R. G., & Shoemaker, C. A. (2013). A Quasi-Multistart Framework for Global
Optimization of Expensive Functions Using Response Surface Models.
Journal of Global Optimization, 56(4), 1719–1753. https://doi.org/10.1007/
s10898-012-9940-1

Sadollah, A., Eskandar, H., & Kim, J. H. (2015). Water Cycle Algorithm for
Solving Constrained Multi-objective Optimization Problems. Applied Soft
Computing, 27, 279–298. https://doi.org/10.1016/j.asoc.2014.10.042

Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimiza-
tion. Evolutionary Programming VII: 7th International Conference, EP98, San
Diego, California, USA, March 25–27, 1998 Proceedings 7.

Toropov, V. V., Filatov, A. A., & Polynkin, A. A. (1993). Multiparameter Structural
Optimization Using FEM and Multipoint Explicit Approximations. Structural
Optimization, 6(1), 7–14. https://doi.org/10.1007/BF01743169

Wang, X. (2010). A New Metaheuristic Bat-Inspired Algorithm. In J. R. González,
D. A. Pelta, C. Cruz, G. Terrazas, & N. Krasnogor, (Eds.), Nature inspired
cooperative strategies for optimization. Studies in computational intelligence
(Vol. 10, pp. 65–74). Springer-Verlag Berlin Heidelberg.

Weise, T., Wu, Y., Chiong, R., Tang, K., & Lässig, J. (2016). Global versus Local
Search: The Impact of Population Sizes on Evolutionary Algorithm
Performance. Journal of Global Optimization, 66(3), 511–534. https://doi.
org/10.1007/s10898-016-0417-5

Yang, X. S. (2009). Harmony search as a metaheuristic algorithm. Springer Berlin
Heidelberg.

Yin, H., Fang, H., Wen, G., Wang, Q., & Xiao, Y. (2016). An Adaptive RBF-Based
Multi-objective Optimization Method for Crashworthiness Design of
Functionally Graded Multi-cell Tube. Structural and Multidisciplinary
Optimization, 53(1), 129–144. https://doi.org/10.1007/s00158-015-1313-1

Zhang, M., Luo, W., & Wang, X. (2008). Differential Evolution with Dynamic
Stochastic Selection for CONSTRAINED OPTIMIZATION. Information
Sciences, 178(15), 3043–3074.

Zadeh, P. M., Toropov, V. V., & Wood, A. S. (2009). Metamodel-Based Collaborative
Optimization Framework. Structural and Multidisciplinary Optimization,
38(2), 103–115. https://doi.org/10.1007/s00158-008-0286-8

Zeng, F., Xie, H., Liu, Q., Li, F., & Tan, W. (2016). Design and Optimization of a
New Composite Bumper Beam in High-Speed Frontal Crashes. Structural
and Multidisciplinary Optimization, 53(1), 115–122. https://doi.org/10.1007/
s00158-015-1312-2

Zhou, Y., Haftka, R. T., & Cheng, G. (2016). Balancing Diversity and Performance
in Global Optimization. Structural and Multidisciplinary Optimization, 54(4),
1093–1105. https://doi.org/10.1007/s00158-016-1434-1

https://doi.org/10.1016/j.asoc.2014.10.042
https://doi.org/10.1080/0305215X.2013.765000
https://doi.org/10.1080/0305215X.2013.765000
https://doi.org/10.1007/s10898-012-9940-1
https://doi.org/10.1007/s00158-015-1313-1
https://doi.org/10.1007/s00158-015-1312-2
https://doi.org/10.1007/s00158-008-0286-8
https://doi.org/10.1007/s10898-016-0417-5
https://doi.org/10.1007/BF01743169
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1007/s00158-016-1434-1
https://doi.org/10.1007/s10898-012-9940-1
https://doi.org/10.1007/s10898-016-0417-5
https://doi.org/10.1007/s00158-015-1312-2

144

C H A P T E R 6

HSOSR

Hybrid Surrogate-Based
Optimization Using Space
Reduction for Expensive
Black-Box Functions1

6.1 INTRODUCTION

Expensive black-box problems (EBPs) are prevalent in modern engineer-

ing design (Craven et al., 2016). Traditional optimization techniques,

like swarm intelligence and evolutionary computation (Mirjalili et al.,

2014; Park & Kim, 2017), are difficult to get EBPs’ global optima, primar-

ily because of the substantial number of expensive function evaluations.

Surrogate-based global optimization (SBGO) plays an important role in

today’s simulation-based industrial design (Queipo et al., 2005; Wang &

Shan, 2007).

In the past two decades, plenty of researchers focused on the develop-

ment of SBGO algorithms and their applications (Forrester & Keane, 2009;

Gutmann, 2001; Kleijnen, 2009; Myers et al., 2004; Tang et al., 2013; Younis

& Dong, 2010). Ong et al. (2003) introduced a hybrid approach that com-

bines surrogate modes with evolutionary algorithms to solve the global

optimization of EBPs. Wild et al. (2008) presented a derivative-free opti-

mization algorithm called ORBIT, which employs RBF and a trust-region

framework to solve unconstrained expensive optimization problems.

DOI: 10.1201/9781003636267-6

https://doi.org/10.1201/9781003636267‑6

HSOSR ◾ 145

ORBIT was tested on two engineering applications, calibration of a water-

shed and optimization of a bioremediation plan, and the final results

suggested that ORBIT could use fewer function evaluations to complete

optimization. Park and Kim (2017) combined a generalized regression

neural network with the particle swarm optimizer (PSO) to develop a new

surrogate-assisted global optimization algorithm (MUGPSO). Compared

to the original PSO, MUGPSO showed improvement in solution quality

and computational efficiency. Li et al. (2017) presented a Kriging-based

constrained global optimization (KCGO) algorithm to solve expensive

nonlinear constrained problems. KCGO includes two phases: (1) “How

to find the feasible solutions” and (2) “How to find the better solutions,”

which can help KCGO find the global optimum even if the initial samples

are infeasible.

In recent years, many researchers have been paying attention to hybrid

surrogate-based optimization approaches. Zhou et al. (2011) combined dif-

ferent independent surrogates into an ensemble model to improve the pre-

diction accuracy. A recursive process was proposed to obtain the updated

weights for each stand-alone surrogate. Through tests on five numerical

cases, the ensemble technique showed its advantages in saving sampling

costs. Gu et al. (2012) developed a hybrid and adaptive meta-model-based

(HAM) global optimization algorithm that employed PR, Kriging, and

RBF to estimate the exact objective function, respectively. According to

predictive results from the three surrogate models, HAM created seven

candidate sets to generate supplementary sample points. HAM was veri-

fied by various numerical examples and used for the crashworthiness

simulation of a vehicle, and the results showed remarkable computation

efficiency and robustness performance. Viana et al. (2013) proposed the

multiple surrogates EGO (MSEGO) algorithm that improves the paral-

lelism of EGO. MSEGO can add several new sample points in each opti-

mization cycle based on the predictions of these surrogates, which can

considerably reduce the number of iterations required for convergence.

In order to solve unconstrained EBPs, a new algorithm—“Hybrid

Surrogate-based Optimization using Space Reduction” (HSOSR) is pro-

posed in this chapter. Since Kriging and RBF have advantages in predicting

nonlinear problems, they are employed to construct surrogate models of

objective functions, respectively. Generally, different approximation tech-

niques may get different promising regions in a design space. We present

a space reduction approach that fuses “Potentially Better Regions” from

Kriging and RBF to create two subspaces for exploration. Additionally, a

146 ◾ Data-Driven Global Optimization Methods and Applications

multi-start optimization strategy is employed to search these subspaces on

Kriging and RBF. The supplementary samples in each cycle will be selected

to avoid repetition. Once the algorithm gets trapped in a local optimal

location, a proposed strategy will be triggered to make HSOSR explore the

sparsely sampled area of the design space.

6.2 HSOSR ALGORITHM
6.2.1 Surrogate Models – Radial Basis Function

The RBF approximation technique was originally developed by Hardy

(1971) and then modified by Dyn et al. (1986). As its name shows, RBF is

composed of multiple radial basis functions and it can also be understood

as a single-layer neural network. The general expression of RBF is sum-

marized as follows:

 iˆ() ()

1

x w x c∑ψ ψ ()= = −
=

f wT
i

i

m

 (6.1)

In Eq. (6.1), w is a weight vector, x is the to-be-tested location, and c is the

center vector. Besides, m denotes the number of input samples and ψ (•)

represents the basis functions that have multiple forms and they are shown

in Eq. (6.2).

ln

3

2

ψ

ψ

ψ

()

()

()

=

=

=

linear r r

cubic r r

thin plate spline r r r

 (6.2)

where r refers to the Euclidean distance between input vector x and center

vector c. In HSOSR, the cubic basis function is employed to construct RBF.

6.2.2 HSOSR Construction Process

In this section, the proposed HSOSR will be explained in detail.

HSOSR is different from the traditional hybrid surrogate-based (or

meta-model-based) methods that commonly fuse the results from all the

surrogates with weights or construct an ensemble model to combine the

advantages of all the surrogates. HSOSR employs Kriging and RBF to

construct surrogates for the same expensive black-box objective function,

respectively. The better design regions predicted by Kriging and RBF are

identified and two promising design subspaces are created for optimiza-

tion exploration. The specific demonstrations are summarized in the fol-

lowing contents.

HSOSR ◾ 147

6.2.2.1 Space Reduction

For nonlinear multimodal problems, space reduction techniques can

make optimization search focus on the potentially optimal regions and

avoid unnecessary computation costs in non-significant areas. In this

chapter, a large number of samples are first generated to get the predictive

values of the Kriging and RBF models. According to the predictive results,

HSOSR selects top M sample points from Kriging and RBF, respectively.

Subsequently, two promising regions are identified based on these sample

points: one is from Kriging and the other comes from RBF.

, , , ,

, , , ,

, , , ,

min , , ,

max , , ,

_ ,

1,2, ,

, , , ,

, , , ,

, , , ,

min , , ,

max , , ,

_ ,

1,2, ,

1
1

2
1 1 1

1
2

2
2 2 2

1 2

1 2

1 2

1
1

2
1 1 1

1
2

2
2 2 2

1 2

1 2

1 2

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

…

…

…

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

…

…

…

⇐























=  

=  

=  

=

⇐























=  

=  

=  

=

S

S

S S S Y

S S S Y

S S S Y

Lb S S S

Ub S S S

Range krging Lb Ub

i d

S S S Y

S S S Y

S S S Y

Lb S S S

Ub S S S

Range RBF Lb Ub

i d

krg
topM

krg
Rank

krg
Rank

krgd
Rank

krg
Rank

krg
Rank

krg
Rank

krgd
Rank

krg
Rank

krg
RankM

krg
RankM

krgd
RankM

krg
RankM

krgi krgi
Rank

krgi
Rank

krgi
RankM T

krgi krgi
Rank

krgi
Rank

krgi
RankM T

i krgi krgi

T

rbf
topM

rbf
Rank

rbf
Rank

rbfd
Rank

rbf
Rank

rbf
Rank

rbf
Rank

rbfd
Rank

rbf
Rank

rbf
RankM

rbf
RankM

rbfd
RankM

rbf
RankM

rbfi rbfi
Rank

rbfi
Rank

rbfi
RankM T

rbfi rbfi
Rank

rbfi
Rank

rbfi
RankM T

i rbfi rbfi

T

 (6.3)

In Eq. (6.3), Range_Kriging and Range_RBF denote the two promising

regions, respectively. Skrg
topM and Srbf

topM are the ranked top M samples from

Kriging and RBF, M is the number of good samples, and d denotes the

148 ◾ Data-Driven Global Optimization Methods and Applications

dimension. In addition, Ykrg
Ranki and Yrbf

Ranki are the predictive values from

the two surrogate models, and Lbi and Ubi represent the lower and upper

bounds, respectively. Based on Range_Kriging and Range_RBF, two sub-

spaces Range_union and Range_intersection are defined. The detailed

pseudo codes are summarized in Algorithm 6.1.

Algorithm 6.1(a) Create the Promising Ranges—Range_union

(01) Begin

(02) Sp ← Carry on Latin Hypercube Sampling (LHS) to obtain multiple

starting points.

(03) Yrbf ← Evaluate the RBF values at these starting points Sp

(04) Ykrg ← Evaluate the Kriging values at these starting points Sp

(05) Goodpoints_r ← Sort the RBF values Yrbf and find the correspond-

ing points

(06) Goodpoints_k ← Sort the Kriging values Ykrg and find the corre-

sponding points

(07) Num_rank1 ← Define the number of the selected good points.

(08) Range_r, Range_k ← Define the promising range by the top Num_

rank1 good points, respectively.

(09) for i ← 1 to D (The number of dimensions)

(10) Range_union_lb(i) ← Get the minimum boundary from Range_r

and Range_k at the ith dimension.

(11) Range_union_ub(i) ← Get the maximum boundary from

Range_r and Range_k at the ith dimension.

(12) end for

(13) Range_union ← Get the range [Range_union_lb; Range_union_ub].

(14) End

Intuitively, Range_union is the union set of Range_Kriging and Range_RBF,

and Range_intersection is the overlap of Range_Kriging and Range_RBF.

Both Range_union and Range_intersection include better regions from

Kriging and RBF, which decreases the risk of missing the global optimum.

In Algorithm 6.1(b), after the top Num_rank2 points of Kriging and RBF

are obtained, the same points in Goodpoints_r_inter and Goodpoints_k_

inter will be recorded in Points_intersection. These points in Points_

intersection may gather in a small region or may be distributed in several

local optimal regions. Finally, the subspace is created to enclose the points

HSOSR ◾ 149

set Points_intersection. Figures 6.1 and 6.2 show how to create the pro-

posed subspaces, which involve two cases on Griewank (GW) and Ackley

functions, respectively. Intuitively, GW and Ackley have many local valleys,

but Ackley has a clearer convergence trend to its global minimum. Since

GW has multiple similar valleys in the whole space, the top M samples

from Kriging and RBF scatter in different local optimal regions. It can be

seen from Figure 6.1b that Range_Kriging and Range_RBF enclose several

promising local regions, respectively. Besides, Range_intersection focuses

on the common better regions from the two surrogates. From Figure 6.1d,

it is clear that Range_intersection encloses the exact global minimum and

three other local minima and Range_union covers all the predicted prom-

ising regions from Kriging and RBF. Due to the characteristic of Ackley,

the top M samples from the two surrogates are located in a concentrated

area around the true global optima. Therefore, Range_intersection identi-

fies an accurate reduced space that encloses the global optimal solution.

In conclusion, Range_union can contain more local optimal regions to

FIGURE 6.1 (a–d) Graphic demonstration of GW function.

150 ◾ Data-Driven Global Optimization Methods and Applications

avoid missing the global optimum, and Range_intersection can focus on

the best joint regions of Kriging and RBF to accelerate convergence. In

this work, the total number of cheap points generated by LHS is 1,000,

Num_rank1 = 100 and Num_rank2 = 50. It is worth noting that the two

subspaces are alternately employed for optimization search with iterations

going on. The detailed pseudo codes are summarized in Algorithm 6.1(b).

Algorithm 6.1(b) Create the Promising Ranges—Range_intersection

(01) Begin

(02) Goodpoints_r ← Sort the RBF values Yrbf and find the correspond-

ing points

(03) Goodpoints_k ← Sort the Kriging values Ykrg and find the corre-

sponding points

(04) Num_rank2 ← Define the number of the selected good points.

(05) Goodpoints_r_inter ←Goodpoints_r (1: Num_rank2, :)

FIGURE 6.2 Graphic demonstration of Ackley function.

HSOSR ◾ 151

(06) Goodpoints_k_inter ←Goodpoints_k (1: Num_rank2, :)

(07) for i ← 1 to Num_rank2

(08) for j ← 1 to Num_rank2

(09) Error ← Get the error of | Goodpoints_r_inter(i, :)-

Goodpoints_k_inter(j, :) |

(10) if Error is small enough

(11) Record i and j

(12) end if

(13) end for

(14) end for

(15) Points_intersection ← Select the points that have good performance

on both Kriging and RBF.

(16) for i ← 1 to D

(17) Range_intersection_lb(i) ← Min(Points_intersection(:, i))

(18) Range_intersection_ub(i) ← Max(Points_intersection(:, i))

(19) end for

(20) Range_intersection ← Get the range [Range_intersection_lb;

Range_intersection_ub]

ith dimension.

(21) End

6.2.2.2 Multi-Start Optimization on Kriging and RBF

As Figures 6.1 and 6.2 show, surrogate models like Kriging and RBF, always

produce multiple approximate local optima, especially for highly nonlin-

ear multimodal problems. Some of these local optima are in the neigh-

borhood of the true local or global optimal solutions but some are not.

Compared with traditional global optimization algorithms, like genetic

algorithm or particle swarm optimization, multi-start optimization can

capture multiple local optima from surrogate models more easily. On one

hand, supplementing multiple sample points in each cycle can improve

the algorithm’s parallelism. On the other hand, multi-start optimization

can increase the probability of successfully capturing the global optimum.

In each iteration, HSOSR utilizes Latin hypercube sampling (LHS) to

generate several starting points, where the local optimizer–sequential

quadratic programming (SQP) is employed to perform optimization

search. Considering the demand for sample diversity, two different dis-

tance values are defined to select new samples alternately. The multi-start

optimization exploration is carried out in the subspaces of the Kriging

152 ◾ Data-Driven Global Optimization Methods and Applications

and RBF models, respectively. Then, all the to-be-supplemented samples

are collected and added to a database for further selection. HSOSR prom-

ises that the final supplementary samples should keep a distance between

each other. Once the algorithm gets trapped in a local optimal region, a

proposed strategy begins to explore the sparsely sampled area. The specific

pseudo code is listed in Algorithm 6.2.

Algorithm 6.2(a) Exploitation on Surrogates

(01) Begin

(02) if the remainder of (iteration/3)== 0

(03) dis ← ∆1*sqrt(range_legnth(1)^2+ range_legnth(2)^2). Here,

range_length denotes the length vector of the design range (1e-3)

(04) else

(05) dis ← ∆2*sqrt(range_legnth(1)^2+ range_legnth(2)^2).(1e-6)

(06) end if

(07) Gn ← If D (Dimension) is smaller than 7, the number is 5D.

Otherwise, the number is 2D

(08) M ← Call Latin Hypercube Sampling to get Gn starting points in

the defined subspace.

(09) for i=1: Gn

(10) S_rbf ← Call SQP to perform optimization search at the ith

starting points M(i) on RBF. Save the obtained local optimal

solution in the defined subspace.

(11) end for

(12) S_rbf_select ← Select the better samples from S_rbf and guarantee

that the selected sample points keep a distance (bigger than dis)

between the existing samples.

(13) for i=1: Gn

(14) S_Kriging ← Call SQP to perform optimization search at the ith

starting points M(i) on Kriging. Save the obtained local optimal

solution in the defined subspace.

(15) end for

(16) S_krg_select ← Select the better samples from S_Kriging and guar-

antee that the selected sample points keep a distance dis between

the existing samples.

(17) S_new ← [S_rbf_select; S_krg_select]

(18) End

HSOSR ◾ 153

In Algorithm 6.2(a), a distance dis is provided to make samples have the

diversity. When iteration is the multiple of 3, the coefficient of dis is ∆1.

Otherwise, the coefficient is defined as ∆2. In the subsequent tests, ∆1 is

1e-3 and ∆2 is 1e-6. In the loop, different sizes of dis affect the selection

of samples from the predicted sets S_rbf and S_Kriging. The larger the

parameter dis is, the more rigorous the selection will be. Eventually, the

selected promising samples from Kriging and RBF are gathered into a

sample set S_new.

When dis gets larger (Employ ∆1), multi-start optimization some-

times may hardly find a satisfactory solution from Kriging and RBF,

which makes S_new empty. Sometimes, the algorithm may get stuck

near a local valley, and the present best value cannot be improved for

multiple iterations. Once the above-mentioned cases happen, Algorithm

6.2(b) is activated to explore the sparsely sampled area. Since the esti-

mated MSE of Kriging has the maxima at the sparsest area as Figure 6.3

shows, the proposed multi-start optimization is employed to get the

updating samples in a randomly generated range. Figure 6.4 shows the

captured new samples located in the sparse area. Algorithm 6.2(b) is

shown below.

FIGURE 6.3 MSE of Kriging.

154 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 6.4 Samples updating by maximizing MSE.

Algorithm 6.2(b) Exploration of Sparsely Sampled Area

(01) Begin

(02) if S_new is empty or the present best value does not change remark-

ably for continuous 10 iterations.

(03) w ← Generate a random value between 0 to 1.

(04) lbmse ← (range_lb+range_ub)/2-w(range_ub-(range_lb+range_

ub)/2).

(05) ubmse ← (range_lb+range_ub)/2+w(range_ub-(range_lb+

range_ub)/2).

(06) range_mse ← [lbmse;ubmse]

(07) M_mse ← Call Latin Hypercube Sampling to get Gn starting

points in the defined range_mse.

(08) for i=1: Gn

(09) S_mse ← Call SQP to perform optimization search at the ith

starting points M_mse(i) on the MSE function of Kriging. Save

the samples with local maximal MSE values in range_mse.

HSOSR ◾ 155

(10) end for

(11) S_new ← [S_new; S_mse].

(12) end if

(13) S_new_checked ← Check the repeated points in S_new and delete

them.

(14) END

6.2.2.3 Optimization Flow

The whole optimization process is shown in Figure 6.5, where “Exploitation”

and “Exploration” affect each other and jointly search the global optimum.

The termination criterion is proposed for the subsequent comparison tests

as below,

1% 300, 0 8

1% 500, 0 8

0.001 300, 0 8

0.001 500, 0 8

−
≤ > ≠ <

−
≤ > ≠ ≥

< > == <

< > == ≥

















dim

dim

dim

dim

y y

y
or NFE if y and

y y

y
or NFE if y and

y or NFE if y and

y or NFE if y and

optimal best

optimal

optimal

optimal best

optimal

optimal

best optimal

best optimal

(6.4)

where ybest is the present best value. yoptimal is the true optimal value. NFE is

the number of function evaluations and dim refers to the dimension.

6.3 COMPARISON EXPERIMENTS

In order to verify the efficiency and robustness of the algorithms, 15 rep-

resentative benchmark functions are given in this chapter for compara-

tive testing, including ten low-dimensional problems (Ack, GW, Peak, ST,

AP, F1, HM, GF, Levy, HN6) and five high-dimensional problems (Schw3,

Trid, Sums, Sphere, F16). It is worth noting that most of the benchmark

algorithms are highly nonlinear problems.

In contrast, five methods, including EGO, CAND, HAM, MKRG, and

MRBF, are employed in this chapter. Among them, EGO is a Kriging-based

global optimization algorithm which captures new samples by maxi-

mizing the EI function. CAND originally comes from a stochastic RBF

algorithm presented by Regis and Shoemaker (2007) and is currently

implemented by Müller’s surrogate toolbox in this work. HAM is a hybrid

156 ◾ Data-Driven Global Optimization Methods and Applications

meta-model-based method using three surrogates to predict the global

optimum, which has a robust performance in most mathematical cases.

MKRG and MRBF have the same idea as HSOSR, except that MKRG and

MRBF just use their predictive information (One from Kriging and the

other from RBF) and explore the global design space. Figure 6.6 shows

the iterative results of the six algorithms on all the above-mentioned cases

FIGURE 6.5 Flowchart of HSOSR.

HSOSR ◾ 157

FIGURE 6.6 Iteration diagram of the six algorithms on 15 cases.
(Continued)

158 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 6.6 (Continued) Iteration diagram of the six algorithms on 15 cases.

HSOSR ◾ 159

within 300 function evaluations. It is worth mentioning that most cases

have clearer subgraphs to describe the convergent parts. Since most of

these test cases are multimodal problems, it is easy for an algorithm to get

stuck in a local valley. As Figure 6.6a shows, CAND, HSOSR, and MRBF

get closer to the true target, but EGO, HAM, and MKRG get stuck in some

local optimal regions. It also can be seen from Figure 6.6c, e, h, and j that

HAM has the worst performance and cannot jump out of a local region

within 300 function evaluations. From Figure 6.6a, g, i, and l, it can be

found that EGO has difficulty in dealing with Ackley, Him, Levy, and Trid.

Besides, CAND performs worse on higher-dimensional problems (HN6,

Schw3, Trid, Sums, F16, and Sphere). Although MKRG decreases slowly

at the beginning as Figure 6.6c, i, j, l, and n show, it can go close to the

target values at last. Intuitively, HSOSR and MRBF are relatively efficient.

In most cases, HSOSR and MRBF can quickly find the global optima.

However, MRBF has a slower convergence speed compared with HSOSR

in Figure 6.6b, e, f, and i–k. In summary, Figure 6.6 provides a prelimi-

nary comparison of the six algorithms on iterative results. On one hand,

Figure 6.6 shows the convergence abilities of these different algorithms.

On the other hand, it proves that HSOSR is more efficient than others on

these benchmark cases.

Since the stochastic nature of the six algorithms, ten tests are repeated

on all the cases. Equation (6.4) is employed as the termination crite-

rion in this test. Besides, since EGO spends much execution time on

higher-dimensional problems, the allowable NFE in Eq. (6.4) is defined as

300 for the high-dimensional cases. Tables 6.1 and 6.3 show the mean NFE

and final best values of the six algorithms. Tables 6.2 and 6.4 list the statis-

tical results of NFE. NFE refers to the number of function evaluations. The

best results in Tables 6.1–6.4 are flagged with boldface. In Tables 6.2 and

6.4, Min, Median and Max represent the minimum NFE, median NFE,

and maximum NFE, respectively. In the four tables, the results with the

symbol “>” indicate that at least one test cannot find target values within

a defined NFE. Besides, the numbers in brackets reflect the failure times.

From Tables 6.1–6.4, it can be found that MKRG, MRBF, HAM, EGO,

and CAND have several failure times on low-dimensional multimodal

problems. Since HAM does not have a strategy that makes the search jump

out of a local region, it performs the worst on multimodal problems. As per

the previous discussion, Ackley possesses a lot of local optimal solutions.

MKRG, EGO, and HAM can hardly find a value below 0.001 on Ackley

within 300 function evaluations. Similarly, MKRG, MRBF, EGO, and HAM

160 ◾ Data-Driven Global Optimization Methods and Applications

also have difficulty in dealing with Levy. Intuitively, HSOSR has the most

robust performance on all the low-dimensional problems. Furthermore,

HSOSR can use fewer function evaluations to get the target values.

For high-dimensional tests, it is difficult for MKRG, HAM, EGO, and

CAND to perform well on Schw3, Trid10, Sums, and Sphere. However,

MKRG, HAM, and CAND can efficiently get the target value on F16. Both

HSOSR and MRBF can solve high-dimensional cases well, but HSOSR

uses fewer NFE than MRBF on Schw3 and Trid10. Moreover, HSOSR finds

a satisfactory solution on F16 just using about 69 function evaluations.

TABLE 6.1 Mean NFE and Final Best Values of HSOSR, MKRG and MRBF

Func.

HSOSR MKRG MRBF

NFE Best Value NFE Best Value NFE Best Value

Ackley 139 [1.18e-4,

9.43e-4]

>300 [0.067,
4.331]

>131 [3.91e-5,
2.580]

GW 90 [1.37e-7,

5.57e-4]

133.2 [9.42e-7,
4.45e-4]

149.4 [4.65e-5,
7.46e-4]

Peaks 30.3 [−6.551,

−6.491]

36.2 [−6.548,
−6.512]

85 [−6.547,
−6.487]

ST 38.4 [−78.329,
−77.599]

30.1 [−78.332,
−77.679]

30.2 [−78.173,
−77.585]

Alp 19.2 [−6.128,

−6.074]

35.4 [−6.129,
−6.076]

40.3 [−6.119,
−6.079]

F1 136.7 [−2.000,
−1.993]

>161.5 [−2.000,
−1.879]

>186.1 [−1.999,
−1.879]

Him 30.4 [5.96e-6,

7.02e-4]

>142.6 [8.62e-7,
1.23e-2]

50.6 [5.02e-4,
9.13e-4]

GF 52.4 [0.524,
0.527]

30.4 [0.523,
0.528]

>148.4 [0.525,
0.678]

Levy 190.6 [4.91e-4,

9.60e-4]

>278.7 [3.95e-4,
1.951]

>230.6 [7.97e-4,
3.090]

HN6 52.6 [−3.313,

−3.291]

103.8 [−3.315,
−3.289]

92.5 [−3.306,
−3.290]

Schw3 299.8 [5.26e-4,

9.84e-4]

>500 [0.075,
1.823]

>402 [7.67e-4,
2.83e-3]

Trid10 169.9 [−208.785,

−207.92]

171.3 [−208.949,
−207.911]

292.6 [−208.336,
−207.906]

Sums 304.6 [5.61e-4,

9.96e-4]

>500 [0.018,
0.059]

315 [5.18e-4,
9.91e-4]

F16 69 [26.016,

26.133]

174.6 [26.002,
26.128]

71.5 [25.927,
26.129]

Sphere 124.5 [5.32e-4,
9.41e-4]

>500 [8.08e-3,
5.84e-2]

111.7 [5.70e-4,

9.42e-4]

HSOSR ◾ 161

TABLE 6.2 Statistical NFE of HSOSR, MKRG and MRBF

Func.

HSOSR MKRG MRBF

Min Median Max Min Median Max Min Median Max

Ackley 88 113.5 245 >300 >300 >300(10) 94 112.5 >300(1)

GW 28 93 193 62 150 205 38 162 243

Peaks 16 24 59 20 35 56 20 68 247

ST 16 33 86 16 28 52 12 28 68

Alp 10 20 22 19 34 62 17 35 97

F1 92 131 223 98 159.5 >300(1) 53 196 >300(2)

Him 27 30.5 36 28 98.5 >300(2) 30 46.5 79

GF 27 54 82 16 30 53 25 119.5 >300(2)

Levy 95 187.5 299 203 >300 >300(7) 82 >300 >300(6)

HN6 37 52 72 60 106.5 129 42 75 211

Schw3 218 281 464 >500 >500 >500(10) 283 422.5 >500(3)

Trid10 115 163 237 145 161 246 208 291 397

Sums 242 311 336 >500 >500 >500(10) 234 303.5 426

F16 60 68 80 113 164 299 61 70 85

Sphere 106 119.5 149 >500 >500 >500(10) 101 112.5 132

TABLE 6.3 Mean NFE and Final Best Values of HAM, EGO and CAND

Func.

HAM EGO CAND

NFE Best Value NFE Best Value NFE Best Value

Ackley >300 [2.78e-3,
1.664]

>300 [0.037,
0.503]

>241.9 [7.49e-4,
2.24e-3]

GW >164.8 [3.10e-5,
7.40e-3]

97.4 [1.42e-6,
7.73e-4]

>205.3 [1.57e-4,
7.40e-3]

Peaks >113 [−6.551,
−3.050]

31.5 [−6.551,
−6.518]

35.3 [−6.550,
−6.494]

ST >71.3 [−78.325,
−64.196]

33.5 [−78.332,
−77.803]

27.2 [−78.252,

−77.555]

Alp >53.6 [−6.128,
−2.854]

23.5 [−6.126,
−6.073]

26.8 [−6.124,
−6.080]

F1 85.5 [−2.000,
−1.983]

73.7 [−2.000,

−1.986]

>226.3 [−1.999,
−1.879]

Him 76.2 [7.70e-6,
7.99e-4]

>112.2 [1.78e-4,
7.39e-3]

82.8 [1.91e-5,
9.94e-4]

GF >164.9 [0.524,
1.079]

>136.9 [0.523,
0.550]

25.9 [0.523,

0.528]

Levy >263 [2.15e-4,
7.10e-2]

>300 [0.016,
0.413]

224.1 [3.55e-4,
9.92e-4]

(Continued)

162 ◾ Data-Driven Global Optimization Methods and Applications

As a summary of Tables 6.1–6.4, Table 6.5 shows the total NFE mean

(TNM) values, failure times, success rates, relative improvements of com-

putational efficiency (RICE) and relative improvements of success rates

(RISR) in all the cases. Importantly, RICE and RISR reflect the improved

levels of HSOSR than the other five methods. To sum up, HSOSR is a

promising global optimization algorithm for EBPs.

TABLE 6.4 Statistical NFE of HAM, EGO and CAND

Func.

HAM EGO CAND

Min Median Max Min Median Max Min Median Max

Ackley >300 >300 >300(10) >300 >300 >300(10) 94 >290.5 >300(5)

GW 27 112.5 >300(4) 32 100 137 117 199.5 >300(2)

Peaks 22 43.5 >300(2) 20 30 45 18 28 60

ST 21 39.5 >300(1) 13 30 83 17 29 38

Alp 14 24 >300(1) 11 23 38 17 19 49

F1 27 66.5 205 25 57.5 166 90 234.5 >300(2)

Him 44 65.5 185 30 32.5 >300(3) 52 79.5 129

GF 63 122 >300(3) 22 58 >300(3) 17 24 40

Levy 115 >300 >300(7) >300 >300 >300(10) 157 223 278

HN6 48 88 >300(3) 38 46 >300(1) 52 79 >300(4)

Schw3 >500 >500 >500(10) >300 >300 >300(10) >500 >500 >500(10)

Trid10 >500 >500 >500(10) >300 >300 >300(10) 439 >500 >500(9)

Sums >500 >500 >500(10) >300 >300 >300(10) >500 >500 >500(10)

F16 160 343.5 >500(4) 192 >300 >300(8) 182 193 259

Sphere >500 >500 >500(10) >300 >300 >300(10) >500 >500 >500(10)

TABLE 6.3 (Continued) Mean NFE and Final Best Values of HAM, EGO and CAND

Func.

HAM EGO CAND

NFE Best Value NFE Best Value NFE Best Value

HN6 >144.4 [−3.317,
−3.176]

>82 [−3.310,
−3.202]

>157.8 [−3.314,
−3.137]

Schw3 >500 [0.144,
2.693]

>300 [0.422,
2.127]

>500 [0.036,
0.447]

Trid10 >500 [−161.737,
26.035]

>300 [−29.129,
−18.946]

>493.9 [−207.901,
91.161]

Sums >500 [1.45e-3,
3.191]

>300 [1.256,
6.426]

>500 [0.027,
0.347]

F16 >351.5 [26.109,
26.651]

>283.2 [25.994,
26.527]

205 [26.042,
26.129]

Sphere >500 [5.80e-3,
0.414]

>300 [2.495,
9.393]

>500 [3.45e-3,
2.37e-2]

HSOSR ◾ 163

6.4 CHAPTER SUMMARY

In this chapter, an SBGO algorithm HSOSR is presented, which can solve

expensive black-box optimization problems. HSOSR constructs RBF and

Kriging models to approximate the true expensive problems, respectively.

In each iteration, a group of samples is employed to get the predictive

values from RBF and Kriging. Two promising regions from Kriging and

RBF are identified by these predictive values. Considering the relations

between the two promising regions, two reduced subspaces are created.

Furthermore, the optimization search begins to run in the two subspaces

alternately. Since RBF and Kriging models can always generate multiple

predictive optimal locations, a multi-start optimization algorithm is pro-

posed to find them as supplementary samples. The multi-start optimiza-

tion search promises that the new samples keep a defined distance from

the obtained samples. For the diversity of samples, two different sizes of

distance are suggested in this chapter. Once HSOSR gets stuck in a local

region, the multi-start optimization algorithm will be run on the esti-

mated mean square error of Kriging to explore the sparsely sampled area.

In order to verify the efficiency and robustness of HSOSR, ten

low-dimensional multimodal functions and five high-dimensional func-

tions are tested, and five other algorithms are employed as contrast refer-

ences. The results show the powerful capacity of HSOSR in dealing with

expensive black-box optimization problems. Compared with other classi-

cal algorithms, HSOSR can use fewer function evaluations to get close to

the true global optimal values.

NOTE

 1 Based on “Hybrid Surrogate-based Optimization using Space Reduction
(HSOSR) for Expensive Black-box Functions,” published in [Applied Soft
Computing], [2018]. Permission obtained from [Elsevier].

TABLE 6.5 Summary of the Final Results

Algorithm TNM Failure Times Success Rate RICE RISR

HSOSR 1,747.4 0 100% — —

MKRG >3,097.8 50 66.67% >77.28%↑ 50%↑

MRBF >2,336.9 14 90.67% >33.74%↑ 10.29%↑

HAM >3,788.2 75 50% >116.79%↑ 100%↑

EGO >2,673.9 75 50% >53.02%↑ 100%↑

CAND >3,452.3 52 65.33% >97.57%↑ 53.07%↑

164 ◾ Data-Driven Global Optimization Methods and Applications

REFERENCES

Craven, R., Graham, D., & Dalzel-Job, J. (2016). Conceptual Design of a Composite
Pressure Hull. Ocean Engineering, 128, 153–162. https://doi.org/10.1016/
j.oceaneng.2016.10.031

Dyn, N., Levin, D., & Rippa, S. (1986). Numerical Procedures for Surface Fitting of
Scattered Data by Radial Functions. Siam Journal on Scientific and Statistical
Computing, 7(2), 639–659. https://doi.org/10.1137/0907043

Forrester, A. I. J., & Keane, A. J. (2009). Recent Advances in Surrogate-Based
Optimization. Progress in Aerospace Sciences, 45(1–3), 50–79. https://doi.
org/10.1016/j.paerosci.2008.11.001

Gu, J., Li, G. Y., & Dong, Z. (2012). Hybrid and Adaptive Meta-Model-Based
Global Optimization. Engineering Optimization, 44(1), 87–104. https://doi.
org/10.1080/0305215x.2011.564768

Gutmann, H. M. (2001). A Radial Basis Function Method for Global
Optimization. Journal of Global Optimization, 19(3), 201–227. https://doi.
org/10.1023/a:1011255519438

Hardy, R. L. (1971). Multiquadric Equations of Topography and Other Irregular
Surfaces. Journal of Geophysical Research, 76(8), 1905–+. https://doi.
org/10.1029/JB076i008p01905

Kleijnen, J. P. C. (2009). Kriging Metamodeling in Simulation: A Review. European
Journal of Operational Research, 192(3), 707–716. https://doi.org/10.1016/
j.ejor.2007.10.013

Li, Y., Wu, Y., Zhao, J., & Chen, L. (2017). A Kriging-Based Constrained Global
Optimization Algorithm for Expensive Black-Box Functions with Infeasible
Initial Points. Journal of Global Optimization, 67(1–2), 343–366. https://doi.
org/10.1007/s10898-016-0455-z

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in
Engineering Software (pp. 46–61).

Myers, R. H., Montgomery, D. C., Vining, G. G., Borror, C. M., & Kowalski, S.
M. (2004). Response Surface Methodology: A Retrospective and Literature
Survey. Journal of Quality Technology, 36(1), 53–77. https://doi.org/10.1080/
00224065.2004.11980252

Ong, Y. S., Nair, P. B., & Keane, A. J. (2003). Evolutionary Optimization of
Computationally Expensive Problems via Surrogate Modeling. Aiaa Journal,
41(4), 687–696. https://doi.org/10.2514/2.1999

Park, J., & Kim, K.-Y. (2017). Meta-Modeling Using Generalized Regression
Neural Network and Particle Swarm Optimization. Applied Soft Computing,
51, 354–369. https://doi.org/10.1016/j.asoc.2016.11.029

Queipo, N. V., Haftka, R. T., Shyy, W., Goel, T., Vaidyanathan, R., & Tucker, P. K.
(2005). Surrogate-Based Analysis and Optimization. Progress in Aerospace
Sciences, 41(1), 1–28.

Regis, R. G., & Shoemaker, C. A. (2007). A Stochastic Radial Basis Function
Method for the Global Optimization of Expensive Functions. Informs Journal
on Computing, 19(4), 497–509. https://doi.org/10.1287/ijoc.1060.0182

https://doi.org/10.1080/00224065.2004.11980252
https://doi.org/10.1080/00224065.2004.11980252
https://doi.org/10.2514/2.1999
https://doi.org/10.1137/0907043
https://doi.org/10.1016/j.ejor.2007.10.013
https://doi.org/10.1016/j.ejor.2007.10.013
https://doi.org/10.1016/j.oceaneng.2016.10.031
https://doi.org/10.1016/j.oceaneng.2016.10.031
https://doi.org/10.1016/j.asoc.2016.11.029
https://doi.org/10.1287/ijoc.1060.0182
http://doi.org/10.1016/j.paerosci.2008.11.001
http://doi.org/10.1016/j.paerosci.2008.11.001
http://doi.org/10.1080/0305215x.2011.564768
http://doi.org/10.1080/0305215x.2011.564768
http://doi.org/10.1023/a:1011255519438
http://doi.org/10.1023/a:1011255519438
http://doi.org/10.1029/JB076i008p01905
http://doi.org/10.1029/JB076i008p01905
http://doi.org/10.1007/s10898-016-0455-z
http://doi.org/10.1007/s10898-016-0455-z

HSOSR ◾ 165

Tang, Y., Chen, J., & Wei, J. (2013). A Surrogate-Based Particle Swarm Optimization
Algorithm for Solving Optimization Problems with Expensive Black Box
Functions. Engineering Optimization, 45(5), 557–576. https://doi.org/10.1080/
0305215x.2012.690759

Viana, F. A. C., Haftka, R. T., & Watson, L. T. (2013). Efficient Global Optimization
Algorithm Assisted by Multiple Surrogate Techniques. Journal of Global
Optimization, 56(2), 669–689. https://doi.org/10.1007/s10898-012-9892-5

Wang, G. G., & Shan, S. (2007). Review of Metamodeling Techniques in Support
of Engineering Design Optimization. Journal of Mechanical Design, 129(4),
370–380. https://doi.org/10.1115/1.2429697

Wild, S. M., Regis, R. G., & Shoemaker, C. A. (2008). ORBIT: Optimization by
Radial Basis Function Interpolation in Trust-Regions. Siam Journal on
Scientific Computing, 30(6), 3197–3219. https://doi.org/10.1137/070691814

Younis, A., & Dong, Z. (2010). Trends, Features, and Tests of Common and Recently
Introduced Global Optimization Methods. Engineering Optimization, 42(8),
691–718. Article Pii 920975372. https://doi.org/10.1080/03052150903386674

Zhou, X. J., Ma, Y. Z., & Li, X. F. (2011). Ensemble of Surrogates with Recursive
Arithmetic Average. Structural and Multidisciplinary Optimization, 44(5),
651–671. https://doi.org/10.1007/s00158-011-0655-6

https://doi.org/10.1080/03052150903386674
https://doi.org/10.1115/1.2429697
https://doi.org/10.1080/0305215x.2012.690759
https://doi.org/10.1080/0305215x.2012.690759
https://doi.org/10.1007/s00158-011-0655-6
https://doi.org/10.1007/s10898-012-9892-5
https://doi.org/10.1137/070691814

166

C H A P T E R 7

MGOSIC

Multi-Surrogate-Based
Global Optimization Using a
Score-Based Infill Criterion1

7.1 INTRODUCTION

Due to rapid development and continuous progress in modern engineer-

ing, optimization design associated with high-fidelity simulation is gain-

ing more attention (Lakshika et al., 2017; Sala et al., 2016; Tyan et al.,

2015; H. Wang et al., 2017; G. Zhou et al., 2017). On one hand, advanced

simulation techniques provide precise analyses for real-world applica-

tions; On the other hand, they also bring enormous computational costs

(Gu et al., 2017; Masters et al., 2017; Singh et al., 2017). Many complex sim-

ulation models are multimodal, black-box and time-consuming, which is

challenging for global optimization.

Commonly, it is difficult for derivative-based optimization methods

to solve expensive black-box optimization problems (EBOPs) (Ong et al.,

2003). This is because large numbers of operations on expensive models

produce a great computational burden, and meanwhile, uncertain error or

noise from simulation codes affects the accuracy of approximate deriva-

tives. Additionally, derivative-based methods overly depend on starting

points and easily get trapped in a local valley of multimodal problems.

Derivative-free optimization algorithms (Jiang et al., 2017; Meng et al.,

2016; Pan, 2012; L. Wang et al., 2017) involving evolutionary computation

DOI: 10.1201/9781003636267-7

https://doi.org/10.1201/9781003636267‑7

MGOSIC ◾ 167

(EC) or swarm intelligence (SI) have developed for several decades, which

can optimize black-box models in parallel. These algorithms like parti-

cle swarm optimization (PSO) (Sun et al., 2013), gray wolf optimization

(GWO), bat algorithm (BA), differential evolution (DE) (Rocca et al., 2011)

and so on, have been widely used in actual applications. Although EC and

SI have remarkable advantages in global optimization, they have to utilize

large numbers of function evaluations to explore the design space, which

is not efficient for EBOPs. An effective approach to address this issue is to

build surrogate models in an optimization process.

Surrogate models, namely meta-models or response surfaces generally

use obtained expensive samples to construct simple mathematical expres-

sions as approximate models of complex problems (Q. Zhou, Y. Wang,

et al., 2017). Commonly used surrogate models such as Kriging, RBF and

QRS can predict function values at the to-be-tested locations (Q. Zhou, P.

Jiang, et al., 2017). Although prediction error is inevitable, surrogate mod-

els can still give useful guidance information for optimization to improve

search efficiency. In general, a complete surrogate-based global optimiza-

tion (SGO) process includes the following steps: (1) Design of experiment

(DOE), that is, an initial sampling process; (2) Construct surrogate models

dynamically in each cycle; (3) Exploit surrogate models to find promis-

ing samples; (4) Explore sparsely sampled regions; (5) Evaluate the exact

function values of obtained new samples; (6) Repeat Steps (2) to (5) until

the termination criterion is met. A key factor or difficult point to develop

an efficient and robust SGO algorithm is how to find a balance between

“Exploitation and Exploration.” “Exploitation” refers to search based on

surrogate models where a local or global optimizer can be employed to

find the predictive best sample for subsequent model updating. Although

optimization efficiency is improved, pure “Exploitation” may make the

above search get stuck in a local valley. “Exploration” denotes search in

sparsely sampled areas, which can make an algorithm jump out of local

regions and continue looking for the global optimum.

Due to the wide existence of EBOPs in various fields, SGO has attracted

a lot of attention. Jones et al. (1998) developed an efficient global optimi-

zation (EGO) algorithm, which maximizes an “Expected Improvement”

criterion to capture the promising expensive samples. Gutmann (2001)

introduced a distinctive SGO strategy that includes two steps: (1) Assume

a target value for the true global optimum; (2) Select the next sample

(combined with the target value) that will cause the least “bumpiness” of

168 ◾ Data-Driven Global Optimization Methods and Applications

surrogate models. Wang et al. (2004) presented a mode-pursuing sampling

method for SGO, which can generate more samples around the function

mode and meanwhile detect the regions possibly containing the global

minimum based on QRS. Regis and Shoemaker (2007) proposed a sto-

chastic response surface method that can select a supplementary sample

from a set of candidate points in each cycle by RBF approximation. Younis

and Dong (2010) presented a region elimination algorithm that identifies

several key unimodal regions to speed up the local search. Although most

of the above-mentioned methods have better global convergence capabil-

ities, they have lower sampling efficiency in each cycle. In other words,

these algorithms do not possess strong parallel capabilities.

Therefore, some scholars have begun to pay attention to both

the total computation cost and the iterative efficiency (parallelism) in SGO

 algorithms (Cai et al., 2017). Ong et al. (2003) developed a parallel

SGO algorithm that combines a proposed hybrid optimizer with RBF. On

the one hand, the hybrid optimizer utilizes an evolutionary algorithm to

do global search; On the other hand, it employs the sequential quadratic

programming algorithm to realize local search on RBF. Importantly, the

parallelism of traditional evolutionary algorithms is retained in their

method. Gu et al. (2017) presented a hybrid and adaptive SGO algorithm,

HAM, that simultaneously uses Kriging, RBF and QRS to create several

sets for parallel sampling. According to the importance of these sets, the

number of to-be-selected samples in each set is different. The points that all

three surrogate models approve will have a bigger opportunity to be sam-

pled. In order to supplement multiple samples in each cycle, Viana et al.

(2013) developed a multi-surrogate EGO (MSEGO) algorithm. Instead

of using one single surrogate model Kriging, MSEGO maximizes the

“Expected Improvement” criterion over multiple surrogates. Krityakierne

et al. (2016) provided a multi-point SGO strategy that draws lessons from

the idea of multi-objective optimization. One objective is the expensive

function value of a point, and the other one is the minimum distance of

the point to other obtained points. Once the Pareto frontier is obtained,

multiple sample points can be selected by a candidate search strategy. Li

et al. (2016) decomposed the large-scale optimization space into several

subspaces for local exploitation and global exploration, which can avoid

the difficulties in constructing Kriging with a large size of training data.

In addition, a heuristic criterion was proposed to select promising samples

from candidate points obtained in these subspaces per iteration.

MGOSIC ◾ 169

This chapter introduces a new global optimization algorithm named

MGOSIC to solve unconstrained EBOPs. In MGOSIC, three surrogate

models, Kriging, radial basis function (RBF) and quadratic response sur-

faces (QRS) are dynamically constructed, respectively. Additionally, a

multi-point infill criterion is proposed to obtain new points in each cycle,

where a score-based strategy is presented to mark cheap points generated

by Latin hypercube sampling. According to their predictive values from

the three surrogate models, the promising cheap points are assigned with

different scores. In order to obtain the samples with diversity, a max–min

approach is proposed to select promising sample points from the cheap

point sets with higher scores. Simultaneously, the best solutions predicted

by Kriging, RBF and QRS are also recorded as supplementary samples,

respectively. Once MGOSIC gets stuck in a local valley, the estimated mean

square error of Kriging will be maximized to explore the sparsely sampled

regions. Moreover, the whole optimization algorithm is carried out alter-

nately in the global space and a reduced space. In summary, MGOSIC not

only brings a new idea for multi-point sampling but also builds a reason-

able balance between exploitation and exploration.

7.2 ALGORITHM FLOW

In this section, the proposed algorithm flow is provided. Before MGOSIC

begins, an initialization process is required for the algorithm parameters

like design ranges, internal parameters of surrogate models, termination

variables, target values and so on. Subsequently, the specific algorithm

steps are summarized as follows.

• Step 1 Utilize optimized Latin hypercube sampling (OLHS) (Jin

et al., 2005) to identify initial sample points in the original design

range and then evaluate their exact sample values.

• Step 2 Create a database to save these expensive samples. Besides,

sort all the samples by their expensive function values.

• Step 3 Construct Kriging, RBF and QRS models based on the sam-

ples in the database, respectively.

Figure 7.1 shows a specific example to demonstrate Steps 1 to 3.

The employed function is called Himmelblau, which is a multimodal

problem. Kriging and RBF can capture the nonlinear feature of

Himmelblau, while QRS can just identify a general trend.

170 ◾ Data-Driven Global Optimization Methods and Applications

• Step 4 Create a reduced subspace around the present best solution to

speed up the local convergence.

1,2, ,

,



()

()

= − ⋅ −

= + ⋅ −

<

←

>

←

∀ =

=  

Lb S w Ub Lb

Ub S w Ub Lb

if Lb Lb

then Lb Lb

if Ub Ub

then Ub Ub

i d

Subspace Lb Ub

i
Sub

i
best

i
Range

i
Range

i
Sub

i
best

i
Range

i
Range

i
Sub

i
Range

i
Sub

i
Range

i
Sub

i
Range

i
Sub

i
Range

i i
Sub

i
Sub

 (7.1)

FIGURE 7.1 Construction of surrogate models.

MGOSIC ◾ 171

where Si
best is the present best solution, Lbi

Range and Ubi
Range are the

lower and upper bounds of the original design space, and Lbi
Sub and

Ubi
Sub are the bounds of the new subspace. In Eq. (7.1), w is a weight

coefficient that determines the size of this subspace. In this chapter,

w is set as 0.1.

• Step 5 Determine which space, the subspace or global space, will be

regarded as the search space in accordance with the present num-

ber of iterations. Define the numbers of the total cheap points (N1

and N2), and the numbers of promising samples (M1 and M2) in

the subspace and global space, respectively. In the subsequent tests,

N1 = 10,000 and N2 = 1,000, M1 = 100 and M2 = 500.

• Step 6 Judge whether MGOSIC has got stuck in a local valley. If so,

the samples with bigger MSE values of Kriging will be chosen to

explore the sparsely sampled area. In the subsequent sections, more

details will be provided.

• Step 7 Evaluate Kriging, RBF and QRS values at all the N cheap sam-

ple points and select the top M samples from the three groups of

results, respectively. The points that are located in the top M samples

of all three surrogate models have a score of 3, and those located in

the top M samples of two surrogate models have a score of 2.

• Step 8 Firstly, save the predictive optimal points from Kriging, RBF

and QRS, respectively. Furthermore, select K1 and K2 promising solu-

tions from the point sets with scores 2 and 3, respectively. All these

points will be used to update the previous database. More details

about Steps 7 and 8 will be shown in the following section.

• Step 9 Delete repeated samples to avoid unnecessary computation.

• Step 10 Evaluate expensive function values at the newly added sam-

ple points and sort them. Repeat Steps 2 to 10 until a termination

criterion is satisfied.

For better readability, a flowchart of MGOSIC is shown in Figure 7.2. The

termination criterion for the subsequent test is suggested as follows.

2, , 500

2, , 300

> ≤ >

≤ ≤ >







dim arg

dim arg

if then y t et or NFE

if then y t et or NFE

best

best

 (7.2)

172 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 7.2 Flowchart of MGOSIC.

where NFE denotes the number of function evaluations, target refers

to target values of expensive black-box problems, and dim represents

dimensions.

7.3 MULTI-POINT INFILL CRITERION

Before introducing this proposed infilling criterion, we will give an exam-

ple to make it easier to understand. Assume that there is a businessman

who has no idea about how to choose rabbits but wants to buy ten better

MGOSIC ◾ 173

ones from 1,000 rabbits. Besides, there are three experienced experts, each

of whom can recommend 100 better rabbits for the businessman based on

their respective opinions. Under this circumstance, firstly, the business-

man should buy the best ones that are recommended by the three experts,

respectively; Secondly, the businessman should identify which ones from

the 300 rabbits are recommended by all three experts, two experts and one

expert. Naturally, the businessman will select more rabbits that are jointly

recommended by more experts.

Intuitively, Kriging, RBF and QRS are three experienced experts who

can guide an optimization process, MGOSIC is the businessman and sam-

ple points are those rabbits. The total number of cheap points is N and the

number of recommended sample points is M. In this proposed infilling

criterion, three best solutions are first selected based on the three surrogate

models. The specific formulas are summarized below.

, , , , , ,

, , , , , ,

, , , , , ,

, , , ,

, , , ,

, , , ,

,

, ,

1
1

2
1 1 1 1 1

1
2

2
2 2 2 2 2

1 2

1

1

1

1
1

2
1 1 1

1
2

2
2 2 2

1 2

⋯

⋯

⋮ ⋮ ⋱ ⋮ ⋮

⋯

⋯

⋯

⋮ ⋮ ⋱ ⋮

⋯

{ }























⇒

⇒

⇒

⇒













=





















∈

S

S

S

S S S Y Y Y

S S S Y Y Y

S S S Y Y Y

Matrix

Matrix

Matrix

Matrix

S S S Y

S S S Y

S S S Y

sm krg rbf qrs

d krg rbf qrs

d krg rbf qrs

N N
d
N

krg
N

rbf
N

qrs
N

krg
topM

krg
rank

rbf
topM

rbf
rank

qrs
topM

qrs
rank

sm
topM

sm
rank

sm
rank

smd
rank

sm
rank

sm
rank

sm
rank

smd
rank

sm
rank

sm
rankM

sm
rankM

smd
rankM

sm
rankM

 (7.3)

where Ykrg
ranki, Yrbf

ranki and Yqrs
ranki are the ith ranked predictive values from

Kriging, RBF and QRS, respectively. Besides, 1Skrg
rank , 1Srbf

rank and 1Sqrs
rank are

the best solutions obtained from the three surrogate models. In order to

improve the search accuracy, 1Skrg
rank , 1Srbf

rank and 1Sqrs
rank can be obtained from

the three surrogate models by a global optimizer. In this chapter, the GWO

is employed to get them.

Subsequently, MGOSIC fuses the sample points from Matrixkrg
topM,

Matrixrbf
topM and Matrixqrs

topM into one big matrix, in which generally there are

multiple groups of repeated sample points. A scoring strategy is proposed

below.

174 ◾ Data-Driven Global Optimization Methods and Applications

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

, , ,

1
1

2
1 1

1 2

1
1

2
1 1

1 2

1
1

2
1 1

1 2

1
3

2
3

1
3

1
2

2
2

2
2

1
1

2
1

3
1

S S S

S S S

S S S

S S S

S S S

S S S

Appear three times

Appear twice

Appear once

krg
rank

krg
rank

krgd
rank

krg
rankM

krg
rankM

krgd
rankM

rbf
rank

rbf
rank

rbfd
rank

rbf
rankM

rbf
rankM

rbfd
rankM

qrs
rank

qrs
rank

qrsd
rank

qrs
rankM

qrs
rankM

qrsd
rankM

Score Score
k
Score

Score Score
k
Score

Score Score
k
Score

⋯

⋮ ⋮ ⋯ ⋮

⋯

⋯

⋮ ⋮ ⋯ ⋮

⋯

⋯

⋮ ⋮ ⋯ ⋮

⋯

⋯

⋯

⋯

{ }

{ }

{ }







































⇒

⇔

⇔

⇔













S S S

S S S

S S S

 (7.4)

In the big matrix, scores of these points equal the number of their occur-

rences. k1, k2 and k3 represent the number of sample points in the three

sets. The specific pseudo code about the proposed scoring strategy is sum-

marized below.

Algorithm 7.1 Scoring Mechanism

(01) Begin

(02) S_hybrid ← Skrg
topM,Srbf

topMand Sqrs
topM

(03) m ← Calculate the total number of sample points in S_hybrid.

(04) Score ← Define a unit vector with the length m.

(05) Z ← Define an empty logical variable.

(06) for i ← 1 to m−1

(07) for j ← i+1 to m

(08) Z ←S_hybrid (i, :)== S_hybrid (j, :).

(09) Ztemp ←True value 1.

(10) for k ← 1 to d

(11) Ztemp ←Ztemp && Z(k)

(12) end for

MGOSIC ◾ 175

(13) if Ztemp == 1

(14) Score(i) ← Score(i)+1;

(15) Score(j) ← Score(j)+1;

(16) end if

(17) end for

(18) end for

(19) Sscore3 ← Delete repeated points in S_hybrid ((Score==3), :) and save

them.

(20) Sscore2 ← Delete repeated points in S_hybrid ((Score==2), :) and save

them.

(21) Sscore1 ← Delete repeated points in S_hybrid ((Score==1), :) and save

them.

(22) End

Figure 7.3 provides an example on Ackley to demonstrate the scoring

strategy clearly. Assume that there are ten expensive samples (dots in

Figure 7.3a), and Kriging, RBF and QRS are constructed in Figure 7.3b–d,

FIGURE 7.3 Ackley and its surrogate models. (a) Original Ackley function. (b)

Kriging model of Ackley. (c) RBF model of Ackley. (d) QRS model of Ackley.

176 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 7.4 Illustration of scoring strategy.

respectively. LHS is used to generate 10,000 cheap points and each sur-

rogate model provides their respective top 500 points based on Eq. (7.3).

Finally, Figure 7.4 shows the point sets with scores 1, 2 and 3, which are

obtained by Eq. (7.4).

In this work, the newly added sample points will be selected from the

point sets with scores 3 and 2. Additionally, in order to keep sampling

diversity, the to-be-added points need to satisfy a proposed max–min cri-

terion. “max–min” denotes that the minimum distance is maximized, and

its pseudocode is shown below.

Algorithm 7.2 A Proposed Max–Min Criterion

(01) Begin

(02) S_temp ← All the present expensive sample points.

(03) SscoreX_new ← Empty.

(04) if the number of points in set SscoreX > N (In this chapter, N is set as 2)

(05) K ← N.

(06) else

(07) K ← the number of points in SscoreX.

(08) end if

(09) for i ← 1 to K

MGOSIC ◾ 177

(10) Dis ←find the nearest neighbors in S_temp for each point in

SscoreX, and get the minimum distance vector.

(11) Max_dis ←find the maximum distance from Dis

(12) Max_point ←find the corresponding point in SscoreX.

(13) SscoreX_new ← [SscoreX_new; Max_point]

(14) S_temp ← [S_temp; Max_point]

(15) end for

(16) End

In Algorithm 7.2, SscoreX_new is the selected sample points, which can

make MGOSIC have a better space-filling feature in the neighborhood

of the present promising regions. Actually, this max–min criterion aims

at selecting points that possess the maximum difference with the known

expensive samples from the two promising point sets. Figure 7.5 gives an

example to explain the max–min approach. Firstly, each new point (dots)

needs to find its closest neighbor (squares) and the corresponding mini-

mum distance in the space. As Figure 7.5 shows the four minimum dis-

tances are 0.2558, 0.3245, 0.3360 and 0.7933 and Point 3 and Point 4 will

be chosen as supplementary sample points.

FIGURE 7.5 Illustration of max–min approach.

178 ◾ Data-Driven Global Optimization Methods and Applications

As Step 4 in Section 3.1 has introduced, the best samples from Kriging,

QRS and RBF are obtained in the original design space, and the scored

samples are alternately selected in a reduced space and the original space.

Figure 7.6 shows the search process of MGOSIC on Ackley, where tri-

angles are DOE points, gray small dots are cheap points generated by LHS,

big gray dots are updated points in the current iteration, and black dots

are supplementary points in the last iteration. In Figure 7.6(a, seven new

points are captured from the original design space, and five new points

are obtained in Figure 7.6b. During the first iteration, three best predicted

solutions [−0.7137, 0.7144], [−0.7346, 0.5641] and [−0.0504, 0.2226] are

obtained from the three surrogate modes, respectively. Besides, four points

[−0.8786, 3.8146], [−3.8661, 2.1467], [0.5865, −2.0495] and [−3.4302, 1.7663]

are selected from the cheap points by the presented infill criterion. It can

be found that the four infill points can effectively explore the sparsely sam-

pled area of the design space. Moreover, in the second iteration, three best

predicted solutions [0.0412, 0.1741], [0.8092, 0.0452] and [0.0832, 0.1683]

are supplemented, and meanwhile two infill points [0.1704, 0.1415] and

[0.0243, 0.0981] around the present best solution are acquired by the pre-

sented strategy. After the two iterations, the best solution [0.0243, 0.0981]

that is close to the global optimal solution [0, 0] has been found. Obviously,

the cheap points in Figure 7.6a are distributed over the whole design space,

realizing the global exploration. In Figure 7.6b, the cheap points gathering

in a promising space around the present best solution effectively enhance

the local search. It is worth noting that the coefficient w in Eq. (7.1) deter-

mines the size of the reduced space and meanwhile affects the density of

FIGURE 7.6 Search process of MGOSIC. (a) Original Ackley function.

(b) Kriging model of Ackley.

MGOSIC ◾ 179

cheap points. Essentially, a smaller w can bring a high density of cheap

points around the present best solution, which promotes the local search.

However, when w is too small, the search space is overly limited, which

may decrease the search efficiency. Hence, the proposed range for w is

[0.05, 0.15], and w is defined as 0.1 in the subsequent tests.

7.4 EXPLORATION OF UNKNOWN AREA

The above-mentioned infilling criterion mainly focuses on the promis-

ing locations predicted by Kriging, RBF and QRS. Besides, the proposed

max–min criterion can make MGOSIC have a better space-filling perfor-

mance in a local region, but cannot explore the sparsely sampled regions

in the global space. Therefore, the estimated MSE of Kriging is employed

to explore unknown areas of the global space. In this work, a local condi-

tion is defined to judge whether MGOSIC gets stuck in a local valley or

not. In each iteration, the average change of the top P sample values will

be recorded. Furthermore, if they do not change obviously during several

successive iterations, the exploration strategy will begin working. The spe-

cific pseudo code is listed as follows.

Algorithm 7.3 Exploration Unknown Area

(01) Begin

(02) Rank_value ← Sort all the present best sample values.

(03) MeanbestY(iteration) ← Get mean values of the top P sample val-

ues in each iteration. (In this chapter, P is set as 3)

(04) if the number of iterations> Q (In this chapter, Q is set as 5)

(05) GVI ← | MeanbestY(end)− MeanbestY(end-5)|.

(06) end if

(07) if GVI < ∆ (In this chapter, the default value of ∆ is 1e−4)

(08) Smse ← Get multiple sample points in the original design range

by LHS.

(09) for i ← 1 to m (In this work, m equals to 30d)

(10) MSE ← Get the estimated MSE values of Kriging at Smse

(11) end for

(12) S_exploration ← Sort MSE and select two samples with the max-

imal MSE values.

(13) end if

(14) End

180 ◾ Data-Driven Global Optimization Methods and Applications

7.5 COMPARISON EXPERIMENTS

In order to demonstrate the capability of MGOSIC, two parts of bench-

mark cases (Gu et al., 2012; Long et al., 2015) including lower-dimensional

(d = 2–5) and higher-dimensional problems (d = 6–20) are used for testing.

These representative cases have different characteristics involving multi-

modal, convex, large-scale and so on. Additionally, the specific target val-

ues of all the cases are given in this chapter, and more details are listed

in Tables 7.1 and 7.2. It can be found that all the proposed target values

are much closer to the true global minima. Finally, an algorithm will stop

when the termination criterion in Eq. (7.2) is satisfied.

7.5.1 Preliminary Comparison and Analysis

As our previous introduction, EGO (Jones et al., 1998) is a well-known

SGO algorithm and has advantages in low-dimensional multimodal prob-

lems. Similarly, CAND presented by Regis and Shoemaker (2007) also has

a remarkable performance in low-dimensional problems. Hence, EGO

and CAND are tested on two-dimensional cases as a preliminary contrast.

TABLE 7.1 Comparison on Low-Dimensional Problems

Func.

MGOSIC EGO CAND

Values

Range

NFE NIT Values

Range

NFE NIT Values

Range

NFE NIT

Ack [5.98e−7,
7.19e−4]

75.8 12.4 [5.55e−2,
7.87e−1]

>300(10) >293 [5.30e−4,
1.93e−3]

>227.8(6) >220.8

BA [3.66e−6,
9.67e−4]

35.5 5.9 [1.06e−4,
1.34e−2]

>168.6(4) >161.6 [6.18e−5,
8.56e−4]

217.8 210.8

Peak [−6.551,
−6.538]

50.9 8.7 [−6.551,
−6.505]

27.2 20.2 [−6.550,
−6.502]

29.3 22.3

SE [−1.457,
−1.450]

34.5 5.6 [−1.457,
−1.450]

45.4 38.4 [−1.456,
−1.451]

32.9 25.9

GP [3.001,
3.005]

93.1 16.8 [3.000,
3.684]

>262(8) >255 [3.000,
3.009]

111.4 104.4

F1 [−2.000,
−1.993]

116.9 19.2 [−2.000,
−1.994]

95.4 88.4 [−1.999,
−1.992]

202.3 195.3

HM [3.63e−6,
8.50e−4]

40.5 6.5 [9.71e−5,
6.51e−2]

>225.7(7) >218.7 [1.09e−5,
9.15e−4]

83.9 76.9

GF [0.5233,
0.5234]

51 8.9 [0.5233,
0.5459]

>209.8(6) >202.8 [0.5233,
0.5234]

38.8 31.8

RS [3.55e−14,
7.77e−4]

52.7 8.7 [5.03e−3,
3.35e−1]

>300(10) >293 [6.52e−5,
1.990]

>267.5(8) >260.5

MGOSIC ◾ 181

Considering the randomness of these algorithms, all the following tests

are repeated ten times. Table 7.1 shows the comparison results, includ-

ing the range of obtained best values (Values Range), number of function

evaluations (NFE) and number of iterations (NIT). Here, NFE and NIT in

Table 7.1 are mean values. The symbol “>” means that target values cannot

be found within the maximal NFE, and the numbers in “()” represent the

failure times. From Table 7.1, it can be seen that MGOSIC can efficiently

find all the target values. Although EGO and CAND have a good perfor-

mance on Peak, SE and F1, they need more NFE and NIT than MGOSIC

to get close to these target values in most cases. Especially, Ack and RS

have so many local valleys that EGO and CAND can hardly succeed in

most cases. More importantly, EGO and CAND can just add one point in

each cycle, which causes larger NIT values than MGOSIC. In addition, the

widely used global optimization algorithm DE is also tested for compari-

son on higher-dimensional cases. For DE, the maximal allowable NFE is

10,000. Like Table 7.1, Table 7.2 gives the similar comparison results. It is

TABLE 7.2 Comparison on Higher-Dimensional Problems

Func.

MGOSIC DE

Values Range NFE NIT Values Range NFE NIT

Levy [3.36e−4,
9.86e−4]

169 27.9 [2.35e−4,
9.67e−4]

2,290 114.5

DP [2.56e−4,
9.94e−4]

325.8 53.9 [1.80e−4,
9.02e−4]

3,860 193

ST [−195.77,
−195.15]

214.7 34.2 [−195.51,
−181.49]

>5,884(2) >294.2

HN6 [−3.319,
−3.301]

77.5 11.7 [−3.312,
−3.300]

3,488 174.4

Schw [7.54e−5,
9.72e−4]

301.9 47.1 [2.24e−4,
9.08e−4]

3,914 195.7

GW [4.63e−4,
9.94e−4]

332.9 48 [0.426,
0.725]

>1e4(10) >500

Trid [−209.99,
−209.56]

87.6 13 [−209.73,
−209.01]

4672 233.6

Sums [2.31e−15,
4.27e−13]

145.3 25.1 [7.11e−4,
1.25e−3]

>8,556(1) >427.8

F16 [25.959,
26.096]

81.5 9.1 [26.021,
26.100]

2,728 136.4

Sphere [2.93e−4,
9.98e−4]

171 28.5 [9.47e−4,
7.61e−3]

>9,990(9) >499.5

182 ◾ Data-Driven Global Optimization Methods and Applications

obvious that traditional global optimization algorithms need more NFE

and NIT than MGOSIC on these higher-dimensional cases.

Additionally, MGOSIC are also compared with two SGO algorithms

with multi-point infill criteria. One is called SOCE (Dong et al., 2018) that

is a clustering-based global optimization algorithm using Kriging and

QRS to build surrogates; the other one named MSEGO was presented by

Viana et al. (2013), which extends the original EGO to sample multiple

points per cycle by using several surrogates. Tables 7.3 and 7.4 provide the

comparison results, where the data of MSEGO and EGO come from the

reference Long et al. (2015) and the results of SOCE are obtained from

Dong et al. (2018). As Long et al. (2015) mentioned, EGO and MSEGO

were tested by Viana’s surrogate toolbox (Viana et al., 2013), and MSEGO

supplemented three points per cycle in their tests. Besides, due to the adap-

tive sampling feature, SOCE has an uncertain sampling number, but most

of the time it adds three points per cycle. From Tables 7.3 and 7.4, it is

clear that all four algorithms can get much closer to the true global optima

on SE, Peak, SC and BR which are nonlinear problems with fewer local

TABLE 7.3 Obtained Values of EGO, MSEGO, SOCE and MGOSIC

Func.

EGO MSEGO SOCE MGOSIC

Var. Range Median

Var.

Range Median Var. Range Median Var. Range Median

SE [−1.456,
−1.436]

−1.453 [−1.456,
−1.454]

−1.456 [−1.456,
−1.448]

−1.456 [−1.457,
−1.450]

−1.455

Peak [−6.550,
−6.383]

−6.550 [−6.498,
−5.979]

−6.498 [−6.551,
−6.494]

−6.544 [−6.551,
−6.538]

−6.549

SC [−1.032,
−1.031]

−1.031 [−1.024,
−0.987]

−1.024 [−1.032,
−1.030]

−1.032 [−1.032,
−1.030]

−1.031

BR [0.398,
0.400]

0.398 [0.398,
0.431]

0.398 [0.398,
0.399]

0.399 [0.398,
0.398]

0.398

F1 [−1.375,
−1.283]

−1.375 [−1.874,
−1.636]

−1.874 [−2.000,
−1.980]

−1.994 [−2.000,
−1.993]

−1.999

GF′ [0.966,
3.480]

0.966 [0.001,
0.035]

0.001 [0.003,
0.009]

0.007 [1.17e−4,
9.56e−4]

5.50e−4

GP [7.581,
43.353]

7.581 [3.002,
3.014]

3.002 [3.000,
3.029]

3.008 [3.001,
3.005]

3.001

GN [0.459,
0.459]

0.459 [0.176,
0.627]

0.177 [3.33e−15,
4.81e−3]

7.33e−4 [6.33e−15,
7.18e−4]

3.61e−4

HN6 [−3.316,
−3.308]

−3.313 [−3.208,
−3.052]

−3.145 [−3.317,
−3.290]

−3.306 [−3.319,
−3.301]

−3.311

MGOSIC ◾ 183

minima, but MSEGO requires more NFE. For F1 and GN that possess lots

of local minima, EGO and MSEGO have a worse performance. Relatively,

MSEGO with the help of multiple surrogate models can find better solu-

tions than EGO on F1 and GN, but NFE also gets larger at the same time.

In Tables 7.3 and 7.4, GF′ is the same as GF in Table 7.1, except that the

variable range of GF′ is [−5, 5]. Among the four algorithms, EGO has the

worst performance on GF′ and GP within 41 iterations, but it is very effi-

cient on HN6. SOCE has an acceptable performance in all nine cases, but

it usually uses more function evaluations and iterations than MGOSIC.

In summary, compared with others, MGOSIC needs fewer NIT and can

always efficiently get the target values on these cases.

7.5.2 Analysis and Discussion

After the preliminary comparisons, MGOSIC has shown its powerful capa-

bility in solving expensive black-box problems. In order to further dem-

onstrate its significance, two recently presented SGO algorithms, MSSR

(Dong et al., 2016) and HAM (Gu et al., 2012), are tested for comparison.

Since the maximal sampling number per iteration (MSNPI) in MGOSIC

is 7, and HAM most of the time also adds about seven points per cycle,

the MSNPI of MSSR is also defined as seven in this test. Firstly, a group of

representative iterative results that can reflect their average performance

is listed in Figure 7.7. In order to make it clearer, some sub-graphs like

Figure 7.7p and r are locally magnified, and some are improved by the

log10 function. Intuitively, MGOSIC can always find the target values

more quickly in most cases. Sometimes, MGOSIC may get stuck on mul-

timodal problems like Peak, GP, F1, RS, but it can successfully jump out

TABLE 7.4 Mean NFE and NIT of EGO, MSEGO, SOCE and MGOSIC

Func.

EGO MSEGO SOCE MGOSIC

Mean

NFE

Mean

NIT

Mean

NFE

Mean

NIT

Mean

NFE

Mean

NIT

Mean

NFE

Mean

NIT

SE 52 41 109.6 33.5 33.4 9.3 34.5 5.6

Peak 42.6 31.6 130.4 40.5 37.3 11.7 50.9 8.7

SC 32.6 21.6 131.2 40.7 34.9 10 41 7

BR 36.1 25.1 112.6 34.5 25.9 7.1 40.2 6.8

F1 52 41 131.4 40.8 108.5 27.8 116.9 19.2

GF’ 52 41 132.0 41 113.5 35.1 123.6 22.7

GP 52 41 120.4 37.1 145.9 45.5 93.1 16.8

GN 52 41 132.0 41 95.7 27.2 44.8 7.2

HN6 68.8 13.8 176.0 41 89.1 24.7 77.5 11.7

184 ◾ Data-Driven Global Optimization Methods and Applications

of the local optimal regions and find the global optima at last. Conversely,

HAM lacks an effective exploration strategy, so it frequently misses the

global optima. Since MSSR is only guided by Kriging, it overly relies on the

predictive capability of Kriging. Therefore, MSSR has worse performance

on AK, RS, HN6, Schw and GW. From these iterative figures, it can be

found that MGOSIC is more efficient than HAM and MSSR. Moreover,

FIGURE 7.7 Iterative results of MGOSIC, MSSR and HAM. (a) ACK. (b) BA. (c)

Peak. (d) SE. (e) GP. (f) F1. (g) HM. (h) GF. (i) RS. (j) Levy. (k) DP. (l) ST. (m) HN6.

(n) Schw. (o) GW. (p) Trid. (q) Sums. (r) F16. (s) Sphere.

(Continued)

MGOSIC ◾ 185

in order to compare their stability, each test is repeated ten times and the

detailed data are shown in Tables 7.5–7.7. The termination criterion in

Eq. (7.2) is employed for the three algorithms. Here, “NFE Range,” “NIT

Range” and “Values Range” denote the ranges of obtained NFE, NIT and

best values during the ten tests, respectively. Besides, “R.” represents ranks

of the three algorithms, which are obtained based on their average perfor-

mance. In Table 7.7, “SR” is the abbreviation of “Success Rate.”

In Tables 7.5–7.7, there is no doubt that MGOSIC has the highest efficiency

and strongest stability. MSSR and HAM have a satisfactory performance on

low-dimensional problems. MSSR can find the target value on Peak using

the fewest NFE, and HAM has the best performance on F1. Although MSSR

and HAM can hardly find the target value on ACK, sometimes they can

get much closer to 1e−4. Besides, compared with MSSR, HAM has a lower

success rate on multimodal problems Peak and SE. Since the target value

FIGURE 7.7 (Continued) Iterative results of MGOSIC, MSSR and HAM. (a) ACK.

(b) BA. (c) Peak. (d) SE. (e) GP. (f) F1. (g) HM. (h) GF. (i) RS. (j) Levy. (k) DP. (l)

ST. (m) HN6. (n) Schw. (o) GW. (p) Trid. (q) Sums. (r) F16. (s) Sphere.

186 ◾ Data-Driven Global Optimization Methods and Applications

of GF is quite strict, HAM cannot find it within 300 function evaluations.

Although the case RS has a lot of local optimal solutions, it has an over-

all downward trend that can be predicted accurately by QRS. Therefore,

MGOSIC and HAM that use QRS to construct surrogate models have

higher efficiency. With the dimension increasing, the success rate of MSSR

and HAM decreases significantly. Especially, MSSR and HAM can hardly

TABLE 7.5 Statistical NFE of MGOSIC, MSSR and HAM on All Cases

Func.

MGOSIC MSSR HAM

NFE Range Mean R. NFE Range Mean R. NFE Range Mean R.

Ack [15, 149] 75.8 1 [>300,
>300] (10)

>300 2 [>300,
>300] (10)

>300 2

BA [28, 40] 35.5 1 [51, 141] 89.5 3 [44, 117] 72.8 2

Peak [18, 99] 50.9 2 [24, 73] 38.4 1 [26, >300]
(3)

>114.8 3

SE [27, 42] 34.5 1 [26, 86] 37.6 2 [22, >300]
(2)

>91.5 3

GP [82, 106] 93.1 1 [76, 165] 122.8 3 [81, 172] 110.8 2

F1 [42, 193] 116.9 2 [27, 242] 158 3 [34, 171] 92.8 1

HM [30, 49] 40.5 1 [34, 145] 59.2 2 [29, 159] 74.1 3

GF [28, 69] 51 1 [20, 129] 60.3 2 [>300,
>300] (10)

>300 3

RS [15, 95] 52.7 1 [47, >300]
(4)

>200.3 3 [46, 243] 86.8 2

Levy [90, 285] 169 1 [154, >500]
(4)

>337.8 2 [102, >500]
(7)

>389.8 3

DP [241, 461] 325.8 1 [>500,
>500](10)

>500 3 [326, >500]
(6)

>440.2 2

ST [62, 389] 214.7 1 [80, >500]
(6)

>339.8 2 [124, >500]
(5)

>373.5 3

HN6 [52, 228] 77.5 1 [59, 218] 107.4 2 [87, >500]
(2)

>181.1 3

Schw [242, 334] 301.9 1 [>500,
>500](10)

>500 2 [>500,
>500](10)

>500 2

GW [263, 428] 332.9 1 [>500,
>500](10)

>500 3 [375, >500]
(9)

>490.5 2

Trid [73, 136] 87.6 1 [162, >500]
(8)

>438.6 2 [>500,
>500](10)

>500 3

Sums [144, 146] 145.3 1 [>500,
>500](10)

>500 3 [368, >500]
(7)

>466.7 2

F16 [72, 93] 81.5 1 [103, 197] 161.7 2 [184, >500]
(5)

>363.2 3

Sphere [152, 186] 171 1 [>500,
>500](10)

>500 2 [>500,
>500](10)

>500 2

MGOSIC ◾ 187

TABLE 7.6 Statistical NIT of MGOSIC, MSSR and HAM on All Cases

Func.

MGOSIC MSSR HAM

NIT Range Mean R. NIT Range Mean R. NIT Range Mean R.

Ack [2, 24] 12.4 1 [>48, >59] >55 3 [>49, >55] >52.4 2

BA [5, 7] 5.9 1 [12, 25] 17.5 3 [7, 19] 11.3 2

Peak [3, 19] 8.7 1 [7, 22] 10.6 2 [4, >47] >17.4 3

SE [4, 7] 5.6 1 [8, 33] 14.2 3 [3, >48] >13.9 2

GP [15, 19] 16.8 1 [15, 28] 21.8 3 [13, 28] 17.8 2

F1 [8, 29] 19.2 2 [10, 96] 55 3 [5, 25] 13.7 1

HM [5, 8] 6.5 1 [9, 28] 14.6 3 [4, 24] 11.1 2

GF [5, 12] 8.9 1 [7, 24] 15.4 2 [>45, >49] >47.3 3

RS [2, 16] 8.7 1 [13, >84] >50.5 3 [7, 37] 13 2

Levy [15, 46] 27.9 1 [35, >85] >61.6 2 [16, >85] >64.2 3

DP [41, 73] 53.9 1 [>74, >93] >79.8 3 [52, >82] >70.2 2

ST [9, 62] 34.2 1 [21, >102] >61.7 3 [19, >78] >56.1 2

HN6 [8, 37] 11.7 1 [13, 74] 30.9 3 [13, >78] >27.4 2

Schw [37, 52] 47.1 1 [>87, >121] >98.1 3 [>80, >83] >82.3 2

GW [39, 62] 48 1 [>68, >75] >69.5 2 [70, >99] >94.9 3

Trid [11, 20] 13 1 [26, >84] >68.8 2 [>83, >88] >85.8 3

Sums [25, 26] 25.1 1 [>82, >136] >109.1 3 [61, >88] >80 2

F16 [7, 12] 9.1 1 [53, 119] 96.3 3 [28, >85] >59.5 2

Sphere [24, 32] 28.5 1 [>122, >146] >132 3 [>94, >98] >96.1 2

TABLE 7.7 Statistical Best Values of MGOSIC, MSSR and HAM on All Cases

Func.

MGOSIC MSSR HAM

Values

Range

SR R. Values

Range

SR R. Values

Range

SR R.

Ack [5.98e−7,
7.19e−4]

1 1 [8.96e−3,
2.581]

0 2 [3.33e−3,
5.16e−1]

0 2

BA [3.66e−6,
9.67e−4]

1 1 [7.73e−5,
7.86e−4]

1 1 [3.98e−6,
7.06e−4]

1 1

Peak [−6.551,
−6.538]

1 1 [−6.551,
−6.501]

1 1 [−6.551,
−3.050]

0.7 2

SE [−1.457,
−1.450]

1 1 [−1.456,
−1.450]

1 1 [−1.457,
2.866]

0.8 2

GP [3.001,
3.005]

1 1 [3.000,
3.009]

1 1 [3.000,
3.009]

1 1

F1 [−2.000,
−1.993]

1 1 [−2.000,
−1.992]

1 1 [−2.000,
−1.993]

1 1

HM [3.63e−6,
8.50e−4]

1 1 [2.15e−6,
5.13e−4]

1 1 [8.32e−7,
8.00e−4]

1 1

(Continued)

188 ◾ Data-Driven Global Optimization Methods and Applications

find the target values of DP, Schw, GW, Sums and Sphere. Besides, MSSR

and HAM have the lower success rate on ST. On the contrary, MGOSIC

still has the remarkable performance on high-dimensional problems. It is

worth noting that MGOSIC just uses 87.6 and 81.5 function evaluations on

Trid and F16, respectively. What is more, for the 20- dimensional problem

Sphere, MGOSIC just needs 171 function evaluations. More importantly,

MGOSIC uses the fewest NIT to find the target values in most cases, which

reflects its outstanding parallel capability. To sum up, MGOSIC is an effi-

cient SGO algorithm that can be applied for EBOPs.

7.5.3 Engineering Applications

In order to demonstrate the engineering applicability of MGOSIC, the

optimal shape design of a two-dimensional hydrofoil is used for the test.

TABLE 7.7 (Continued) Statistical Best Values of MGOSIC, MSSR and HAM on All

Cases

Func.

MGOSIC MSSR HAM

Values

Range

SR R. Values

Range

SR R. Values

Range

SR R.

GF [0.5233,

0.5234]

1 1 [0.5233,

0.5234]

1 1 [0.5235,

0.5276]

0 2

RS [3.55e−14,

7.77e−4]

1 1 [5.96e−6,

0.995]

0.6 2 [1.46e−6,

8.13e−4]

1 1

Levy [3.36e−4,

9.86e−4]

1 1 [2.97e−4,

1.04e−2]

0.6 2 [1.51e−4,

5.51e−2]

0.3 3

DP [2.56e−4,

9.94e−4]

1 1 [1.33e−3,

1.14e−1]

0 3 [1.25e−4,

6.17e−1]

0.4 2

ST [−195.77,

−195.15]

1 1 [−195.62,

−167.56]

0.4 3 [−195.52,

−181.55]

0.5 2

HN6 [−3.319,

−3.301]

1 1 [−3.317,

−3.302]

1 1 [−3.316,

−3.203]

0.8 2

Schw [7.54e−5,

9.72e−4]

1 1 [1.38e−2,

1.89e−1]

0 2 [2.51e−2,

1.864]

0 2

GW [4.63e−4,

9.94e−4]

1 1 [0.691,

2.561]

0 3 [8.07e−4,

0.632]

0.1 2

Trid [−209.99,

−209.56]

1 1 [−209.74,

−200.87]

0.2 2 [−207.33,

−78.88]

0 3

Sums [2.31e−15,

4.27e−13]

1 1 [1.01e−2,

2.21e−1]

0 3 [4.87e−4,

1.77e−1]

0.3 2

F16 [25.959,

26.096]

1 1 [26.021,

26.096]

1 1 [25.968,

27.039]

0.5 2

Sphere [2.93e−4,

9.98e−4]

1 1 [4.90e−3,

9.24e−2]

0 2 [6.30e−3,

4.24e−1]

0 2

MGOSIC ◾ 189

The geometric parameterization for the hydrofoil employs the class and

shape function transformation (CST) method (Kulfan, 2008) that is origi-

nally expressed as follows:





 = 









 + ⋅

z

c

x

c
C

x

c
S

x

c

x

c

z

c

TE (7.5)

 1
1 2



 = 



 −





C
x

c

x

c

x

c

N N

 (7.6)

 ,

0

∑



 = ⋅ 









=

S
x

c
v S

x

c
r r n

r

n

 (7.7)

where C(•) and S(•) are the class and shape functions, respectively. Besides,

c refers to the chord length of the hydrofoil, ZTE/c denotes the thickness

of the tail flange, and N1 and N2 are two coefficients to decide the class

of the hydrofoil. It is worth noting that vr and Sr,n come from Bernstein

polynomials. In this chapter, we modify the CST formulas to make them

appropriate for the proposed optimization problem as below.

 () () (1) ()0

0

1 2 ∑= + −

=

y x y x x x A S xu
N N

ui i

i

n

 (7.8)

 () () (1) ()0

0

1 2 ∑= + −

=

y x y x x x A S xl
N N

li i

i

n

 (7.9)

where yu(x), yl(x) and y0(x) refer to the upper bounds, lower bounds and a

basic hydrofoil, respectively. Here, x represents the coordinate along the

chord of the hydrofoil, and y is the coordinate along the thickness direc-

tion. The class coefficients N1 and N2 are constants 0.5 and 1, and n is set

as 5. Considering that the upper and lower curves have the same radius

of the front edge, Au0 equals to −Al0. Hence, nine Bernstein coefficients

Ai are regarded as design variables of this optimization problem, and

their design ranges come from two basic airfoils “modified NACA0008”

and NACA0016. Figure 7.8 shows the design space of the hydrofoil.

Additionally, the length of the chord and the angle of attack are also

regarded as design variables. The objective is to minimize the drag coef-

ficient, and meanwhile, the area and lift coefficients are supposed to satisfy

inequality constraints.

190 ◾ Data-Driven Global Optimization Methods and Applications

The specific optimization formula is summarized as follows.

=

≤ ≤ − ≤ ≤ − ≤ ≤

− ≤ ≤ ≤ ≤ − ≤ ≤

− ≤ ≤ − ≤ ≤ − − ≤ ≤

≤ ≤ ≤ ≤

≥

≥

≥

min

: [, ,]

0 0.1141; 0.0232 0.1008; 0.010 0.1072;

0.0050 0.0815; 0.005 0.111; 0.1008 0.013;

0.1072 0.022; 0.0815 0.0258; 0.1112 0.1445;

0.2 0.3; 3 4;

. . 0.3510

0.0051

0.12

1 2 3

4 5 6

7 8 9

c

X paraments A c aoa

A A A

A A A

A A A

c aoa

s t c

S

thick

d

l

design range

(7.10)

where c is the length of the chord, aoa refers to the angle of attack, cl is the

lift coefficient, S refers to the area and thick represents the maximal thick-

ness. The reference values 0.3510, 0.0051 and 0.12 come from NACA0012,

which will be regarded as the reference case. Considering that MGOSIC

FIGURE 7.8 Design space of the hydrofoil.

MGOSIC ◾ 191

and other comparison methods are mainly developed for box-constrained

problems, Equation (7.10) is modified as follows by a penalty function.

min max 0.3510 ,0 max 0.0051 ,0 max 0.12 ,0

: [, ,]

()() () ()+ × − + − + −

=

c P c S thick

designrange X paramentsA c aoa

d l

(7.11)

where P is the penalty factor that is defined as 106. The modified objective

function including all the response values like lift coefficient, drag coef-

ficient, area and thickness is directly approximated by surrogates, which

is easy to implement in an actual engineering application. The simula-

tion analysis is realized by Computational Fluid Dynamics (CFD), and

the maximal iteration number is set as 500 that generally can get satis-

factory convergence results. Each analysis process from parametric mod-

eling to CFD simulation will cost about 1.5 minutes. In this chapter, we

employ MGOSIC, MSSR and HAM to realize the optimization design of

this hydrofoil, and the maximal allowable times of simulation are 300.

Figure 7.9 shows the grid partition of the hydrofoil, and Figure 7.10 shows

the pressure contour of the reference case NACA0012.

FIGURE 7.9 Grid partition diagram.

192 ◾ Data-Driven Global Optimization Methods and Applications

The obtained results from the three methods are listed in Table 7.8.

Obviously, MGOSIC gets the minimum drag coefficient, and meanwhile

gets larger improvements compared to NACA0012. Additionally, the itera-

tive results of the three global optimization methods are also provided in

Figure 7.11. It is clear that MGOSIC has a faster convergence rate. MSSR

performs worse within the first 100 simulation analyses, but it can gradu-

ally find better solutions. However, HAM can hardly find a better solu-

tion after 100 analyses. The best shape and pressure contour obtained

by MGOSIC are shown in Figure 7.12. Figure 7.13 shows the compari-

son results of the obtained best shape and the shape of NACA0012, and

Figure 7.14 gives their comparison diagram of pressure curves. In sum-

mary, MGOSIC outperforms the other two methods on the shape optimi-

zation of the hydrofoil.

FIGURE 7.10 Pressure contour of NACA0012.

TABLE 7.8 Best Results Obtained from MGOSIC, MSSR and HAM

Methods cd Cl S Thick Improvement

NACA0012 0.0153776 0.3510 0.0051 0.12 NA

MGOSIC 0.0148780 0.3678 0.0072 0.1298 3.25%↑

MSSR 0.0149357 0.4300 0.0074 0.1269 2.87%↑

HAM 0.0155002 0.3767 0.0071 0.1309 0.80%↓

MGOSIC ◾ 193

FIGURE 7.11 Comparison of iterative results.

FIGURE 7.12 Pressure contour of the optimal shape.

194 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 7.13 Comparison diagram of shapes.

FIGURE 7.14 Comparison diagram of pressure curves.

MGOSIC ◾ 195

7.6 CHAPTER SUMMARY

In this chapter, we propose a new SGO algorithm MGOSIC for EBOPs.

Traditional multi-surrogate methods mostly utilize weighted sums to con-

struct an ensemble model for optimization, and pay much attention to the

choice of these weights. MGOSIC proposes a different strategy that gets

multiple sample points in each cycle based on the integrated prediction

information from three surrogate models.

In MGOSIC, three approximation methods, Kriging, RBF and QRS,

are employed to construct surrogate models, respectively. Besides, a

multi-point infilling criterion is presented to capture the new sample

points on the three models per iteration. In the proposed infilling crite-

rion, the newly added sample points mainly come from two parts: one is

the present best solutions from each surrogate model, and the other one is

selected from several promising point sets. These point sets are created by

a proposed score-based strategy that marks a lot of cheap sample points

based on their predictive values from Kriging, RBF and QRS. The new

sample points will be selected from the point sets with higher scores by

a proposed max–min approach that maximizes the minimum distance

between new points and obtained points. When MGOSIC gets trapped in

a local region, the estimated MSE of Kriging will be used to explore the

unknown area. Finally, the whole optimization flow is carried out alter-

nately in the global space and a reduced space. Compared with seven exist-

ing global optimization algorithms, MGOSIC has the best performance.

After the tests on 19 benchmark cases and an engineering application,

MGOSIC shows its high efficiency, strong stability and remarkable paral-

lel capability. To sum up, MGOSIC is a promising method to optimize

expensive black-box problems.

NOTE
 1 Based on “Multi-surrogate-based Global Optimization using a Score-based

Infill Criterion,” published in [Structural and Multidisciplinary
Optimization], [2019]. Permission obtained from [Springer].

REFERENCES

Cai, X., Qiu, H., Gao, L., Yang, P., & Shao, X. (2017). A Multi-Point Sampling Method
Based on Kriging for Global Optimization. Structural and Multidisciplinary
Optimization, 56(1), 71–88. https://doi.org/10.1007/s00158-017-1648-x

Dong, H., Song, B., Dong, Z., & Wang, P. (2016). Multi-Start Space Reduction
(MSSR) Surrogate-Based Global Optimization Method. Structural and
Multidisciplinary Optimization, 54(4), 907–926. https://doi.org/10.1007/
s00158-016-1450-1

https://doi.org/10.1007/s00158-016-1450-1
https://doi.org/10.1007/s00158-017-1648-x
https://doi.org/10.1007/s00158-016-1450-1

196 ◾ Data-Driven Global Optimization Methods and Applications

Dong, H., Song, B., Wang, P., & Dong, Z. (2018). Surrogate-Based Optimization
with Clustering-Based Space Exploration for Expensive Multimodal
Problems. Structural and Multidisciplinary Optimization, 57(4), 1553–1577.
https://doi.org/10.1007/s00158-017-1826-x

Gu, J., Li, G., & Gan, N. (2017). Hybrid Metamodel-Based Design Space
Management Method for Expensive Problems. Engineering Optimization,
49(9), 1573–1588. https://doi.org/10.1080/0305215x.2016.1261126

Gu, J., Li, G. Y., & Dong, Z. (2012). Hybrid and Adaptive Meta-Model-Based
Global Optimization. Engineering Optimization, 44(1), 87–104. https://doi.
org/10.1080/0305215x.2011.564768

Gutmann, H. M. (2001). A Radial Basis Function Method for Global Optimization.
Journal of Global Optimization, 19(3), 201–227.

Jiang, F., Xia, H., Quang Anh, T., Quang Minh, H., Nhat Quang, T., & Hu, J.
(2017). A New Binary Hybrid Particle Swarm Optimization with Wavelet
Mutation. Knowledge-Based Systems, 130, 90–101. https://doi.org/10.1016/j.
knosys.2017.03.032

Jin, R. C., Chen, W., & Sudjianto, A. (2005). An Efficient Algorithm for Constructing
Optimal Design of Computer Experiments. Journal of Statistical Planning
and Inference, 134(1), 268–287. https://doi.org/10.1016/j.jspi.2004.02.014

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient Global Optimization
of Expensive Black-Box Functions. Journal of Global Optimization, 13(4),
455–492. https://doi.org/10.1023/A:1008306431147

Krityakierne, T., Akhtar, T., & Shoemaker, C. A. (2016). SOP: Parallel Surrogate
Global Optimization with Pareto Center Selection for Computationally
Expensive Single Objective Problems. Journal of Global Optimization, 66,
417–437.

Kulfan, B. M. (2008). Universal Parametric Geometry Representation Method.
Journal of Aircraft, 45(1), 142–158. https://doi.org/10.2514/1.29958

Lakshika, E., Barlow, M., & Easton, A. (2017). Understanding the Interplay of
Model Complexity and Fidelity in Multiagent Systems via an Evolutionary
Framework. IEEE Transactions on Computational Intelligence and AI in
Games, 9(3), 277–289. https://doi.org/10.1109/tciaig.2016.2560882

Li, Z., Ruan, S., Gu, J., Wang, X., & Shen, C. (2016). Investigation on Parallel
Algorithms in Efficient Global Optimization Based on Multiple Points Infill
Criterion and Domain Decomposition. Structural and Multidisciplinary
Optimization, 54, 747–773.

Long, T., Wu, D., Guo, X., Wang, G. G., & Liu, L. (2015). Efficient Adaptive Response
Surface Method Using Intelligent Space Exploration Strategy. Structural and
Multidisciplinary Optimization, 51(6), 1335–1362. https://doi.org/10.1007/
s00158-014-1219-3

Masters, D. A., Taylor, N. J., Rendall, T. C. S., & Allen, C. B. (2017). Multilevel
Subdivision Parameterization Scheme for Aerodynamic Shape Optimization.
AIAA Journal, 55(10), 3288–3303. https://doi.org/10.2514/1.J055785

Meng, Z., Pan, J.-S., & Xu, H. (2016). QUasi-Affine TRansformation Evolutionary
(QUATRE) Algorithm: A Cooperative Swarm Based Algorithm for Global
Optimization. Knowledge-Based Systems, 109, 104–121. https://doi.
org/10.1016/j.knosys.2016.06.029

https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1016/j.jspi.2004.02.014
https://doi.org/10.1109/tciaig.2016.2560882
https://doi.org/10.1016/j.knosys.2016.06.029
https://doi.org/10.1016/j.knosys.2016.06.029
https://doi.org/10.1007/s00158-017-1826-x
https://doi.org/10.1080/0305215x.2011.564768
https://doi.org/10.1080/0305215x.2011.564768
https://doi.org/10.2514/1.29958
https://doi.org/10.1080/0305215x.2016.1261126
https://doi.org/10.1016/j.knosys.2017.03.032
https://doi.org/10.1016/j.knosys.2017.03.032
https://doi.org/10.1007/s00158-014-1219-3
https://doi.org/10.2514/1.J055785
https://doi.org/10.1007/s00158-014-1219-3

MGOSIC ◾ 197

Ong, Y. S., Nair, P. B., & Keane, A. J. (2003). Evolutionary Optimization of
Computationally Expensive Problems via Surrogate Modeling. AIAA Journal,
41(4), 687–696. https://doi.org/10.2514/2.1999

Pan, W.-T. (2012). A New Fruit Fly Optimization Algorithm: Taking the Financial
Distress Model as an Example. Knowledge-Based Systems, 26, 69–74. https://
doi.org/10.1016/j.knosys.2011.07.001

Regis, R. G., & Shoemaker, C. A. (2007). A Stochastic Radial Basis Function
Method for the Global Optimization of Expensive Functions. Informs Journal
on Computing, 19(4), 497–509.

Rocca, P., Oliveri, G., & Massa, A. (2011). Differential Evolution as Applied to
Electromagnetics. IEEE Antennas and Propagation Magazine, 53(1), 38–49.
https://doi.org/10.1109/map.2011.5773566

Sala, R., Baldanzini, N., & Pierini, M. (2016). Representative Surrogate Problems
as Test Functions for Expensive Simulators in Multidisciplinary Design
Optimization of Vehicle Structures. Structural and Multidisciplinary
Optimization, 54(3), 449–468. https://doi.org/10.1007/s00158-016-1410-9

Singh, P., van der Herten, J., Deschrijver, D., Couckuyt, I., & Dhaene, T. (2017). A
Sequential Sampling Strategy for Adaptive Classification of Computationally
Expensive Data. Structural and Multidisciplinary Optimization, 55(4), 1425–
1438. https://doi.org/10.1007/s00158-016-1584-1

Sun, C., Zeng, J., Pan, J., Xue, S., & Jin, Y. (2013). A New Fitness Estimation Strategy
for Particle Swarm Optimization. Information Sciences, 221, 355–370. https://
doi.org/10.1016/j.ins.2012.09.030

Tyan, M., Nhu Van, N., & Lee, J.-W. (2015). Improving Variable-Fidelity Modelling
by Exploring Global Design Space and Radial Basis Function Networks for
Aerofoil Design. Engineering Optimization, 47(7), 885–908. https://doi.org/
10.1080/0305215x.2014.941290

Viana, F. A. C., Haftka, R. T., & Watson, L. T. (2013). Efficient Global Optimization
Algorithm Assisted by Multiple Surrogate Techniques. Journal of Global
Optimization, 56(2), 669–689. https://doi.org/10.1007/s10898-012-9892-5

Wang, H., Fan, T., & Li, G. (2017). Reanalysis-Based Space Mapping Method, an
Alternative Optimization Way for Expensive Simulation-Based Problems.
Structural and Multidisciplinary Optimization, 55(6), 2143–2157. https://doi.
org/10.1007/s00158-016-1633-9

Wang, L., Pei, J., Menhas, M. I., Pi, J., Fei, M., & Pardalos, P. M. (2017). A
Hybrid-Coded Human Learning Optimization for Mixed-Variable
Optimization Problems. Knowledge-Based Systems, 127, 114–125. https://doi.
org/10.1016/j.knosys.2017.04.015

Wang, L. Q., Shan, S. Q., & Wang, G. G. (2004). Mode-Pursuing Sampling Method
for Global Optimization on Expensive Black-Box Functions. Engineering
Optimization, 36(4), 419–438. https://doi.org/10.1080/03052150410001686
486

Younis, A., & Dong, Z. (2010). Metamodelling and Search Using Space Exploration
and Unimodal Region Elimination for Design Optimization. Engineering
Optimization, 42(6), 517–533.

https://doi.org/10.1016/j.knosys.2017.04.015
https://doi.org/10.1016/j.knosys.2017.04.015
https://doi.org/10.2514/2.1999
https://doi.org/10.1109/map.2011.5773566
https://doi.org/10.1080/0305215x.2014.941290
https://doi.org/10.1080/0305215x.2014.941290
https://doi.org/10.1016/j.knosys.2011.07.001
https://doi.org/10.1016/j.knosys.2011.07.001
https://doi.org/10.1016/j.ins.2012.09.030
https://doi.org/10.1016/j.ins.2012.09.030
https://doi.org/10.1007/s00158-016-1633-9
https://doi.org/10.1080/03052150410001686486
https://doi.org/10.1080/03052150410001686486
https://doi.org/10.1007/s10898-012-9892-5
https://doi.org/10.1007/s00158-016-1410-9
https://doi.org/10.1007/s00158-016-1584-1
https://doi.org/10.1007/s00158-016-1633-9

198 ◾ Data-Driven Global Optimization Methods and Applications

Zhou, G., Zhao, W., Li, Q., Shen, W., & Wang, C. (2017). Multi-Objective
Robust Design Optimization of a Novel NPR Energy Absorption Structure
for Vehicles Front Ends to Enhance Pedestrian Lower Leg Protection.
Structural and Multidisciplinary Optimization, 56(5), 1215–1224. https://doi.
org/10.1007/s00158-017-1754-9

Zhou, Q., Jiang, P., Shao, X., Hu, J., Cao, L., & Wan, L. (2017). A Variable Fidelity
Information Fusion Method Based on Radial Basis Function. Advanced
Engineering Informatics, 32, 26–39. https://doi.org/10.1016/j.aei.2016.12.005

Zhou, Q., Wang, Y., Choi, S.-K., Jiang, P., Shao, X., & Hu, J. (2017). A Sequential
Multi-Fidelity Metamodeling Approach for Data Regression. Knowledge-Based
Systems, 134, 199–212. https://doi.org/10.1016/j.knosys.2017.07.033

https://doi.org/10.1016/j.aei.2016.12.005
https://doi.org/10.1016/j.knosys.2017.07.033
https://doi.org/10.1007/s00158-017-1754-9
https://doi.org/10.1007/s00158-017-1754-9

C H A P T E R 8

SCGOSR

Surrogate-Based Constrained
Global Optimization Using
Space Reduction1

8.1 INTRODUCTION

Continuous advancements in modern industry make simulated-based

design and optimization imperative (Tolson & Shoemaker, 2007). Although

the above-mentioned algorithms have advantages in dealing with expen-

sive black-box optimization problems with boundary constraints, most of

them cannot handle nonlinear constrained optimization problems.

When both the objective and constraints are computationally expen-

sive black-box functions, the complexity of optimization gets further

increased. Bjorkman and Holmstrom (2000) developed a radial basis func-

tion (RBF)-based optimization algorithm that utilized a penalty technique

to transform an inequality-constrained problem into a box-constrained

problem. Besides, a train design optimization problem was successfully

solved with fewer costly function evaluations. Basudhar et al. (2012) pre-

sented an efficient global optimization algorithm for constrained prob-

lems, where Kriging is used for approximation of the objective function

and support vector machines (SVMs) are employed to approximate the

boundary of feasible regions. Importantly, one unique SVM can represent

several correlated constraints, which considerably simplifies the complex-

ity of constrained optimization. Regis (2011) extended the previous local

199DOI: 10.1201/9781003636267-8

https://doi.org/10.1201/9781003636267‑8

200 ◾ Data-Driven Global Optimization Methods and Applications

metric stochastic RBF (LMSRBF) algorithm to handle costly nonlinear

inequality-constrained problems. The constrained LMSRBF algorithm

constructs surrogate models for objective and constraint functions, respec-

tively, and identifies candidate points that are predicted to be feasible.

Bagheri et al. (2017) presented a “Self-Adjusting Constrained Optimization

by RBF Approximation (SACOBRA)” method based on Regis’s research.

Importantly, SACOBRA can efficiently find feasible solutions without

parameter tuning. Parr et al. (2012) presented an enhanced infill sam-

pling criterion that treats objective improvement and constraint satisfac-

tion as two separate functions and uses multi-objective optimization to

select update points. Additionally, there is also some literature focusing

on multi-objective optimization with expensive objectives and constraints

(Audet et al., 2010; Durantin et al., 2016). Muller and Woodbury (2017)

also pointed out that algorithms for problems with expensive objectives

and constraints are scarce.

Hence, this chapter aims at developing a new global optimization algo-

rithm for computationally expensive black-box-constrained problems.

The problem type considered in this chapter can be briefly summed up as

follows:

min

. . 0, 1, ,

, 1, ,

, 1, ,

x

x 





()
() ≤ ∀ =

≤ ≤ ∀ =

∈ ∀ =

f

S T g j m

Lb x Ub i n

x R i n

j

i i i

i

 (8.1)

where x is the design variable vector, f(x) denotes the costly objective and

g(x) refers to the costly constraint vector. Lb and Ub are the lower and upper

bounds of the design variable x, respectively. For the computationally expen-

sive problems described in Eq. (8.1), using a smaller number of function

(objective and constraints) evaluations to get the global optimum is impor-

tant. Since the actual engineering applications involve multimodal or high

nonlinear models, both f(x) and g(x) in Eq. (8.1) may have complex forms.

Actually, this chapter is the extension of our previous work where a

Kriging-based global optimization algorithm MSSR was presented. MSSR

is mainly developed for unconstrained expensive black-box problems.

On constraint handling, MSSR just adds a penalty term to the objective

function, and the reduced spaces are created without using penalty-based

strategies. Besides, MSSR always constructs the complete surrogate mod-

els for costly objective and constraint functions, respectively, which is

SCGOSR ◾ 201

time-consuming. In this chapter, Kriging is used to approximate the costly

objective and constraints. In addition, a proposed multi-start constrained

optimization algorithm carries out a search on the Kriging models to get

supplementary points in each cycle. In order to find feasible regions, even

the global optimum quickly, a penalty-based space reduction strategy is pre-

sented. In this strategy, two penalty methods are used respectively to sort

the expensive samples and two subspaces are created based on the rank-

ing of the present samples. Considering the difficulty in fitting an accurate

large-scale surrogate model, two groups of local surrogate models located

in the defined subspaces are dynamically constructed per optimization

cycle. Furthermore, once SCGOSR gets stuck in a local valley, the estimated

mean square error of Kriging is maximized to explore the sparsely sampled

area, guaranteeing the balance between the local and global searches.

8.2 SCGOSR ALGORITHM

In SCGOSR, Kriging is employed to construct surrogate models for costly

objective and constraint functions, respectively. In order to add multiple

promising samples in each cycle, a multi-start constrained optimization

algorithm is proposed to exploit Kriging models. Furthermore, a space

reduction strategy is presented to create two subspaces where two groups

of local surrogate models are separately constructed. The multi-start opti-

mization is carried out alternately in the two subspaces and the overall

design space. Once a local convergence criterion is satisfied, SCGOSR will

maximize the estimated MSE of Kriging to explore the sparsely sampled

regions. More details will be introduced in the following sections.

8.2.1 Multi-Start Constrained Optimization

Generally, optimization on surrogate models may generate several predic-

tive local optimal solutions, especially when both objective and constraint

functions are Kriging models. The true global optimal solution may exist

among these potential optimal locations, and thus, it is important to cap-

ture these predictive local optimal samples and select more promising

ones. In this chapter, a multi-start constrained optimization algorithm

is utilized to exploit the Kriging models. Different from MSSR, which is

mainly designed for unconstrained problems, this multi-start constrained

optimization algorithm utilizes a penalty function to deal with the pre-

dicted results and save them in a defined matrix. Besides, in MSSR the

distances between points are defined as constants, while in this chapter

a distance criterion that relies on the size of the design space is proposed.

The specific process is described as follows.

202 ◾ Data-Driven Global Optimization Methods and Applications

Firstly, several starting points are generated in a defined space by Latin

hypercube sampling, and then sequential quadratic programming (SQP)

begins to run from these starting points. Samples and the corresponding

predictive values obtained by multiple SQP solvers are saved in a matrix

PLO. Equation (8.2) gives the specific expression of the multi-start con-

strained optimization.

()
()

=

≤
≤ ≤

_

: , 1,2, ,

min ˆ

. . ˆ 0

Multi Start Optimization

StartingPo s i M

SQP Y

S T g

Lb Ub

i

krg

krg

x

x

x

x

int

 (8.2)

where Ykrg ()ˆ x and g krg ()ˆ x are Kriging models of the exact objective and

constraint functions, respectively. In Eq. (8.2), M refers to the number

of starting points and xi denotes the ith starting point. Once the predic-

tive local optima are obtained, these samples and predictive values of the

objective and constraints will be recorded in matrix PLO. Equation (8.3)

describes a penalty method that can transform the Kriging-based objec-

tive and constraints into an augmented function. As Eq. (8.4) shows, the

new PLO matrix has M rows and (n + 1) columns.

 ˆ ˆ max ˆ ,0
1

x x x∑ ()() () ()= + ⋅

=

Y Y P gaug krg ikrg

i

m

 (8.3)

, , , , ˆ ˆ , , ˆ

, , , , ˆ ˆ , , ˆ

, , , , ˆ ˆ , , ˆ

, , , , ˆ

, , , , ˆ

, , , , ˆ

1
1

2
1 1 1

1
1 1

1
2

2
2 2 2

1
2 2

1 2 1

1
1

2
1 1 1

1
2

2
2 2 2

1 2

PLO

⋯ ⋯

⋯ ⋯

⋮ ⋱ ⋯ ⋮ ⋮ ⋮

⋯ ⋯

⋯

⋯

⋮ ⋱ ⋯ ⋮ ⋮

⋯

=





















⇒





















S S S Y g g

S S S Y g g

S S S Y g g

S S S Y

S S S Y

S S S Y

n krg krg krgm

n krg krg krgm

M M
n
M

krg
M

krg
M

krgm
M

n aug

n aug

M M
n
M

aug
M

(8.4)

According to the size of Yaug
iˆ in PLO, the matrix is sorted in ascending

order. Since multiple SQP solvers may get similar or repeated local optimal

SCGOSR ◾ 203

solutions, the redundant samples will be deleted from PLO. The samples in

Eq. (8.5) need to keep a defined distance as below.

 S S Ub Lb− > ∆ ⋅ −i j (8.5)

where Ub and Lb are the design bounds and ∆ is a weight factor that deter-

mines the size of the distance. Generally, a smaller ∆ may bring more points

that are much closer to each other, but a bigger ∆ may make SCGOSR miss

some promising points. Hence, the recommended range for ∆ is [1e−6,

1e−4]. Besides, the samples that go much closer to the obtained sample will

also be eliminated. The final supplementary samples will be chosen from

the filtered PLO and the smaller Yaug
iˆ will have the higher priority.

8.2.2 Space Reduction for Constrained Optimization

Space reduction (also called region elimination) can remove the less prom-

ising and previously explored regions to decrease the number of costly func-

tion evaluations. Mostly, a reduced space is the neighborhood of the present

best solution or a small region that encloses several promising solutions. For

constrained optimization, the so-called best solution not only possesses the

minimum objective value but also has to satisfy all constraints. In order to

find these promising samples from the expensive sample set, two penalty

functions are utilized, and the specific formulas are shown below.

 =
≤ ∀ =

+ > ∃ =










0, 1, ,

0, 1, ,1Y
Y if g i m

Y P if g i maug
obj i

obj i

 (8.6)

 Y Y P gaug obj i

i

m

∑ ()= + ⋅

=

max ,02

1

 (8.7)



















⇒





































⇒



















⋅



















, , ,

, , ,

,

+

, , ,

, , ,

, , ,

1
1

2
1 1

1
2

2
2 2

1 2

1

2

1
1

2
1 1

1
2

2
2 2

1 2

1
1

1
2

1

2
1

2
2

2

S S S

S S S

S S S

Y

Y

Y

g g g

g g g

g g g

Y

Y

Y

Y

Y

Y

n

n

K K
n
K

obj

obj

obj
K

m

m

K K
m
K

aug

aug

aug
K

aug

aug

aug
K

⋯

⋯

⋮ ⋱ ⋯ ⋮

⋯

⋮

⋯

⋯

⋮ ⋱ ⋯ ⋮

⋯

⋮ ⋮

 (8.8)

where m is the number of constraints, K is the number of expensive sam-

ples and n represents the dimension of design variables. In Eqs. (8.3), (8.6)

204 ◾ Data-Driven Global Optimization Methods and Applications

and (8.7), P is the penalty factor that needs to be noticeably bigger than

the objective function value, and Yaug1 and Yaug2 are two augmented func-

tions. A smaller P will not generate remarkable changes to the augmented

objective functions, and thus, the recommended range for P is [1e10, 1e20].

Equation (8.8) shows the sample matrix, expensive objective vector and

expensive constraint matrix. Additionally, two augmented objective vec-

tors are obtained by the proposed penalty functions. Intuitively, the first

penalty function will punish solutions that just violate any constraint,

while the second one can “forgive” solutions that go much closer to the

constraint bounds. Relatively speaking, Eq. (8.6) is more rigorous than

Eq. (8.7) when dealing with the solutions near bounds. Besides, solutions

on both sides of constraint bounds may enhance the approximation accu-

racy of Kriging models in the vicinity of bounds. In other words, the solu-

tions that violate constraints but are located near constraint bounds are

also valuable. Considering this characteristic, Yaug1 is minimized to find

the present best solution and Yaug2 is sorted to obtain the ranks of all the

expensive samples. The specific process is described as follows.

 sortmin , , ,

1
1

1
2

1

1
min

2
1

2
2

2

2
1

2
2

2S S S S
⋮ ⋮

…{ }























⇒























⇒

Y

Y

Y

Y

Y

Y

aug

aug

aug
K

aug

aug

aug

aug
K

aug
rank

aug
rank

aug
rankK (8.9)

In Eq. (8.9), aug1Smin may not equal to aug
rank

2
1S , because they come from two dif-

ferent evaluation criteria. On the basis of the above-obtained better sam-

ples, two subspaces are created as follows:

=

=

, ,

, ,

1, ,

1 : ;

1 1
min

1 1

1 1
min

1 1

1 1

Lb S Ub Lb

Ub S Ub Lb

Lb Ub



()

()

[]

() () () ()

() () () ()

− ⋅ −

< =

+ ⋅ −

> =

∀ =

w

if Lb i Lb i then Lb i Lb i

w

if Ub i Ub i then Ub i Ub i

i n

Subspace

sub aug range range

sub range sub range

sub aug range range

sub range sub range

sub sub

 (8.10)

SCGOSR ◾ 205

=

=

min ; ;

max ; ;

1,2, ,

2 : ;

2 2
1

2
2

2

2 2
1

2
2

2

2 2

Lb S S S

Ub S S S

Lb Ub

⋯

⋯

…

()

()

{ }

{ }

[]

()

() () () ()

() () () ()

= ⋅

=

M round r K

i i i i

i i i i

i n

Subspace

sub aug
rank

aug
rank

aug
rankM

sub aug
rank

aug
rank

aug
rankM

sub sub

 (8.11)

In Eq. (8.10), Ubrange and Lbrange are the upper and lower bounds of the

original design space, w is a weight factor, and n refers to the number

of dimensions. In Eq. (8.11), r is a ratio coefficient and K represents the

number of expensive samples. The two user-defined parameters, “w” and

“r” determine the size of the subspaces. If “w” is bigger than 50% or “r”

is bigger than 100%, it will lose the significance of the space reduction.

On the contrary, if “w” and “r” are too small, the local surrogate mod-

els will get inaccurate and SCGOSR may miss some promising solutions.

Therefore, the recommended ranges for “w” and “r” are [10%, 20%] and

[20%, 40%], respectively. Intuitively, Subspace1 is a neighborhood of the

present best solution that comes from Eqs. (8.6) and (8.9), while Subspace2

encloses several promising samples that are defined by Eqs. (8.7) and (8.9).

In SCGOSR, the proposed multi-start constrained optimization algorithm

alternately explores the three spaces: Subspace1, Subspace2 and the global

design space. As Ong et al. (2003) suggested, it is difficult to construct an

accurate global surrogate model, especially when objective and constraint

functions are multimodal problems. Hence, based on the samples in the

two subspaces, two groups of local Kriging models for the costly objective

and constraints are constructed, respectively.

8.2.3 Exploration on Unknown Area

Generally, a successful global optimization algorithm has the capacity

to escape from local optima to explore the unknown area. In SCGOSR,

when all the new samples in the matrix PLO do not satisfy the diversity

requirement, or several successive iterations do not bring better samples,

the algorithm will focus on the sparsely sampled regions. Here, the esti-

mated MSE of Kriging is maximized by the multi-start optimization

algorithm to search the added sample points. The specific pseudocode is

shown as follows:

206 ◾ Data-Driven Global Optimization Methods and Applications

Algorithm 8.1 Escape from Local Optima

(01) Begin

(02) OptSpace ← Identify the optimization space (Subspace1, Subspace2,

Design Space) based on the number of iterations

(03) Snew ← New samples selected from the PLO matrix

(04) , ,1
1

1
2

1Y Y Yaug
rank

aug
rank

aug
rankK ← Sort the augmented function values to get

the ranks

(05) 1Yaug
mean ← mean , ,1

1
1

2
1Y Y Y()aug

rank
aug
rank

aug
rankm , Get the mean value of the top

m augmented function values based on the ranks

(06) Ymean(iteration) ← Save and Record 1Yaug
meanin each iteration.

(07) if iteration > 5

(08) GVI ← | Ymean(pre_iter)- Ymean(pre_iter-5)|. (Here, “pre_iter”

refers to the present iteration)

(09) else

(10) GVI ← 1e20

(11) end if

(12) if Snew is empty or GVI <=1e−6

(13) Snew_mse ← Call multi-start constrained optimization to

maximize the estimated MSE of Kriging in OptSpace based

on Eqs. (8.2) to (8.5)

(14) Snew ← [Snew; Snew_mse]

(15) end if

(16) End

In Algorithm 8.1, GVI is a temporary variable that records the changes of

the top m augmented function values. From Lines (04) to (06) of Algorithm

1, it is clear that the top m samples are selected and their mean value is

recorded in each cycle. Besides, as Lines (07) to (12) in Algorithm 8.1 show,

if the mean value of the top m sample values does not change obviously or

Snew is empty, the multi-start constrained optimization begins to explore

the unknown area.

8.2.4 Optimization Flow

In this section, the overall flowchart of SCGOSR is given, and it mainly

includes three parts: initialization, exploitation and exploration. For a

global optimization algorithm, exploitation refers to the quick search in

the vicinity of the present best solution, while exploration denotes sup-

plementing new points in sparsely sampled areas. SCGOSR possesses the

SCGOSR ◾ 207

capacity of intensive search in a local promising region and meanwhile

is also able to jump out from a local valley. The flowchart of SCGOSR is

shown in Figure 8.1.

In Figure 8.1, the local convergence criterion is provided in Algorithm

8.1, and the global stopping criterion is defined as below.

 y t et or NFEbest ≤ >, 500arg (8.12)

FIGURE 8.1 Flowchart of SCGOSR.

208 ◾ Data-Driven Global Optimization Methods and Applications

where target is a defined target value and NFE represents the number of

objective or constraint function evaluations.

In Figure 8.1, the function “rem(A, B)” returns the remainder after the

division of A by B.

8.3 COMPUTATIONAL EXPERIMENTS

In order to verify the capability and demonstrate the advantage of

SCGOSR, different representative benchmark cases in the nonlinear con-

strained optimization domain are tested. These cases include eight bench-

mark mathematical examples (BR, SE, GO, G4, G6, G7, G8 and G9) and

five engineering applications (TSD, WBD, PVD, SRD and SCBD) that are

commonly used. More details of the test cases can be seen in Table 8.1.

In Table 8.1, dim denotes the number of dimensions, and Noc is the

abbreviation of “Number of Constraints.” Besides, “Target value” and

“Known Best Value” come from the already published papers about con-

strained problems (Garg, 2014; Thanedar & Vanderplaats, 1995). It is men-

tionable that these cases have various characteristics and involve different

dimensions and constraints. Obviously, they can represent most of the

constrained optimization problems that we may encounter in the actual

engineering design. In the following tests, the parameter P in Eqs. (8.3),

(8.6) and (8.7) equals to 1e10, ∆ in Eq. (8.5) is defined as 1e−5, w in Eq.

(8.10) is 15%, and r in Eq. (8.11) is 25%.

TABLE 8.1 Nonlinear Constrained Optimization Cases

Category Func. dim Noc. Design Range

Target

Value

Known

Best Value

Benchmark
mathematical
examples

BR 2 1 [−5,10] × [0,15] 0.3980 0.3979

SE 2 1 [0,5]2 −1.1740 −1.1743

GO 2 1 [−0.5,0.5] × [−1,0] −0.970 −0.9711

G4 5 6 [78,102] × [33,45] × [27,45]3 −31,025 −31,025.56

G6 2 2 [13,100] × [0,100] −6,960 −6,961.81

G7 10 8 [−10,10]10 25 24.3062

G8 2 2 [1e−15,10]2 −0.0958 −0.0958

G9 7 4 [−10,10]7 1,000 680.6301

Engineering
applications

TSD 3 4 [0.05,2] × [0.25,1.3] × [2,15] 0.0128 0.01267

WBD 4 7 [0.1,2] × [0.1,10]2 × [0.1,2] 1.8 1.7249

PVD 4 4 [0.0625,6.1875]2 × [10,200]2 6,000 5,885.33

SRD 7 11 [2.6,3.6] × [0.7,0.8] × [17,28] ×
[7.3,8.3]2 × [2.9,3.9] × [5.0,5.5]

3,000 2,994.42

SCBD 10 11 ([2,3.5] × [35,60])5 65,000 62,791

SCGOSR ◾ 209

8.3.1 Preliminary Test

Preliminarily, the presented SCGOSR algorithm is tested on the 13 bench-

mark cases, and the results are listed in Table 8.2. What is more, Figure 8.2

provides the iterative results of SCGOSR on all these cases. It is worth not-

ing that SCGOSR uses “NFE > 500” as the global stopping criterion in the

preliminary test. It is clear that SCGOSR can easily find the target values

of these cases and even get much closer to the global optima shown in

Table 8.1. In order to improve the readability of Figure 8.2, clearer results

are given in some cases, like BR, G6, G7, G8, G9 and WBD. As Figure 8.2a,

e, f, g, i, l, m, o and p shows the initial DoE cannot provide a feasible solu-

tion in most cases, but SCGOSR can still capture the feasible solutions

with iterations going on.

8.3.2 Comparison and Analyses

Due to the random feature of SCGOSR, ten independent tests were con-

ducted to verify its stability. Additionally, five surrogate-based constrained

optimization algorithms (RBFCGOSR, SCGO, MSSR, MS and MSRBF) are

tested in contrast. Specifically, RBFCGOSR is the same as SCGOSR except

that RBFCGOSR uses cubic RBF to construct the surrogate model; SCGO

is the SCGOSR algorithm without space reduction; MSSR is a previously

presented global optimization algorithm that can deal with constrained

problems; MS is the MSSR algorithm without using space reduction strate-

gies; MSRBF is an RBF-based optimization algorithm using the multi-start

TABLE 8.2 Preliminary Test Results of SCGOSR

Problems Design Variables f(x)

BR [9.4248, 2.4750] 0.3979

SE [2.7450, 2.3523] −1.1743

GO [0.1092, −0.6234] −0.9711

G4 [78, 33, 27.0734, 45, 44.9619] −31,025.35

G6 [14.0950, 0.8430] −6,961.80

G7 [2.1640, 2.3825, 8.7750, 5.0870, 0.9753, 1.3864, 1.3067,

9.8169, 8.2413]

24.3187

G8 [1.2315, 4.2450] −0.0958

G9 [2.0341, 1.9175, −0.6860, 4.4691, −0.2074, 1.7834, 1.6773] 686.8836

TSD [0.0516, 0.3550, 11.3904] 0.0126653

WBD [0.2057, 3.4705, 9.0366, 0.2057] 1.7249

PVD [0.7792, 0.3852, 40.3713, 199.3308] 5,888.66

SRD [3.5002, 0.7000, 17, 7.3000, 7.7153, 3.3503, 5.2867] 2,994.78

SCBD [2.9921, 59.8408, 2.7943, 55.3846, 2.5237, 50.4720, 2.2206,

43.9321, 2, 35.0028]

62,874.36

210 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 8.2 SCGOSR on benchmark cases. (a) SCGOSR on BR. (b) SCGOSR on

SE. (c) SCGOSR on GO. (d) SCGOSR on G4. (e) SCGOSR on G6. (f) SCGOSR on

G8. (g) SCGOSR on G7. (h) Clear results of SCGOSR on G7. (i) SCGOSR on G9.

(j) Clear results of SCGOSR on G9. (k) SCGOSR on PVD. (l) SCGOSR on SRD.

(m) SCGOSR on WBD. (n) Clear results of SCGOSR on WBD. (o) SCGOSR on

TSD. (p) SCGOSR on SCBD.
(Continued)

SCGOSR ◾ 211

FIGURE 8.2 (Continued) SCGOSR on benchmark cases. (a) SCGOSR on BR.

(b) SCGOSR on SE. (c) SCGOSR on GO. (d) SCGOSR on G4. (e) SCGOSR on

G6. (f) SCGOSR on G8. (g) SCGOSR on G7. (h) Clear results of SCGOSR on G7.

(i) SCGOSR on G9. (j) Clear results of SCGOSR on G9. (k) SCGOSR on PVD. (l)

SCGOSR on SRD. (m) SCGOSR on WBD. (n) Clear results of SCGOSR on WBD.

(o) SCGOSR on TSD. (p) SCGOSR on SCBD.

212 ◾ Data-Driven Global Optimization Methods and Applications

optimization solvers of SCGOSR. Besides, SCGOSR is also compared with

KCGO that is recently published. The ranges of best values are shown in

Tables 8.3 and 8.5. The statistical NFE results are shown in Tables 8.3–8.6.

Here, the NFE values with the symbol “>” indicate that at least one of the

tests cannot find the target value within 500 function evaluations, the

numbers in the brackets “()” refer to the number of failures, and the num-

bers in the brackets “{}” represent how many times the algorithm cannot

find feasible solutions.

Intuitively, SCGOSR can find the target values of all the cases within

500 function evaluations, but the other five algorithms have failed cases

in varying degrees. In this work, two-dimensional cases like BR, SE, GO,

G6 and G8 are nonlinear constrained problems. For these low-dimen-

sional problems, it is clear that MS and MSRBF have a higher possibility

of failure, and RBFCGOSR and MSSR can succeed in most cases. BR is

a relatively simple case whose global optima can be easily found by all

these algorithms. Besides, it is difficult for the two RBF-based algorithms

(RBFCGOSR and MSRBF) to quickly find the target value of GO and G8.

What is more, MSSR, MS and MSRBF sometimes may go close to the tar-

get value of SE but finally, they cannot reach the target.

When the number of dimensions and constraints increases, it will get

harder for a surrogate-based optimization algorithm to find target values.

For G4, which has five dimensions and six constraints, the proposed opti-

mization flow including SCGOSR, RBFCGOSR and SCGO can success-

fully find the target value with fewer function evaluations, but MSSR, MS

and MSRBF always fail. In the mathematical examples, G7 and G9 seem to

be the most complex cases, and thus most of these algorithms have larger

NFE values. In particular, MSRBF sometimes cannot even find a feasible

solution on G7 when it stops.

For engineering applications, SCGOSR and MSSR perform better. Due

to the lack of an exploration strategy that can help an algorithm escape

from local valleys, MSRBF is easy to get trapped in a local optimal region.

Hence, MSRBF is not stable in most engineering cases. Since SRD and

SCBD both have 11 constraints that bring challenges for optimization,

RBFCGOSR, MSSR, MS and MSRBF commonly use more function evalu-

ations to search their target values.

Table 8.7 shows the comparison results of SCGOSR and KCGO (Li

et al., 2017). In Table 8.7, KCGO provides a group of results that come

from the reference. Here, G4′ is a little different from G4 (Garg, 2014) that

was previously introduced. The coefficient 0.00026 in G4 is changed to

SC
G

O
SR

 ◾

2
1
3

TABLE 8.3 Best Values and Mean NFE of SCGOSR, RBFCGOSR, and SCGO

Func.

SCGOSR RBFCGOSR SCGO

NFE Best Value NFE Best Value NFE Best Value

BR 25.1 [0.3979, 0.3980] 69 [0.3979, 0.3980] 26.7 [0.3979, 0.3980]

SE 25.9 [−1.1743, −1.1740] 43.2 [−1.1743, −1.1741] 24.3 [−1.1743, −1.1741]

GO 51.1 [−0.9711, −0.9706] >137.6 [−0.9711, −0.7653] 85.7 [−0.9711, −0.9708]

G4 53.9 [−31,026, −31,025] 252.6 [−31,026, −31,025] 55.7 [−31,026, −31,025]

G6 78.5 [−6,961.8, −6,961.4] 46.4 [−6,961.8, −6,961.2] >464 [−6,961.6, −6,937.3]

G7 178.2 [24.3149, 24.9969] 247.2 [24.3062, 24.8145] >290.6 [24.4436, 27.824]

G8 51.8 [−0.0958, −0.0958] >178.1 [−0.0958, −0.0936] 115.5 [−0.0958, −0.0958]

G9 115.6 [826.30, 981.86] 124.2 [845.75, 974.07] 165.2 [730.19, 990.14]

TSD 75.7 [1.267e−2, 1.278e−2] >293.3 [1.273e−2, 1.287e−2] 110.2 [1.267e−2, 1.279e−2]

WBD 101.9 [1.7249, 1.7888] 194 [1.7449, 1.7983] >392.4 [1.7745, 2.7610]

PVD 42.9 [5,885.3, 5,982.1] 174.2 [5,885.4, 5,972.7] 31.9 [5,885.3, 5,981.7]

SRD 88.1 [2,994.5, 2,997.8] 232.6 [2,994.5, 2,994.5] 147.8 [2,994.5, 2,999.3]

SCBD 152.5 [62,861, 64,895] >256.9 [62,791, 70,594] 216.3 [63,079, 64,699]

2
1
4

 ◾ D
ata-D

riven
 G

lo
b
al O

p
tim

izatio
n

 M
eth

o
d
s an

d
 A

p
p
licatio

n
s

TABLE 8.4 Statistical NFE of SCGOSR, RBFCGOSR and SCGO

Func.

SCGOSR RBFCGOSR SCGO

Min Median Max Min Median Max Min Median Max

BR 21 25.5 29 28 60 160 17 24 48

SE 18 24.5 41 25 33 128 20 25 30

GO 17 28 156 22 60.5 >500(1) 18 21 297

G4 32 35.5 174 188 253 307 21 25.5 181

G6 33 65.5 171 27 44.5 71 123 >500 >500(9)

G7 102 199.5 239 107 200.5 459 64 >293.5 >500(5)

G8 24 47.5 80 32 104.5 >500(2) 44 97 297

G9 54 112 198 58 121 213 31 187.5 235

TSD 43 69 114 113 244 >500(1) 62 96.5 249

WBD 72 97 153 112 180.5 372 186 408 >500(3)

PVD 27 41 63 92 159 285 26 31.5 36

SRD 35 60.5 272 143 219.5 345 35 127 331

SCBD 62 119.5 297 134 222.5 >500(1) 42 209 470

SC
G

O
SR

 ◾

2
1
5

TABLE 8.5 Best Values and Mean NFE of MSSR, MS and MSRBF

Func.

MSSR MS MSRBF

NFE Best Value NFE Best Value NFE Best Value

BR 22.6 [0.3979, 0.3980] 21.8 [0.3979, 0.3979] >145.9 [0.3979, 0.3981]

SE >162.8 [−1.1743, −1.1739] >233.7 [−1.1743, −1.1735] >74.5 [−1.1743, −1.1729]

GO 33.6 [−0.9711, −0.9701] 41.8 [−0.9711, −0.9703] >357.7 [−0.9708, −0.1664]

G4 >272.3 [−31,026, −31,020] >310.5 [−31,026, −30,742] >232.2 [−31,026, −31,024]

G6 >253.5 [−6,961.4, −6,958.3] >454.6 [−6,960.9, −6,918.7] 147.2 [−6,961.8, −6,961.8]

G7 >147.8 [24.3540, 25.1828] >213.4 [24.3342, 27.8559] >500 [25.0043, 1e10] {*1}

G8 68.9 [−0.0958, −0.0958] 94.8 [−0.0958, −0.0958] >427.8 [−0.0958, −2.89e−5]

G9 109.1 [828.79, 999.87] 160.8 [822.56, 999.99] >438.1 [946.63, 11,690]

TSD 95.4 [1.267e−2, 1.279e−2] 100.7 [1.268e−2, 1.279e−2] 179.2 [1.267e−2, 1.278e−2]

WBD 156 [1.7354, 1.7976] >348.4 [1.7643, 2.8849] >311.6 [1.7333, 2.7608]

PVD 30.4 [5,891.2, 5,951.5] 29.7 [5,885.4, 5,965.3] >150.2 [5,885.4, 6,025.5]

SRD >209.6 [2,994.5, 3,019.2] >322.3 [2,994.5, 3,018.7] >328.3 [2,994.5, 5,448.7]

SCBD 284.4 [62,858, 64,648] 307 [62,791, 64,731] >387.8 [62,791, 1e10]

2
1
6

 ◾ D
ata-D

riven
 G

lo
b
al O

p
tim

izatio
n

 M
eth

o
d
s an

d
 A

p
p
licatio

n
s

TABLE 8.6 Statistical NFE of MSSR, MS and MSRBF

Func.

MSSR MS MSRBF

Min Median Max Min Median Max Min Median Max

BR 17 23 28 19 20.5 30 45 79 >500(1)

SE 25 124.5 >500(1) 22 116 >500(4) 20 26 >500(1)

GO 13 33 54 14 42.5 74 17 >500 >500(7)

G4 21 >288.5 >500(5) 22 >500 >500(6) 161 198 >500(1)

G6 15 190 >500(4) 230 >500 >500(8) 53 75 408

G7 72 104 >500(1) 73 98 >500(3) >500 >500 >500(10)

G8 39 64.5 109 42 95.5 152 31 >500 >500(8)

G9 60 102.5 189 83 145 295 139 >500 >500(8)

TSD 52 101 153 53 84 249 75 167 399

WBD 98 133 411 178 358 >500(2) 60 299 500(4)

PVD 26 31 37 23 28 49 46 63 >500(1)

SRD 31 201.5 >500(1) 34 364 >500(2) 120 305 >500(3)

SCBD 52 310.5 384 146 317.5 466 147 >500 >500(6)

SCGOSR ◾ 217

0.0006262 in G4′. Now, the known global optima of G4′ is −30,665.54.

Obviously, KCGO has impressive performance on these cases. KCGO

can find an approximate optimum on G4′ only using 24 function evalu-

ations. SCGOSR can always get satisfactory values on G4′ but needs at

least 33 function evaluations. However, SCGOSR sometimes can find the

true global optimum −30,665.54. Similarly, SCGOSR can find much better

values than KCGO on G6, but KCGO uses fewer function evaluations. For

G7, KCGO can get more accurate results than SCGOSR, while SCGOSR

sometimes can be more efficient. Intuitively, SCGOSR mostly outperforms

KCGO on G8, because the best value of KCGO is outside of the SCGOSR’s

value range and SCGOSR can use fewer function evaluations. For G9,

SCGOSR is able to find a better value of 826.30 than KCGO with a smaller

NFE. Besides, the mean NFE of SCGOSR (115.6) is also much smaller than

163. For the three engineering applications TSD, WBD and SRD, there is

no doubt that SCGOSR gets more accurate results than KCGO. What is

more, SCGOSR also performs efficiently on the three applications.

No matter the mathematical examples or engineering applications,

SCGOSR always has impressive performance. More importantly, SCGOSR

shows advantages in stability and efficiency compared with other algo-

rithms. In summary, SCGOSR is a promising constrained optimization

algorithm for expensive black-box problems.

8.3.3 Further Comparison and Analyses

Additionally, in order to demonstrate the extensive applicability of

SCGOSR, further experiments are set up. The constrained optimization

algorithm “superEGO” is used as contrast. “superEGO” (Sasena et al.,

2002) was developed to solve computationally expensive problems with

TABLE 8.7 Comparison of SCGOSR and KCGO

Cases

SCGOSR KCGO

Mean NFE Range of NFE Range of Best Value NFE Best Value

G4′ 60.3 [33, 163] [−30,665.54, −30,665.20] 24 −30,665.51

G6 78.5 [33, 171] [−6,961.8, −6,961.4] 31 −6,677.68

G7 178.2 [102, 239] [24.3149, 24.9969] 107 24.3093

G8 51.8 [24, 80] [−0.0958, −0.0958] 39 −0.0956

G9 115.6 [54, 198] [826.30, 981.86] 163 860.9243

TSD 75.7 [43, 114] [1.267e−2, 1.278e−2] 38 0.0135

WBD 101.9 [72, 153] [1.7249, 1.7888] 115 2.3230

SRD 88.1 [35, 272] [2,994.5, 2,997.8] 43 2,999.76

218 ◾ Data-Driven Global Optimization Methods and Applications

disconnected feasible regions. In this chapter, two benchmark examples,

Gomez and newBranin suggested by Sasena et al. (2002) are tested. new-

Branin has three feasible regions that only cover about 3% of the design

space, and the disconnected feasible regions of Gomez cover approxi-

mately 19% of the design space. According to the reference, SCGOSR also

utilizes LHS to generate ten initial sample points and runs ten times on the

two examples. Besides, SCGOSR will stop and NFE will be recorded when

a feasible point is obtained within a box (±1% of the design space range)

around the true global optimal solution. The main data of Table 8.8 comes

from the reference, and it is clear that superEGO2 performs the best in the

two examples. It is worth noting that SCGOSR also has impressive perfor-

mance. For newBranin, SCGOSR is much closer to the superEGO’s results.

However, SCGOSR needs more function evaluations than superEGO2 on

Gomez. What is more, SCGOSR outperforms the deterministic optimiza-

tion algorithm DIRECT (Jones, 2001), the gradient-based algorithm SQP,

and the nature-inspired algorithm SA (Kirkpatrick et al., 1983).

In order to demonstrate how SCGOSR works on the problems with

disconnected feasible regions, two graphical examples are shown in

Figures 8.3 and 8.4. In the two figures, the stars are the global optimal

solutions, the squares are DoE sample points, the black circles are pre-

viously added points and the blue circles are the currently added points.

Besides, the dashed lines refer to the constraint bounds.

We advisedly provide the two cases with “worse initial sample points.”

In other words, the initial sample points cannot offer positive guidance for

SCGOSR to find the global optimum at the beginning. From Figure 8.3,

it can be seen that the search at first focuses on the “wrong” feasible

regions. Figure 8.3b and c shows that the search gradually goes close to the

most important feasible region. Additionally, since SCGOSR can capture

TABLE 8.8 Comparison on newBranin
and Gomez

Algorithm

Average Number of

Function Evaluations

newBranin Gomez

SCGOSR 24.6 47.5

superEGO1 22.2 66.3

superEGO2 22.0 36.5

DIRECT 76 93

SQP 363 831

SA 5,371 7,150

SCGOSR ◾ 219

multiple local optimal points in each cycle, the three feasible regions are

sufficiently explored. Finally, 44 function evaluations are used to find the

best solution [3.2340, 0.9547].

Intuitively, Gomez is more complex than newBranin as illustrated in

Figure 8.4. It is clear that the search begins from the left feasible region that

includes an initial sample point. During the first 20 iterations, SCGOSR is

busy exploring “wrong” feasible regions. After SCGOSR explores five fea-

sible regions, it begins to pay attention to the neighborhood of the global

optimal point. Finally, SCGOSR finds the satisfactory feasible solution

[0.1110, −0.6233] by 35 iterations and 79 function evaluations. In sum-

mary, SCGOSR can also solve complex problems with disconnected fea-

sible regions.

8.3.4 Specific Analyses on Space Reduction

After the previous comparison with other methods, SCGOSR has shown

its remarkable capability. According to the comparison results of SCGOSR

and SCGO in Table 8.3, it is clear that the two subspaces speed up the

search process of SCGOSR. In order to analyze the contribution of using

Subspace1 and Subspace2, separately, two algorithms SCGOSR_S1 and

FIGURE 8.3 Iterative results of SCGOSR on newBranin. (a) Iterations 1–4. (b)

Iterations 5–9. (c) Iterations 10–15. (d) Iterations 16–17.

220 ◾ Data-Driven Global Optimization Methods and Applications

SCGOSR_S2 are tested. The two algorithms are the same as SCGOSR,

except that the two subspaces are used, respectively. Table 8.9 shows the

statistical results of the two algorithms. Combining the results of SCGOSR

TABLE 8.9 Best Values and Mean NFE of SCGOSR_S1 and SCGOSR_S2

Func.

SCGOSR_S1 SCGOSR_S2

Mean NFE Best Values Mean NFE Best Values

BR 23.7 [0.3979, 0.3980] 28.3 [0.3979, 0.3980]

SE 27.7 [−1.1743, −1.1742] 26.5 [−1.1743, −1.1741]

GO 64.2 [−0.9711, −0.9704] 26.7 [−0.9711, −0.9701]

G4 96.2 [−31026, −31025] 37 [−31,026, −31,025]

G6 80.3 [−6,961.8, −6,960.0] >362.8 (7) [−6,961.8, −6,914.1]

G7 152.6 [24.3083, 24.9307] 220.3 [24.3086, 24.8412]

G8 79.6 [−0.0958, −0.0958] 46.2 [−0.0958, −0.0958]

G9 96.9 [782.31, 988.15] 118.5 [720.83, 982.69]

TSD 120.8 [1.267e−2, 1.276e−2] 77.7 [1.267e−2, 1.272e−2]

WBD 89.5 [1.7249, 1.7998] >150.7(1) [1.7286, 2.5605]

PVD 40.9 [5,907.3, 5,995.1] 36.8 [5,885.4, 5,959.5]

SRD 168.6 [2,994.5, 2,999.5] 60.9 [2,994.5, 2,999.9]

SCBD 223.4 [62,792, 64,846] 157.7 [62,791, 64,318]

FIGURE 8.4 Iterative results of SCGOSR on Gomez. (a) Iterations 1–4. (b)

Iterations 5–9. (c) Iterations 10–15. (d) Iterations 16–17.

SCGOSR ◾ 221

in Table 8.3 with the results in Table 8.9, we give the specific ranking of the

three algorithms in Table 8.10. Intuitively, SCGOSR_S2 fails several times

on G6 and WBD, but it has the best performance on GO, G4, G8, PVD

and SRD. Differently, SCGOSR_S1 uses the fewest function evaluations on

BR, G7, G9 and WBD, but performs badly on SRD and SCBD. Relatively

speaking, SCGOSR has the most stable performance and its total ranking

is the best. Although the combinative utilization of the two subspaces may

increase NFE on some problems, it makes the space reduction strategy

more robust.

8.4 CHAPTER SUMMARY

In this work, a surrogate-based global optimization algorithm for com-

putationally expensive black-box problems (SCGOSR) is presented. It is

worth mentioning that SCGOSR can handle problems with costly objec-

tives and constraints, which frequently appear in actual engineering

design. In SCGOSR, Kriging is used to construct surrogate models that will

be updated with iterations going on. Besides, a multi-start optimization

method is proposed to exploit surrogate models, and newly added samples

are selected from predictive local optimal solutions. In order to speed up

the search on Kriging, two subspaces are created based on two penalty

functions. Among them, Subspace1 is the vicinity of the present best solu-

tion, and Subspace2 is a region that encloses several promising solutions.

TABLE 8.10 Ranking of SCGOSR, SCGOSR_S1 and SCGOSR_S2

Ranking SCGOSR SCGOSR_S1 SCGOSR_S2

BR 2 1 3

SE 1 3 2

GO 2 3 1

G4 2 3 1

G6 1 2 3

G7 2 1 3

G8 2 3 1

G9 2 1 3

TSD 1 3 2

WBD 2 1 3

PVD 3 2 1

SRD 2 3 1

SCBD 1 3 2

Total ranking 23 29 26

222 ◾ Data-Driven Global Optimization Methods and Applications

Furthermore, two groups of local surrogate models are constructed by the

samples in the two subspaces, respectively. On the one hand, local sur-

rogates can improve the local convergence efficiency. On the other hand,

local surrogates make SCGOSR spend less time in constructing Kriging

models for objective and constraint functions. The proposed multi-start

optimization is carried out alternately on Subspace1, Subspace2 and the

overall design space. Once SCGOSR gets trapped in a local optimal region

and a proposed local convergence criterion is satisfied, SCGOSR begins to

explore the sparsely sampled area.

Finally, through the comparison tests on eight mathematical examples

and five engineering applications, SCGOSR shows the powerful capacity

in dealing with expensive black-box-constrained optimization problems.

NOTE
 1 Based on “SCGOSR: Surrogate-based Constrained Global Optimization

using Space Reduction,” published in [Applied Soft Computing], [2018].
Permission obtained from [Elsevier].

REFERENCES

Audet, C., Savard, G., & Zghal, W. (2010). A Mesh Adaptive Direct Search
Algorithm for Multiobjective Optimization. European Journal of Operational
Research, 204(3), 545–556. https://doi.org/10.1016/j.ejor.2009.11.010

Bagheri, S., Konen, W., Emmerich, M., & Baeck, T. (2017). Self-Adjusting Parameter
Control for Surrogate-Assisted Constrained Optimization under Limited
Budgets. Applied Soft Computing, 61, 377–393. https://doi.org/10.1016/j.
asoc.2017.07.060

Basudhar, A., Dribusch, C., Lacaze, S., & Missoum, S. (2012). Constrained
Efficient Global Optimization with Support Vector Machines. Structural
and Multidisciplinary Optimization, 46(2), 201–221. https://doi.org/10.1007/
s00158-011-0745-5

Bjorkman, M., & Holmstrom, K. (2000). Global Optimization of Costly Nonconvex
Functions Using Radial Basis Functions. Optimization and Engineering, 1(4),
373–397. https://doi.org/10.1023/a:1011584207202

Durantin, C., Marzat, J., & Balesdent, M. (2016). Analysis of Multi-Objective
Kriging-Based Methods for Constrained Global Optimization. Computational
Optimization and Applications, 63(3), 903–926. https://doi.org/10.1007/
s10589-015-9789-6

Garg, H. (2014). Solving Structural Engineering Design Optimization Problems
Using an Artificial Bee Colony Algorithm. Journal of Industrial and
Management Optimization, 10(3), 777–794. https://doi.org/10.3934/jimo.
2014.10.777

Jones, D. R. (2001). Direct global optimization algorithm. Springer US.

https://doi.org/10.1007/s00158-011-0745-5
https://doi.org/10.1016/j.asoc.2017.07.060
https://doi.org/10.1016/j.asoc.2017.07.060
https://doi.org/10.3934/jimo.2014.10.777
https://doi.org/10.3934/jimo.2014.10.777
https://doi.org/10.1023/a:1011584207202
https://doi.org/10.1007/s10589-015-9789-6
https://doi.org/10.1016/j.ejor.2009.11.010
https://doi.org/10.1007/s00158-011-0745-5
https://doi.org/10.1007/s10589-015-9789-6

SCGOSR ◾ 223

Kirkpatrick, S., Gelatt, C. D., Vecchi, & P., M. (1983). Optimization by Simulated
Annealing. Science, 220, 671–680.

Li, Y., Wu, Y., Zhao, J., & Chen, L. (2017). A Kriging-Based Constrained Global
Optimization Algorithm for Expensive Black-Box Functions with Infeasible
Initial Points. Journal of Global Optimization, 67, 343–366.

Muller, J., & Woodbury, J. D. (2017). GOSAC: Global Optimization with Surrogate
Approximation of Constraints. Journal of Global Optimization, 69(1), 117–
136. https://doi.org/10.1007/s10898-017-0496-y

Ong, Y. S., Nair, P. B., & Keane, A. J. (2003). Evolutionary Optimization of
Computationally Expensive Problems via Surrogate Modeling. AIAA Journal,
41(4), 687–696.

Parr, J. M., Forrester, A. I. J., Keane, A. J., & Holden, C. M. E. (2012). Enhancing
Infill Sampling Criteria for Surrogate-Based Constrained Optimization.
Journal of Computational Methods in Sciences & Engineering, 12(1–2), 25–45.

Regis, R. G. (2011). Stochastic Radial Basis Function Algorithms for Large-Scale
Optimization Involving Expensive Black-Box Objective and Constraint
Functions. Computers & Operations Research, 38(5), 837–853. https://doi.
org/10.1016/j.cor.2010.09.013

Sasena, M. J., Papalambros, P. Y., & Goovaerts, P. (2002). Global optimization
of problems with disconnected feasible regions via surrogate modeling.
AIAA-2002-5573, 9th AIAA/ISSMO Symposium on Multidisciplinary Analysis
and Optimization, Atlanta, Georgia, September 4–6, 2002.

Thanedar, P. B., & Vanderplaats, G. N. (1995). Survey of Discrete Variable
Optimization for Structural Design. Journal of Structural Engineering-ASCE,
121(2), 301–306. https://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(301)

Tolson, B. A., & Shoemaker, C. A. (2007). Dynamically Dimensioned
Search Algorithm for Computationally Efficient Watershed Model
Calibration. Water Resources Research, 43(1), Article W01413. https://doi.
org/10.1029/2005wr004723

https://doi.org/10.1016/j.cor.2010.09.013
https://doi.org/10.1016/j.cor.2010.09.013
https://doi.org/10.1007/s10898-017-0496-y
https://doi.org/10.1029/2005wr004723
https://doi.org/10.1029/2005wr004723
http://doi.org/10.1061/(ASCE)0733-9445(1995)121:2(301)

224

C H A P T E R 9

KTLBO

Kriging-Assisted Teaching–
Learning-Based Optimization to
Solve Computationally Expensive
Constrained Problems1

9.1 INTRODUCTION

As high-fidelity simulation techniques are leaping forward and being

applied extensively, computationally expensive black-box global opti-

mization has turned out to be one of the most challenging problems in

engineering optimization (Dong, Song, Wang, et al., 2018; Li et al., 2020;

Ororbia et al., 2020). Overall, the more accurate the simulation analysis,

the more computation budget it will bring. Thus, engineers are required to

take some time to achieve satisfactory accuracy. Besides, costly black-box

constraints may further complicate optimization and impose greater chal-

lenges (Bagheri et al., 2017; Li, 2019; Miranda-Varela & Mezura-Montes,

2018; Muller & Woodbury, 2017). Sometimes, feasible solutions are dif-

ficult to find in actual simulation-based engineering applications with

acceptable computational budgets (Akbari & Kazerooni, 2020; Wu et al.,

2018). Specifically, the expensive black-box constrained problems (EBCPs)

that the chapter focuses on can be described as follows:

min ,

. . 0, 1, , .

x

x 

[]()

()

∈

≤ =

xf lb ub

s t C i mi

 (9.1)

DOI: 10.1201/9781003636267-9

https://doi.org/10.1201/9781003636267-9

KTLBO ◾ 225

Where [lb, ub] denotes the search space; f(x) represents the objective func-

tion; Ci(x) denotes the ith inequality constraint; and m is the total num-

ber of inequality constraints. It is assumed that both f (x) and Ci(x) are

time-consuming black boxes. If the objective function f(x) is calculated at

an unknown point x, the corresponding constraints Ci(x) can be attained

concurrently. In other words, f(x) and Ci(x) are different response values

from one simulation model.

Since most of the mentioned time-depending and black-box simula-

tion models are unable to present an explicit mathematical expression,

the conventional gradient-based mathematical programming methods

become inferior. In the existing literature, swarm intelligence (SI) and

evolutionary computation (EC) combined with some constraint-handling

techniques are widely employed to address black-box constrained prob-

lems (Mezura-Montes & Coello Coello, 2011). Farmani and Wright (2003)

presented a self-adaptive fitness formulation for constrained optimization

by referencing their previous work (Wright & Farmani, 2001), where a

penalty-function method was proposed for genetic algorithm (GA). In the

optimized version, constraint violations were represented by a single infea-

sibility measure function involving a two-stage penalty strategy, which

could decrease the dimensionality of the problem and make the method

more dynamic and self-adaptive. Daneshyari and Yen (2012) developed a

constrained multi-swarm particle swarm optimization (CPSO) method in

a cultural framework (cultural CPSO), where numerous concepts from the

cultural algorithm were employed to optimize PSO’s updating mechanism

and swarm-communication capability. In cultural CPSO, objective and

constraint violation values are normalized, and a V–F space is established

to form a modified fitness formulation for comparisons of particles. Wang

and Cai (2012) developed an algorithm combining multiobjective opti-

mization with differential evolution (CMODE) to solve constrained opti-

mization by using their previous Cai-Wang (CW) algorithm. In CMODE

(Wang & Cai, 2012), objective and constraint violation functions emerged

into a biobjective optimization formulation as an attempt to minimize

objective values and degree of constraint violations. Unlike CW (Wang &

Cai, 2012), CMODE employed DE as the search engine to decrease the

number of tuning parameters and proposed a more efficient replacement

mechanism for infeasible solutions. Furthermore, Wang et al. (2016) intro-

duced a novel constrained optimization method: integrating feasibility

rules with objective function information (FROFI). A novel replacement

mechanism and a mutation strategy have been cooperatively adopted to

generate promising offspring and achieve global exploration.

226 ◾ Data-Driven Global Optimization Methods and Applications

Though SI and EC algorithms (Chen et al., 2018; Kar, 2016; Mavro-

vouniotis et al., 2017) can effectively solve complex black-box optimization,

they are overly determined by the number of function assessments, which

is inappropriate for computationally expensive problems. In most cases,

one simulation may require several minutes or hours, while thousands of

calls to the simulation models will cause unbearable computation costs,

thereby enormously extending the design cycle. When the time-to-market

requirement is tight, an efficient optimization method that requires fewer

calls to the expensive model is indispensable (Liu et al., 2014).

Dong, Li, et al. (2018) developed a multi-surrogate-based global opti-

mization method using a score-based infill criterion (MGOSIC), where

Kriging, radial basis function (RBF), and polynomial response surface

(PRS) are separately employed to build dynamically updated surrogate

models. In addition, a score-based infilling criterion is presented to find the

candidate sample sets. The points that can perform better on most of the

surrogate models will have higher scores. Furthermore, high-score points

farther from the known expensive samples will be first introduced into the

expensive sample set. Most of the existing surrogate-based optimization

(SBO) methods are developed to solve expensive black-box unconstrained

problems, and they cannot directly apply to EBCPs. As proposed by Haftka

et al. (2016), “When it comes to adaptive sampling algorithms for con-

strained optimization, the state of the art is less advanced.” Regis (2011)

extended his previous work and developed a constrained local metric sto-

chastic RBF (ConstrLMSRBF) method that separately builds RBF models

for objective and constraint functions. Among the candidate points, the

ones predicted to be feasible are first collected. If none of the candidate

points are feasible on surrogate models, the point with the least number of

constraint violations will be selected. Though ConstrLMSRBF can effec-

tively process some EBCPs, it requires at least one feasible point as the initial

sample to drive the subsequent optimization loop. Sometimes, it is difficult

to identify the feasible solutions of an actual EBCP at the beginning. Liu

et al. (2017) presented an improved constrained optimization algorithm,

termed eDIRECT-C, for EBCPs, where a DIRECT-type (Jones et al., 1993)

constraint-handling technique using the Voronoi diagram (Liu et al., 2015)

was proposed to separately deal with feasible and infeasible cells. Though

eDIRECT-C does not contain user-defined parameters and can effectively

explore the unknown feasible area, it requires more running time and thus

is not appropriate for large-scale and multi-constraint problems. Dong,

Song, Dong, et al. (2018) developed a surrogate-based constrained global

optimization method using space reduction (SCGOSR), where a multi-start

KTLBO ◾ 227

optimization strategy was proposed to capture the promising points from

the local and global spaces of Kriging. SCGOSR outperforms other algo-

rithms on most of the benchmark cases, while it overly relies on Kriging’s

predicting accuracy. If Kriging has a larger prediction error on some prob-

lems, SCGOSR will be mistakenly guided by Kriging and exhibit poor per-

formance. Wang et al. (2019) proposed a global and local surrogate-assisted

DE (GLoSADE) algorithm for EBCPs, consisting of two phases. At the

global phase, DE acts as the search engine to generate potential samples

and the generalized regression neural network is adopted to classify these

points, achieving the global exploration; at the local phase, the interior

point method coupled with RBF is employed to improve the individuals of

the population, eventually accelerating the convergence. Surrogate-assisted

evolutionary algorithms (e.g., GLoSADE) (Yu et al., 2019) comply with the

stochastically sampling mechanism of metaheuristic algorithms, while

they exploit the potential information from surrogates, which have aroused

considerable attention recently (Dong et al., 2019).

In this chapter, an efficient surrogate-assisted SI method is devel-

oped by exploiting the unique optimization framework of teaching–

learning-based optimization (TLBO) (Rao et al., 2011) and Kriging’s

prediction mechanism. Since TLBO was originally developed to pro-

cess constrained mechanical design optimization, a novel method based

on TLBO is expected to efficiently process computationally expensive

inequality- constrained optimization. Since TLBO consists of two phases

to generate new points, two Kriging-guided sampling strategies that can

effectively balance the local search and global exploration are corre-

spondingly proposed. In the Kriging-assisted teaching phase (KATP), the

neighborhoods around the present best solution are sufficiently exploited

to accelerate the convergence, and a constrained expectation of improve-

ment (EI) function considering the probability of feasibility is set as a

prescreening tool to select the potential individuals from the learners.

However, in the Kriging-assisted learning phase (KALP), a constrained

mean square error (MSE) function more concerned with Kriging’s predic-

tion uncertainty is proposed to select the learners located at the sparsely

sampled feasible region for global exploration. Through the joint search

of the proposed two phases, the new KTLBO algorithm can efficiently

solve EBCPs. For this, KTLBO uses Kriging to construct a dynamically

updated surrogate model for the objective and constraint functions and

establishes a constraint-optimization–oriented data management strategy

for archiving, sorting and updating valuable samples.

228 ◾ Data-Driven Global Optimization Methods and Applications

9.2 TEACHING–LEARNING-BASED OPTIMIZATION

TLBO first presented by Rao et al. (2011) refers to a phenomenon-inspired

method that exploits a population to iteratively search the global optimal

solution. Uniquely, TLBO imitates how knowledge spreads in a class (pop-

ulation), where the individuals consist of several learners and one teacher.

The teacher possessing the highest-level knowledge can guide the learners

to get improved, so the overall knowledge level of this class will ultimately

shift to the teacher. Moreover, one learner can be inspired by other learn-

ers: if you are better, I can follow you; otherwise, I can try the opposite

direction. To sum up, TLBO involves two search phases: teaching and

learning. To be more specific, Figure 9.1 illustrates the detailed formulas

and algorithm steps.

FIGURE 9.1 Illustration of TLBO.

KTLBO ◾ 229

9.3 THE PROPOSED KTLBO

In the presented KTLBO, the design of experiments (DoE) is first employed to

yield a group of well-distributed points that should be assessed by real objec-

tive and constraint functions. Thereafter, these expensive samples are orga-

nized to build surrogate models of objectives and constraints, respectively.

In this chapter, a novel sampling method combining metaheuristic search

mechanism and the prediction capability of Kriging is presented, to achieve

a reasonable balance of global exploration and local exploitation. For each

cycle of KTLBO, real data are required to undergo assessment, preprocess-

ing, classifying, surrogate modeling and updating, while the potential candi-

date points determined from Kriging-assisted teaching and learning phases

should go through prescreening and repeatability detecting. After several

iterations, the predicting performance of the mentioned Kriging models is

gradually enhanced, and more potential points around the true feasible area

or global optimum will be captured. Figure 9.2 presents the overall flow of

KTLBO, and more details will be explained in the following sections.

FIGURE 9.2 Data flow of KTLBO.

230 ◾ Data-Driven Global Optimization Methods and Applications

9.3.1 Initialization of KTLBO

At the initial phase of KTLBO, some basic parameters (e.g., design range,

numbers of variables and constraints, population size and number of initial

sample points) are initialized and defined, respectively. Next, optimized

Latin hypercube sampling (OLHS) is employed to obtain the initial point

set S = {x(1), x(2), …, x(N)} and its corresponding objective and constraints

values y y y NY { }= , , ,(1) (2) () and NC c c c{ }= , , ,(1) (2) () , where S and Y

denote two vectors, and C is a matrix. To efficiently compare the expensive

samples in a constrained problem, a penalty-function method is written:

, ,
max max ,0 , max max ,0 0

, max max ,0 0

1,2, ,

()

()

1
1

()

()

1

()

x Y C

Y x x

Y x



∑ ()

()

() ()

()
()

() ()

() ()

()
=

+ >

=













∀ =

=
≤ ≤

≤ ≤
x

F

c if c

if c

j N

j
i

j

i

m

i m
i

j

j

i m
i

j

 (9.2)

where x(j) denotes the jth point in the sample set S; Y represents the objec-

tive values set; and max(Y) is the maximal objective function value. It is

assumed that there are two points A and B. According to Eq. (9.2), it is easy

to draw three conclusions.

 1. If A is feasible and B is infeasible, F(A) should be better than F(B)

because:

max

max ,0 0
1

Y Y

∑ ()

() ()

()
() ()

≤

>










⇒ <

=

A

c B
F A F B

i

i

m (9.3)

 2. If both A and B are infeasible and the constraint violation of A is

smaller than that of B, F(A) should be better than F(B) because:

max max

max ,0 max ,0
11

Y Y

∑∑ () ()

() ()

() ()
() ()

=

<










⇒ <

==

c A c B
F A F B

i i

i

m

i

m (9.4)

 3. If both A and B are feasible and the objective function value of A is

smaller than that of B, F(A) should outperform F(B) because:

 Y Y() () () ()< ⇒ <A B F A F B (9.5)

KTLBO ◾ 231

Obviously, if both A and B are infeasible, Eq. (9.2) considers more about

how seriously they violate the constraints, which will promote the algo-

rithm to find feasible solutions efficiently. Besides, the penalty function

F is employed to classify all samples in S, Y and C, and select the promis-

ing individuals as the population members Pop. Figure 9.3 illustrates the

data structure and flow of the initial phase, underpinning the subsequent

sampling loop. Moreover, since the initial samples are extensively distrib-

uted over the whole design space, the first population Pop has a better

space-filling performance. With the loop continuing and more promising

samples added, the Pop in teaching phase will concentrate on the present

best solution to accelerate convergence, and the Pop in learning phase may

continuously exhibit a wide distribution to achieve global exploration.

More details can be found in the following sections.

9.3.2 Kriging-Assisted Teaching Phase

The optimization loop includes two phases: one is the KATP that suffi-

ciently exploits the local area around the present best solution; the other

one is KALP that can effectively search the sparsely sampled area. In KATP,

the predicted local optimal solution xplo should be first captured in a local

area enclosing the present best solution xbest. Since the Kriging models for

objective and constraint functions have been built, TLBO directly acts as

an optimizer to search the surrogate models. Equation (9.6) expresses the

pure exploitation of surrogates.

FIGURE 9.3 Data flow of initial phase.

232 ◾ Data-Driven Global Optimization Methods and Applications

min ˆ

. . ˆ 0

, ,

0.1 , 1,2, ,

x

x x x∩

i …

ξ ξ

ξ

[][]
()

()
() ≤

∈ − +

= − =

x

Y

s t C

lb ub

ub lb i m

i

best best

 (9.6)

where [lb, ub] denotes the whole design range; ˆ x()Y and ˆ x()Ci are the

Kriging models of objective and constraint functions, respectively.

Considering the constraints of Eq. (9.6), a contrast rule is adopted to com-

pare any two points in TLBO. More precisely, if a predicted point is better,

it is assumed as feasible or at least has a lower constraint violation value.

Equation (9.7) accounts for the details about the contrast rule, and it will

be used for selecting teachers and smarter learners in TLBO.

ˆ 0 ˆ 0

ˆ ˆ 0 ˆ ˆ

ˆ 0 ˆ ˆ

, , 1,2, ,

ˆ max ˆ ,0
2

1

≺

≺

≺

…

∑ ()

()
() ()

()

()
() ()
() ()

() ()

= ∧ >

= = ∧ <

> ∧ >













≠ ∀ =

=
=

p p if v p v p

p p if v p v p Y p Y p

p p if v p v p v p

i j i j P

v x C x

i j i j

i j i j i j

i j i j i

i

i

m

 (9.7)

where pi and p j denote two predicted points in one population; v̂ repre-

sents the constraint violation; P is the population size in TLBO; Ŷ is the

predicted objective function; and Ci
ˆ is the ith predicted constraint. After

considerable generations, the predicted best point can be found.

On the other hand, the current Pop whose individuals originate from

the expensive samples S Y C begins to generate the new individuals.

Figure 9.4 presents the data structure and flow of KATP. In each cycle,

Pop will generate M groups of new positions based on the metaheuris-

tic teaching mechanism and archive these newcomers into a candidate

sample pool, from which a proposed prescreening strategy is used to

select the most promising points that keep balanced exploitation and

exploration.

KTLBO ◾ 233

As Figure 9.4 shows, Pop Rank Rank RankKx x x= { , , , }(1) (1) () is classified by

Eq. (9.2) and then selected from S. Based on the TLBO’s search mecha-

nism, the new positions are estimated by the following equations.

1

1,2, , , 1,2, ,

() (1)

()

1

x x x

x

 

∑

()= + − ⋅

= ⋅

= =

=

r T Q

Q
K

i K j M

i
j Ranki j Rank

F
j

Ranki

i

K

 (9.8)

where xi denotes the new position generated by x(Ranki); j denotes the jth

group; TF is a random integer between {1, 2}; r is a random number in

the range [0, 1]; K refers to the size of Pop; M is the number of groups.

Lastly, K M× new points are archived into a temporary sample pool for

prescreening.

Since the EI strategy can identify potential points that balance Kriging’s

prediction values and space-filling performance, KTLBO utilizes the EI

function to select promising points from the sample pool. To be more spe-

cific, the EI equations are written as:

FIGURE 9.4 Data flow of Kriging-assisted teaching phase.

234 ◾ Data-Driven Global Optimization Methods and Applications

max ,0

min

x x

Y

()() ()

()

= −

=

I y Y

y

best

best

 (9.9)

I(x) represents the improvement of the objective function; Y(x) over the
current best value ybest. Due to ~ ˆ , 2x x x()() () ()Y N Y s , I(x) is a random

variable and its mathematical expectation is described as below:

ˆ
ˆ

ˆ
ˆ

, 0

0, 0

x
x

x

x
x

x

x
x

x

φ()[]()
() ()

() () ()
() ()

()
=

− Φ
−





+

−





≠

=










E I
y Y

y Y

s
s

y Y

s
s

s

best
best best

 (9.10)

Equation (9.10) refers to the EI of objective function. Besides, it is neces-

sary to consider the possibility of feasibility at x, and the specific formulas

are listed.

 0
ˆ ˆ ˆx

x

x

x

x

x
[] ()

()
()
()

()
()

= ≤ =
−

≤ −








 = Φ −







PF P C P

C C

s

C

s

C

sc c c

 (9.11)

where x()C also complies with the normal distribution ˆ , 2x x()() ()N C sc . To

improve the readability, Figure 9.5 illustrates the EI strategy. For a prob-

lem with m constraints, the final EI expression can be formulated as:

 0
1

x x ∏[] [] []() ()= × ≤

=

E I E I P cc i i

i

m

 (9.12)

It is clear that Eq. (9.12) considers the potential contribution of a new

point to the objective function, as well as its feasibility. Thus, Eq. (9.12) is

regarded as a sorting criterion to find the maximal EI value of each group.

FIGURE 9.5 Illustration of teaching-based prescreening theory.

KTLBO ◾ 235

()

{ }

[]()

=

=

∗

∈

= argmax

, , ,

1,2, ,

1 2

E I

i K

i c

i i i i
M

i

x x

x x x x

x x





 (9.13)

Lastly, a group of new points ∗ ∗ ∗{ , , , }1 2 Kx x x that balance the exploration of

unexplored areas and exploitation of Kriging are attained. Furthermore,

the predicted best solution xplo and these selected new points will be

assessed and saved into the expensive sample set for the next cycle. The

detailed pseudo code of KATP is provided in Algorithm 9.1.

Algorithm 9.1 Kriging-assisted Teaching Phase

Input: Sample sets S, Y, C, F; The number of constraints m; the number

of design variables d; the population Pop; the Pop’s size K; the

number of sampling groups M;

Output: Updated sample sets S, Y, C, F

(01) Begin

(02) KRG ← { KRGobj, KRGc1, KRGcm } /* Build Kriging models based on

(S, Y), (S, C)*/;

(03) xplo ← Get the predicted best solution based on Eqs. (9.11) and

(9.12) using TLBO;

(04) Flag ← Check the repeatability to the samples set S /* Use K-nearest

Neighbors */;

(05) If Flag = True /* True implies that xpbest is not repeated*/

(06) ypbest, cpbest ← Calculate the objective and constraint function val-

ues of xpbest;

(07) S, Y, C ← S  xpbest, Y  ypbest, C  cpbest;

(08) End If

(09) Teacher ← Identify the most promising sample from S by Eq. (9.7);

(10) Q ← Evaluate mean positions of Pop;

(11) For i from 1 to K

(12) For j from 1 to M

(13) i
j
x ← Get the new point by Eq. (9.13)

(14) End For

236 ◾ Data-Driven Global Optimization Methods and Applications

(15) ix
* ← Select the most promising individual by Eqs. (9.14)–(9.18)

(16) Flag ← Check the repeatability to the samples set S /* K-nearest

Neighbors */;

(17) If Flag = True /* True implies that ix
* is not repeated*/

(18) iy
*, ic

* ← Calculate the objective and constraint function values

of ix
*;

(19) S, Y, C ← S  ix
*, Y  iy

*, C  ic
*;

(20) End If

(21) End For

(22) F ← Update the penalty function values set based on Eq. (9.7).

(23) Return Updated sample sets S, Y, C, F

(24) End

9.3.3 Kriging-Assisted Learning Phase

In KALP, TLBO is first employed to get the predicted global optimal solu-

tion xpgo from Kriging models, where the search range has been changed to

global design space [lb, ub]. Besides, in KALP, the manner to form the cur-

rent population Pop is also inconsistent with KATP. Figure 9.6 illustrates

the corresponding data flow. The point with the best F value is first chosen,

and then K − 1 points are randomly selected from the remaining N − 1

points. This selection manner makes the samples in Pop more diverse

and distribute more extensively, which promotes the search for unknown

areas. According to Figure 9.6, Pop will generate M groups of new points

by following TLBO’s learning mechanism.

FIGURE 9.6 Data flow of Kriging-assisted learning phase.

KTLBO ◾ 237

FIGURE 9.7 Illustration of learning-based prescreening theory.

x x,

,

, , , ,

1,2, ,

() () () () ()

() () () () ()

() () (1) (2) ()

x x r x x

x x r x x x x

x x x x x

≺

≺

…

…

()
()

{ }

= + −

= + −









∈ =

=

if

if

Pop

j M

t
j t j t s t s

t
j t j s t s t

t s K

 (9.14)

where r denotes a random number in the range [0, 1]; K is the size of Pop;

M represents the number of groups. Likewise, K M× new points are gener-

ated, which are saved into a temporary sample pool for prescreening.

As discussed above, the estimated MSE s2(x) can indicate the sample

density of the design space. A point with larger MSE value implies that it is

located in a sparsely sampled area. Figure 9.7 gives a more intuitive expla-

nation, where the MSE values of generated points are 0, whereas x1 and x2

are relatively larger. In fact, points with larger MSE values should be added

to enhance the global exploration capability.

For constrained problems, the feasibility of points should be consid-

ered. Accordingly, a prescreening method combining MSE and possibility

of feasibility expressed in Eq. (9.11) is proposed:

238 ◾ Data-Driven Global Optimization Methods and Applications

 0
1

x x ∏ []() ()= × ≤

=

SP s P cc i i

i

m

 (9.15)

Equation (9.15) reveals that a point x with a larger s(x) value and higher

probability of feasibility will be more attractive. Thus, Eq. (9.15) is regarded

as a sorting criterion to determine the maximal SPc value of each group.

 { }

()()

=

=

∗

∈

argmax

, , ,

1,2, ,

1 2

SP

t K

t c

t t t t
M

i

x x

x x x x

x x





=

 (9.16)

Similar to KATP, a group of new points ∗ ∗ ∗{ , , , }1 2 Kx x x located in the

sparsely sampled area is generated. The mentioned new points and the pre-

dicted best solution xpgo from the current Kriging models will be saved into

the expensive sample set. Specifically, the pseudo-code regarding KALP is

summarized in Algorithm 9.2.

Algorithm 9.2 Kriging-assisted Learning Phase

Input: The number of constraints m; the number of design variables d;

the Pop’s size K; the number of sampling groups M; sample sets

S, Y, C, F

Output: Updated sample sets S, Y, C, F

(01) Begin

(02) Pop(1) ← Rankx(1)/* Select the best sample from S as Figure 9.6 shows*/

(03) T ← Get K-1 random integers ranging from 2 to N /* N is the num-

ber of points in S*/

(04) For i from 1 to K-1

(05) Pop(i) ← RankT ix(())

(06) End For

(07) KRG ← { KRGobj, KRGc1, KRGcm } /* Build Kriging models based on

(S, Y), (S, C)*/;

(08) xpgo ← Get the predicted best solution on design space [lb, ub] using

TLBO;

(09) Flag ← Check the repeatability to the samples set S /* K-nearest

neighbors */;

KTLBO ◾ 239

(10) If Flag = True /* True implies that xpbest is not repeated*/

(11) ypbest, cpbest ← Calculate the objective and constraint function val-

ues of xpbest;

(12) S, Y, C ← S  xpbest, Y  ypbest, C  cpbest;

(13) End If

(14) For t from 1 to K

(15) s← Identify an index s K s t∈ ≠{1,2, , }, ;

(16) For j from 1 to M

(17) t
j
x Get the new point by Eq. (9.14)

(18) End For

(19) ← tx
* Select the most promising individual by Eqs. (9.15) and

(9.16)

(20) Flag ← Check the repeatability to the samples set S /* K-nearest

neighbors */;

(21) If Flag = True /* True implies that ← is not repeated*/

(22) ∗

iy ∗

ic ← Calculate the objective and constraint function values

of ∗

tx ;

(23) S, Y, C ← S  ∗

tx , Y  ∗

ty , C  ∗

tc ;

(24) End If

(25) End For

(26) F ← Update the penalty function values set based on Eq. (7)

(27) Return Updated sample sets S, Y, C, F

(28) End

9.3.4 Overall Optimization Framework of KTLBO

To clearly demonstrate the whole optimization flow, an illustration with

specific algorithm steps is given in Figure 9.8. Three areas displaying dif-

ferent colors separately represent initial phase, KATP and KALP, and the

logic of the three phases is clearly presented. After the initial phase, KATP

and KALP are conducted alternately to realize efficient global optimiza-

tion. It is clear that KTLBO will continue to work until reaching the maxi-

mum allowable number of function evaluations.

9.4 COMPARISON EXPERIMENTS

In this chapter, KTLBO is compared with six well-known and recently pub-

lished algorithms MSSR (refer to Chapter 4) (Dong et al., 2016), SCGOSR

(Dong, Song, Dong, et al., 2018), ConstrLMSRBF (Regis, 2011), TLBO (Rao

et al., 2011), CMODE (Wang & Cai, 2012) and FROFI (Wang et al., 2016).

Specifically, MSSR, SCGOSR and ConstrLMSRBF refer to SBO algorithms

240 ◾ Data-Driven Global Optimization Methods and Applications

and have proved handling black-box optimization problems with costly

objectives and constraints on various mathematical cases. In contrast,

TLBO, CMODE and FROFI act as three efficient metaheuristic algorithms

for constrained optimization and have shown superior performance on

black-box constrained optimization problems. To verify KTLBO’s capabil-

ity, 18 benchmark cases exhibiting a range of characteristics are collected

as test cases, whose specific information is listed in Table 9.1.

In the 18 benchmark cases, there are 15 extensively used mathemati-

cal cases, consisting of 13 CEC2006 cases (Yang et al., 2020), two famous

multimodal cases GO and SE (Dong, Song, Dong, et al., 2018), as well

as three classical engineering applications TSD, SRD and SCBD (Dong,

Song, Dong, et al., 2018). Their design dimension dim ranges from 2 to 20,

and the number of constraints (Noc) falls in the range (1–38). Moreover,

LI denotes “linear inequality constraint” and NI represents “Nonlinear

inequality constraint.”

FIGURE 9.8 Overall optimization flow of KTLBO.

KTLBO ◾ 241

Since SBO algorithms are generally use fewer function evaluations (FEs)

to yield satisfactory solutions, and metaheuristic algorithms require more

FEs, two groups of experiments are set. In the first experiment, KTLBO is

compared with SCGOSR, MSSR and ConstrLMSRBF, and the maximal

number of function evaluations (NFE) is set to 200. In the second, the

maximal NFE (maxNFE) is defined as 500, and KTLBO is compared with

TLBO, CMODE and FROFI. For all the parameters of SCGOSR, MSSR and

ConstrLMSRBF, their default values [42, 25, 38] are used for test, whereas

their maximal NFE is defined as 200. For CMODE, FROFI and TLBO, the

maxNFE reaches 500, the population size is defined as 10, and all the other

parameters remain at their default values [16, 19, 46]. For KTLBO, the size

of Pop K is 3, the number of sampling groups M is 10, and the number of

DoE samples reaches 2d + 1, where d denotes the number of dimensions.

Besides, KTLBO adopts OLHS [48] to yield its initial DoE samples.

Tables 9.2 and 9.3 list the statistical results on the 13 CEC2006 cases,

where SR denotes the successful ratio to find the feasible solutions after the

maximal NFE, W-t refers to the Wilcoxon rank sum test, and all the best

results are marked in bold. Intuitively, KTLBO can find feasible solutions

in all these cases, since its SR is always 100%. SCGOSR exhibits unstable

TABLE 9.1 Specific Characteristics of 18 Test Cases

Category Func. dim Noc LI NI Known Best Value Type of Obj.

Mathematical
cases
(13 CEC2006
cases and two
widely used
cases)

g01 13 9 9 0 −15.0000 Quadratic

g02 20 2 0 2 −0.8036 Nonlinear

g04 5 6 0 6 −30,665.5387 Quadratic

g06 2 2 0 2 −6,961.8139 Cubic

g07 10 8 3 5 24.3062 Quadratic

g08 2 2 0 2 −0.0958 Nonlinear

g09 7 4 0 4 680.6301 Polynomial

g10 8 6 3 3 7,049.2480 Linear

g12 3 1 0 1 −1.0000 Quadratic

g16 5 38 4 34 −1.9052 Nonlinear

g18 9 13 0 13 −0.8660 Quadratic

g19 15 5 0 5 32.6556 Nonlinear

g24 2 2 0 2 −5.5080 Linear

GO 2 1 0 1 −0.9711 Polynomial

SE 2 1 0 1 −1.1743 Nonlinear

Engineering
application
cases

TSD 3 4 1 3 0.01267 Polynomial

SRD 7 11 4 7 2,994.4711 Polynomial

SCBD 10 11 5 6 62,791 Polynomial

242 ◾ Data-Driven Global Optimization Methods and Applications

TABLE 9.2 Statistical Results on CEC2006 Cases (NFE = 200)—Part 1

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF

g01 Best −15.000 −14.959 −3.000 −13.596

Median −15.000 −11.944 −2.085 −9.439

Worst −15.000 −7.828 −1.169 −3.725

Mean −15.000 −11.687 −2.085 −9.326

Std 0.000 1.880 1.294 3.148

SR 100% 100% 10% 100%

W-t (+) (+) (+)

g02 Best −0.398 −0.258 −0.335 −0.400

Median −0.273 −0.203 −0.180 −0.286

Worst −0.159 −0.155 −0.151 −0.142

Mean −0.273 −0.209 −0.185 −0.288

Std 0.062 0.062 0.038 0.068

SR 100% 100% 100% 100%

W-t (+) (≈) (+)

g04 Best −30,665.539 −30,665.539 −30,665.537 —

Median −30,665.539 −30,665.520 −30,663.910 —

Worst −30,665.538 −30,562.619 −30,617.768 —

Mean −30,665.539 −30,658.768 −30,659.544 —

Std 0.000 23.235 11.123 —

SR 100% 100% 100% 0%

W-t (+) (+) (+)

g06 Best −6,961.803 −6,961.814 −6,961.776 —

Median −6,961.784 −6,961.804 −6,957.937 —

Worst −6,961.762 −6,961.730 −6,952.356 —

Mean −6,961.784 −6,961.795 −6,958.198 —

Std 0.014 0.023 2.922 —

SR 100% 100% 100% 0%

W-t (−) (+) (+)

g07 Best 24.376 24.309 31.539 32.402

Median 24.419 24.405 112.481 38.662

Worst 24.507 30.139 217.320 42.044

Mean 24.436 26.060 126.714 38.598

Std 0.044 2.372 66.111 2.389

SR 100% 100% 50% 100%

W-t (≈) (+) (+)

g08 Best −0.096 −0.096 −0.096 −0.096

(Continued)

KTLBO ◾ 243

TABLE 9.2 (Continued) Statistical Results on CEC2006 Cases (NFE = 200)—Part 1

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF

Median −0.096 −0.096 −0.096 −0.094

Worst −0.090 −0.096 −0.096 −0.088

Mean −0.095 −0.096 −0.096 −0.093

Std 0.002 0.000 0.000 0.002

SR 100% 100% 100% 100%

W-t (−) (+) (+)

g09 Best 682.635 683.524 830.918 736.743

Median 736.662 703.344 1,313.413 908.523

Worst 891.725 818.397 1,903.922 1,183.825

Mean 744.492 714.327 1,309.897 923.902

Std 52.052 34.229 297.661 122.212

SR 100% 100% 100% 100%

W-t (−) (+) (+)

TABLE 9.3 Statistical Results on CEC2006 Cases (NFE = 200)—Part 2

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF

g10 Best 7,051.015 7,176.968 7,050.922 —

Median 7,061.990 11,125.224 7,051.715 —

Worst 7,108.000 14,567.211 7,052.509 —

Mean 7,064.030 10,667.396 7,051.715 —

Std 12.679 3,106.373 1.123 —

SR 100% 25% 10% 0%

W-t (+) (+) (+)

g12 Best −1.000 −1.000 −1.000 −1.000

Median −1.000 −0.997 −0.965 −1.000

Worst −1.000 −0.924 −0.822 −0.960

Mean −1.000 −0.991 −0.944 −0.994

Std 0.000 0.017 0.058 0.011

SR 100% 100% 100% 100%

W-t (+) (+) (+)

g16 Best −1.905 −1.905 −1.905 —

Median −1.905 −1.905 −1.905 —

Worst −1.459 −1.820 −1.650 —

Mean −1.813 −1.895 −1.860 —

Std 0.156 0.024 0.075 —

(Continued)

244 ◾ Data-Driven Global Optimization Methods and Applications

TABLE 9.3 (Continued) Statistical Results on CEC2006 Cases (NFE = 200)—Part 2

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF

SR 100% 100% 100% 0%

W-t (≈) (≈) (+)

g18 Best −0.866 −0.866 −0.859 −0.447

Median −0.866 −0.608 −0.616 −0.355

Worst −0.864 −0.209 −0.239 −0.217

Mean −0.865 −0.584 −0.603 −0.343

Std 0.000 0.212 0.174 0.064

SR 100% 90% 75% 95%

W-t (+) (+) (+)

g19 Best 37.951 297.193 301.434 232.529

Median 44.020 518.120 722.746 490.591

Worst 73.471 986.840 1143.817 749.958

Mean 45.731 592.086 710.173 514.584

Std 7.596 212.263 214.210 152.950

SR 100% 100% 100% 100%

W-t (+) (+) (+)

g24 Best −5.508 −5.508 −5.508 −4.054

Median −5.508 −5.508 −5.507 −4.053

Worst −5.508 −5.507 −5.452 −4.049

Mean −5.508 −5.508 −5.499 −4.053

Std 0.000 0.000 0.017 0.001

SR 100% 100% 100% 100%

W-t (+) (+) (+)

performance on g10 and g18, since it may fail to find feasible solutions

during 20 runs. It is easy to observe that MSSR has difficulties on g01,

g07, g10 and g18. For instance, MSSR can only succeed twice on g01 dur-

ing the 20 runs. Compared with others, ConstrLMSRBF is a special algo-

rithm, because it requires at least one feasible solution in the initial sample

set to drive the subsequent loop. Hence, a feasible solution of KTLBO is

substituted into the initial samples of ConstrLMSRBF, to make it work.

However, ConstrLMSRBF exhibits the worst performance on g04, g06,

g10, g16 and g18.

In addition, KTLBO can get solutions closer to the true global optima

in most cases. Intuitively, KTLBO stays ahead on g01, g04, g07, g10, g12,

g18, g19 and g24, while SCGOSR gets first ranks on g06, g08, g09 and g16.

KTLBO ◾ 245

For g06 and g08, SCGOSR outperforms KTLBO, whereas their results

are significantly close. MSSR exhibits acceptable performance, and it can

approach the true global optima in most cases. However, compared with

KTLBO and SCGOSR, MSSR exhibits relatively weaker convergence abil-

ity. For instance, the values of MSSR on g04, g06, g07, g09, g18 and g19

are obviously lower than those of SCGOSR and KTLBO. Among the four

algorithms, ConstrLMSRBF is indicated to encounter more difficulties in

these cases. Tables 9.2 and 9.3 clearly show that ConstrLMSRBF can hardly

achieve convergence during 200 FEs or even find feasible solutions in some

cases. Though ConstrLMSRBF exhibits unstable performance, it some-

times achieves higher efficiency than MSSR. For instance, it can find more

effective mean and median results on g01, g02, g07, g09, g12 and g19 than

MSSR. For g02, ConstrLMSRBF outperforms the other three algorithms

for the RBF’s superior ability to solve high-dimensional problems. In sum-

mary, among the four algorithms, KTLBO has more significant advantages

in the 13 CEC2006 cases. Table 9.4 lists the comparison results of the four

algorithms in the low-dimensional cases and engineering applications.

KTLBO still performs efficiently and stably. KTLBO can reach the true

global optima of SRD and SE for all the runs. Besides, it can easily approach

the true global optima of SCBD, TSD and GO. In contrast, ConstrLMSRBF

exhibits worse performance in the five benchmark cases. SCGOSR and

MSSR achieve similar performance, while SCGOSR is indicated to be

more robust. In summary, Tables 9.2–9.4 draw the same conclusion that

KTLBO solves computationally expensive and black-box-constrained opti-

mization problems efficiently. Figure 9.9 illustrates the iterative results of

KTLBO, which can reflect KTLBO’s average performance during the 20

runs. Figure 9.9 plots the KTLBO history data generated during a com-

pleted search. For g01, g04, g07, g09, g12, g16, g18, g19, g24, SCBD, SE and

SRD, clearer figures are also added. Intuitively, most of these figures show

that the sample values generated by DoE fluctuate more significantly, while

the points generated by the iterative process mainly focus on the feasible

or global optimal area. For instance, no feasible samples are found on G7,

G8 and G10 at first, whereas many pink feasible points are captured with

iteration continuing. Besides, as impacted by KTLBO’s global exploration

mechanism, the algorithm may still have some opportunities to search the

unknown infeasible area. As indicated by many cases in Figure 9.9, though

the global optimal area has been identified, KTLBO still samples some

infeasible points far away from the present best point.

246 ◾ Data-Driven Global Optimization Methods and Applications

TABLE 9.4 Statistical Results on GO, SE and Engineering Cases (NFE = 200)

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF

SRD Best 2,994.471 2,994.471 2,994.473 —

Median 2,994.471 2,994.536 2,996.901 —

Worst 2,994.471 3,009.420 3,019.273 —

Mean 2,994.471 2,995.991 3,000.715 —

Std 0.000 3.805 7.896 —

SR 100% 100% 100% 0%

W-t (+) (+) (+)

SCBD Best 62,791.528 62,791.491 65,798.689 —

Median 62,791.688 67,703.486 72,331.571 —

Worst 62,792.069 77,506.995 78,398.626 —

Mean 62,791.734 68,242.677 72,793.390 —

Std 0.151 4,160.120 5,563.921 —

SR 100% 100% 25% 0%

W-t (+) (+) (+)

TSD Best 0.012666 0.012666 0.012665 —

Median 0.012681 0.012697 0.012665 —

Worst 0.012792 0.012788 0.013306 —

Mean 0.012691 0.012705 0.012697 —

Std 0.000030 0.000035 0.000143 —

SR 100% 100% 100% 0%

W-t (≈) (−) (+)

GO Best −0.971 −0.971 −0.971 −0.743

Median −0.971 −0.971 −0.969 0.042

Worst −0.744 −0.871 −0.034 0.465

Mean −0.960 −0.938 −0.877 −0.076

Std 0.051 0.047 0.208 0.489

SR 100% 100% 100% 100%

W-t (+) (+) (+)

SE Best −1.174 −1.174 −1.174 −1.172

Median −1.174 −1.174 −1.174 −1.158

Worst −1.174 −1.174 −1.171 62.187

Mean −1.174 −1.174 −1.174 10.430

Std 0.000 0.000 0.001 22.570

SR 100% 100% 100% 100%

W-t (≈) (+) (+)

KTLBO ◾ 247

(a)

(c)(b)

(d)

(e)

FIGURE 9.9 Iterative results of KTLBO on the 18 cases.

(Continued)

248 ◾ Data-Driven Global Optimization Methods and Applications

(f) (g)

(h)

(i)

(j)

FIGURE 9.9 (Continued) Iterative results of KTLBO on the 18 cases.

(Continued)

KTLBO ◾ 249

(k)

(m)

(n)

(l)

FIGURE 9.9 (Continued) Iterative results of KTLBO on the 18 cases.

(Continued)

250 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 9.9 (Continued) Iterative results of KTLBO on the 18 cases.

(o)

(p)

(r)(q)

Since KTLBO complies with the metaheuristic search mechanism,

KTLBO is further compared with three well-known metaheuristic-

constrained optimization methods. Tables 9.5–9.7 present the compari-

son results of the four algorithms in 500 FEs. Undoubtedly, KTLBO using

500 FEs can yield more accurate results than that in Tables 9.2–9.4. For

many cases (e.g., g01, g04, g06, g07, g08, g09, g12, g18, g24, SE, GO, TSD,

SRD and SCBD), KTLBO basically has reached the true global optima.

KTLBO ◾ 251

TLBO performs more robustly among the other three comparison algo-

rithms because it is more likely to find feasible solutions during 20 runs.

CMODE and FROFI may always fail in some cases. For instance, FROFI

can hardly process g01, g10 and g18, while CMODE cannot process g18.

Moreover, CMODE achieves lower SR values on g01, g07 and g10. More

function calls are required for CMODE and FROFI to identify the feasible

area. Relatively, TLBO, CMODE and FROFI achieve better performance

TABLE 9.5 Statistical Results on CEC2006 Cases (NFE = 500)—Part 1

Problem Criteria KTLBO TLBO CMODE FROFI

g01 Best −15.000 −9.041 −6.780 —

Median −15.000 −6.668 −5.526 —

Worst −15.000 −3.124 −3.431 —

Mean −15.000 −6.409 −5.298 —

Std 0.000 1.842 1.231 —

SR 100% 100% 30% 0%

W-t (+) (+) (+)

g02 Best −0.443 −0.344 −0.346 −0.356

Median −0.355 −0.267 −0.246 −0.245

Worst −0.289 −0.177 −0.182 −0.181

Mean −0.356 −0.268 −0.253 −0.257

Std 0.046 0.040 0.040 0.052

SR 100% 100% 100% 100%

W-t (+) (+) (+)

g04 Best −30,665.539 −30,657.709 −30,577.162 −30,422.543

Median −30,665.539 −30,527.893 −30,246.187 −30,207.457

Worst −30,665.539 −29,624.622 −29,630.264 −29,922.280

Mean −30,665.539 −30,376.660 −30,201.293 −30,219.223

Std 0.000 322.562 255.884 116.434

SR 100% 100% 100% 100%

W-t (+) (+) (+)

g06 Best −6,961.812 −6,616.246 −6,936.174 −6,809.207

Median −6,961.799 −6,123.592 −6,598.398 −6,439.650

Worst −6,961.778 −2,080.231 −1,767.477 −4,006.968

Mean −6,961.798 −5,283.219 −5,660.160 −6,145.102

Std 0.009 1,614.756 1,689.016 759.007

SR 100% 60% 85% 95%

W-t (+) (+) (+)

g07 Best 24.335 147.721 158.689 48.267

(Continued)

252 ◾ Data-Driven Global Optimization Methods and Applications

TABLE 9.5 (Continued) Statistical Results on CEC2006 Cases (NFE = 500)—Part 1

Problem Criteria KTLBO TLBO CMODE FROFI

Median 24.362 1,000.305 315.775 107.470

Worst 24.447 1,549.875 707.693 325.735

Mean 24.370 869.814 374.483 137.090

Std 0.030 473.553 237.994 77.036

SR 100% 45% 20% 90%

W-t (+) (+) (+)

g08 Best −0.096 −0.096 −0.096 −0.096

Median −0.096 −0.096 −0.095 −0.096

Worst −0.096 −0.026 −0.029 −0.029

Mean −0.096 −0.092 −0.081 −0.092

Std 0.000 0.016 0.026 0.015

SR 100% 100% 90% 100%

W-t (+) (+) (+)

g09 Best 680.646 692.552 700.421 702.259

Median 680.736 737.429 818.555 744.267

Worst 681.581 829.155 1,345.010 882.689

Mean 680.826 742.725 888.289 759.905

Std 0.238 37.368 177.392 46.599

SR 100% 100% 100% 100%

W-t (+) (+) (+)

TABLE 9.6 Statistical Results on CEC2006 Cases (NFE = 500)—Part 2

Problem Criteria KTLBO TLBO CMODE FROFI

g10 Best 7,050.335 13,413.760 12,842.042 —

Median 7,054.236 17,768.095 13,343.482 —

Worst 7,068.933 22,506.365 14,506.941 –

Mean 7,056.459 18,159.266 13,564.155 —

Std 4.772 2,991.253 854.105 —

SR 100% 45% 15% 0%

W-t (+) (+) (+)

g12 Best −1.000 −0.999 −1.000 −1.000

Median −1.000 −0.987 −1.000 −1.000

Worst −1.000 −0.908 −0.964 −1.000

Mean −1.000 −0.979 −0.997 −1.000

Std 0.000 0.022 0.008 0.000

SR 100% 100% 100% 100%

(Continued)

KTLBO ◾ 253

TABLE 9.6 (Continued) Statistical Results on CEC2006 Cases (NFE = 500)—Part 2

Problem Criteria KTLBO TLBO CMODE FROFI

W-t (+) (+) (+)

g16 Best −1.905 −1.855 −1.879 −1.702

Median −1.905 −1.542 −1.483 −1.437

Worst −1.723 −0.978 −1.167 −1.200

Mean −1.896 −1.508 −1.508 −1.429

Std 0.041 0.256 0.274 0.172

SR 100% 85% 40% 40%

W-t (+) (+) (+)

g18 Best −0.866 −0.652 — —

Median −0.866 −0.458 — —

Worst −0.866 −0.271 — —

Mean −0.866 −0.461 — —

Std 0.000 0.110 — —

SR 100% 100% 0% 0%

W-t (+) (+) (+)

g19 Best 32.923 84.283 342.126 264.017

Median 33.682 248.502 783.799 583.579

Worst 35.067 397.335 2,081.047 1,249.052

Mean 33.760 235.149 851.530 601.482

Std 0.520 87.032 464.958 269.384

SR 100% 100% 100% 55%

W-t (+) (+) (+)

g24 Best −5.508 −5.507 −5.507 −5.492

Median −5.508 −5.499 −5.490 −5.448

Worst −5.508 −5.377 −5.343 −5.292

Mean −5.508 −5.485 −5.472 −5.437

Std 0.000 0.035 0.045 0.048

SR 100% 100% 100% 100%

W-t (+) (+) (+)

on g02, g04, g08, g09, g12 and g24 because these cases have larger feasible

space. Tables 9.2, 9.3, 9.5 and 9.6 summarize that SBO algorithms require

fewer FEs than metaheuristic algorithms in most cases.

As indicated in Table 9.7, 500 FEs are good enough for KTLBO to find

their global optimal solutions. Besides, TLBO always achieves higher

SRs and outperforms CMODE and FROFI on SRD, SCBD, TSD and GO.

Notably, metaheuristic algorithms are applied directly to computation-

ally expensive and black-box optimization problems, whereas they require

254 ◾ Data-Driven Global Optimization Methods and Applications

TABLE 9.7 Statistical Results on GO, SE and Engineering Cases (NFE = 500)

Problem Criteria KTLBO TLBO CMODE FROFI

SRD Best 2,994.471 3,003.273 3,025.246 3,036.176

Median 2,994.471 3,052.253 3,122.707 3,109.041

Worst 2,994.471 5,574.144 3,899.410 3,457.146

Mean 2,994.471 3,333.409 3,178.711 3,122.580

Std 0.000 615.210 229.481 91.311

SR 100% 100% 90% 100%

W-t (+) (+) (+)

SCBD Best 62,791.515 65,966.042 67,788.298 67,238.418

Median 62,791.584 73,772.591 70,641.883 73,076.280

Worst 62,791.738 83,818.265 74,480.140 77,374.617

Mean 62,791.598 73,285.578 71,485.513 72,318.792

Std 0.061 4,698.158 2,055.834 3,124.462

SR 100% 90% 65% 55%

W-t (+) (+) (+)

TSD Best 0.012665 0.012735 0.012742 0.012965

Median 0.012667 0.013006 0.013769 0.014361

Worst 0.012671 0.015140 0.230292 0.017988

Mean 0.012667 0.013410 0.026247 0.014682

Std 0.000002 0.000830 0.049545 0.001374

SR 100% 100% 95% 100%

W-t (+) (+) (+)

GO Best −0.971 −0.971 −0.971 −0.971

Median −0.971 −0.968 −0.970 −0.968

Worst −0.971 −0.867 −0.811 −0.858

Mean −0.971 −0.947 −0.928 −0.941

Std 0.000 0.036 0.060 0.046

SR 100% 100% 100% 100%

W-t (+) (+) (+)

SE Best −1.174 −1.174 −1.174 −1.172

Median −1.174 −1.171 −1.173 −1.165

Worst −1.174 −0.102 −0.580 −1.149

Mean −1.174 −1.090 −1.128 −1.164

Std 0.000 0.245 0.140 0.006

SR 100% 100% 100% 100%

W-t (+) (+) (+)

KTLBO ◾ 255

more FEs to achieve convergence. SBO algorithms exploit the predicted

information of surrogate models for search guidance, thereby decreasing

the NFE. However, SBO methods may exhibit higher sensitivity to the pre-

diction accuracy of surrogate models. Once the surrogate models exhibit

worse predicting performance in some cases, SBO may get inefficient

immediately. Accordingly, KTLBO combining a metaheuristic search-

ing mechanism and Kriging’s predicted information can ensure a robust

sampling process, and its results from Table 9.2–9.7 indicate its powerful

functionality and significant advantages for EBCPs.

9.5 ENGINEERING APPLICATIONS

Blended-wing-body underwater gliders (BWBUGs) that play an important

role in scientific and commercial fields have aroused huge attention over

the past few years. In a BWBUG, the pressure shell is an extremely impor-

tant part that protects the expensive measuring instruments and equip-

ment in a deep-sea environment. In this chapter, to decrease the design cost

and meanwhile increase the inner space volume of the BWBUG’s pressure

shell, this study attempts to improve its buoyancy–weight ratio (BWR) and

concurrently satisfy the stress and stability constraints. Figure 9.10 pres-

ents the geometric description and defines ten design variables including

three thickness parameters (t1, t2 and t3), three radius parameters (R1, R2

and R3), and four size parameters (l1, l2, l3 and l4).

Furthermore, the specific optimization formula is summarized below:

B

G

l l l l R R R t t t

m l l l l R R R t t t

s t l l l l R R R t t t

P P l l l l R R R t t t

l

R R R

t t t

s

cr

ρ

σ γσ

λ

()
()

()
()

≤

≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤


















max =
v , , , , , , , , ,

, , , , , , , , ,

. . , , , , , , , , ,

, , , , , , , , ,

375 390 225 l 235 200 l 210 150 l 160

65 85 80 100 20 30

5 12 5 12 5 12

1 2 3 4 1 2 3 1 2 3

1 2 3 4 1 2 3 1 2 3

max 1 2 3 4 1 2 3 1 2 3

j 1 2 3 4 1 2 3 1 2 3

1 2 3 4

1 2 3

1 2 3

(9.17)

where B denotes buoyancy, G refers to gravity, is the density of sea water, v

is the volume of the whole pressure shell, and m represents the total weight.

In the first stress constraint, ρ is the maximal equivalent stress, σ max refers

to the yield strength, and sσ is a safety factor. In the second stability con-

straint, γ is the computation pressure, P ≈10 MPaj is the buckling critical

load, and Pcr is the first-order buckling factor. In this case, the depth of

256 ◾ Data-Driven Global Optimization Methods and Applications

water is defined as 1,000 m, λ, and γ = 0.8. Since the aluminum alloy is

applied for the pressure shell, λ =1.5 is set to 280 MPa. In Eq. (9.17), there

are three response values B/G, sσ and σ max come from the time-consuming

simulation model. One simulation analysis takes more than 5 minutes. As

revealed from the comparison analyses, SCGOSR and KTLBO exhibit the

best performance, so they are employed for this engineering application.

For a fair comparison, KTLBO and SCGOSR adopt the same DoE sam-

ples to drive the optimization loop. After 200 simulation analyses, KTLBO

identifies a better solution than SCGOSR. Figures 9.11 and 9.12 show the

iterative results where the stars represent feasible samples, dots refer to

the infeasible ones. In Figure 9.11, the best feasible sample is obtained at

the 189th NFE, while in Figure 9.12, the best feasible sample is obtained

at the 97th NFE. Intuitively, KTLBO converges after 100 simulation

analyses, while SCGOSR seems to get stuck in a local optimal area after

90 calls to the simulation model. Tables 9.8 and 9.9 provide the detailed

results. Compared with the best DoE sample, SCGOSR achieves a 21.89%

improvement, while KTLBO achieves a 67.40% improvement. Moreover,

Figures 9.13–9.15 illustrate the optimal simulation results of DoE, KTLBO

and SCGOSR. Obviously, KTLBO is suggested to be more suitable for this

engineering case. Table 9.9 and Figures 9.13–9.15 indicate that KTLBO

converge to the second constraint bound while SCGOSR remains far away

from this constraint bound.

To sum up, KTLBO cannot only deal with benchmark cases, but also

efficiently solve simulation-based constrained optimization problems. It

FIGURE 9.10 Illustration of BWBUG’s pressure shell.

KTLBO ◾ 257

TABLE 9.8 Obtained Best Solutions of BWBUG’s Structure Design

l1 l2 l3 l4 R1 R2 R3 t1 t2 t3

DoE-opt 388.50 225.50 207.00 158.00 82.00 83.00 28.00 5.70 10.25 8.15

KTLBO-opt 376.55 227.82 200.00 153.27 85.00 93.41 30.00 5.00 5.00 12.00

SCGOSR-opt 385.66 229.14 202.00 159.78 84.63 84.72 26.27 5.55 8.19 6.01

FIGURE 9.12 Iterative results of SCGOSR.

FIGURE 9.11 Iterative results of KTLBO.

TABLE 9.9 Optimal Response Values for BWBUG’s Structure Design

v/m3 m/kg B/G σσ MPa/max MPa/crP

DoE-opt 0.0203 13.9904 1.7134 198.2197 69.6338

KTLBO-opt 0.0257 10.4483 2.8683 213.0277 15.6479

SCGOSR-opt 0.0223 12.6554 2.0885 215.4628 63.1093

258 ◾ Data-Driven Global Optimization Methods and Applications

is noteworthy that when each analysis of the simulation model requires

several hours or days, fewer calls to the simulation model are significantly

critical. KTLBO requires fewer NFE to achieve convergence, which notice-

ably shortens the design cycle and yields a satisfactory solution for engi-

neers at the simulation phase.

9.6 CHAPTER SUMMARY

In this chapter, an efficient Kriging-assisted TLBO method is proposed to

solve computationally expensive constrained optimization problems. By

complying with TLBO’s two-phase search pattern, two Kriging-assisted

sampling strategies are formulated, retaining TLBO’s search mechanism

while reasonably balancing the exploitation of surrogates and exploration of

FIGURE 9.14 Equivalent stress and first mode of KTLBO’s best sample.

FIGURE 9.13 Equivalent stress and buckling results of DoE’s best sample.

FIGURE 9.15 Equivalent stress and first mode of SCGOSR’s best sample.

KTLBO ◾ 259

unknown areas. In KATP, the neighborhoods around the present best solu-

tion are sufficiently exploited, and a constrained EI function considering the

probability of feasibility is defined as a filter to pick up the promising indi-

viduals from the learners. In KALP, a constrained MSE function focusing on

Kriging’s prediction uncertainty is proposed to choose the learners located

at the sparsely sampled feasible region for global exploration. Initial DoE

samples and newly generated expensive samples are iteratively sorted based

on their penalty function values, and new teachers and brilliant learners are

continuously updated until the algorithm identifies the true global optima.

NOTE
 1 Based on “Kriging-assisted Teaching-Learning-based Optimization

(KTLBO) to Solve Computationally Expensive Constrained Problems,”
published in [Information Sciences], [2021]. Permission obtained from
[Elsevier].

REFERENCES

Akbari, H., & Kazerooni, A. (2020). KASRA: A Kriging-Based Adaptive Space
Reduction Algorithm for Global Optimization of Computationally Expensive
Black-Box Constrained Problems. Applied Soft Computing, 90, Article
106154. https://doi.org/10.1016/j.asoc.2020.106154

Bagheri, S., Konen, W., Emmerich, M., & Baeck, T. (2017). Self-Adjusting Parameter
Control for Surrogate-Assisted Constrained Optimization under Limited
Budgets. Applied Soft Computing, 61, 377–393. https://doi.org/10.1016/
j.asoc.2017.07.060

Chen, X., Mei, C., Xu, B., Yu, K., & Huang, X. (2018). Quadratic Interpolation
Based Teaching-Learning-Based Optimization for Chemical Dynamic
System Optimization. Knowledge-Based Systems, 145, 250–263. https://doi.
org/10.1016/j.knosys.2018.01.021

Daneshyari, M., & Yen, G. G. (2012). Constrained Multiple-Swarm Particle Swarm
Optimization within a Cultural Framework. IEEE Transactions on Systems
Man and Cybernetics Part A-Systems and Humans, 42(2), 475–490. https://
doi.org/10.1109/tsmca.2011.2162498

Dong, H., Li, C., Song, B., & Wang, P. (2018). Multi-Surrogate-Based Differential
Evolution with Multi-Start Exploration (MDEME) for Computationally
Expensive Optimization. Advances in Engineering Software, 123, 62–76.
https://doi.org/10.1016/j.advengsoft.2018.06.001

Dong, H., Song, B., Dong, Z., & Wang, P. (2016). Multi-Start Space Reduction
(MSSR) Surrogate-Based Global Optimization Method. Structural and
Multidisciplinary Optimization, 54(4), 907–926. https://doi.org/10.1007/
s00158-016-1450-1

Dong, H., Song, B., Dong, Z., & Wang, P. (2018). SCGOSR: Surrogate-Based
Constrained Global Optimization Using Space Reduction. Applied Soft
Computing, 65, 462–477. https://doi.org/10.1016/j.asoc.2018.01.041

https://doi.org/10.1016/j.asoc.2020.106154
https://doi.org/10.1016/j.knosys.2018.01.021
https://doi.org/10.1016/j.knosys.2018.01.021
https://doi.org/10.1007/s00158-016-1450-1
https://doi.org/10.1109/tsmca.2011.2162498
https://doi.org/10.1109/tsmca.2011.2162498
https://doi.org/10.1016/j.asoc.2018.01.041
https://doi.org/10.1016/j.advengsoft.2018.06.001
https://doi.org/10.1016/j.asoc.2017.07.060
https://doi.org/10.1016/j.asoc.2017.07.060
https://doi.org/10.1007/s00158-016-1450-1

260 ◾ Data-Driven Global Optimization Methods and Applications

Dong, H., Song, B., Wang, P., & Dong, Z. (2018). Surrogate-Based Optimization
with Clustering-Based Space Exploration for Expensive Multimodal
Problems. Structural and Multidisciplinary Optimization, 57(4), 1553–1577.
https://doi.org/10.1007/s00158-017-1826-x

Dong, H., Sun, S., Song, B., & Wang, P. (2019). Multi-Surrogate-Based Global
Optimization Using a Score-Based Infill Criterion. Structural and
Multidisciplinary Optimization, 59(2), 485–506. https://doi.org/10.1007/
s00158-018-2079-z

Farmani, R., & Wright, J. A. (2003). Self-Adaptive Fitness Formulation for
Constrained Optimization. IEEE Transactions on Evolutionary Computation,
7(5), 445–455. https://doi.org/10.1109/tevc.2003.817236

Haftka, R. T., Villanueva, D., & Chaudhuri, A. (2016). Parallel Surrogate-Assisted
Global Optimization with Expensive Functions - A Survey. Structural
and Multidisciplinary Optimization, 54(1), 3–13. https://doi.org/10.1007/
s00158-016-1432-3

Jones, D. R., Perttunen, C. D., & Stuckman, B. E. (1993). Lipschitzian Optimization
without the Lipschitz Constant. Journal of Optimization Theory and
Applications, 79(1), 157–181. https://doi.org/10.1007/bf00941892

Kar, A. K. (2016). Bio Inspired Computing - A Review of Algorithms and Scope
of Applications. Expert Systems with Applications, 59, 20–32. https://doi.
org/10.1016/j.eswa.2016.04.018

Li, E. (2019). An Adaptive Surrogate Assisted Differential Evolutionary Algorithm
for High Dimensional Constrained Problems. Applied Soft Computing, 85,
Article 105752. https://doi.org/10.1016/j.asoc.2019.105752

Li, F., Shen, W., Cai, X., Gao, L., & Wang, G. G. (2020). A Fast Surrogate-Assisted
Particle Swarm Optimization Algorithm for Computationally Expensive
Problems. Applied Soft Computing, 92, Article 106303. https://doi.
org/10.1016/j.asoc.2020.106303

Liu, B., Zhang, Q., & Gielen, G. G. E. (2014). A Gaussian Process Surrogate Model
Assisted Evolutionary Algorithm for Medium Scale Expensive Optimization
Problems. IEEE Transactions on Evolutionary Computation, 18(2), 180–192.
https://doi.org/10.1109/tevc.2013.2248012

Liu, H., Xu, S., Chen, X., Wang, X., & Ma, Q. (2017). Constrained Global
Optimization via a DIRECT-Type Constraint-Handling Technique and
an Adaptive Metamodeling Strategy. Structural and Multidisciplinary
Optimization, 55(1), 155–177. https://doi.org/10.1007/s00158-016-1482-6

Liu, H., Xu, S., Wang, X., Wu, J., & Song, Y. (2015). A Global Optimization
Algorithm for Simulation-Based Problems Via the Extended DIRECT
Scheme. Engineering Optimization, 47(11), 1441–1458. https://doi.org/10.1
080/0305215x.2014.971777

Mavrovouniotis, M., Li, C., & Yang, S. (2017). A Survey of Swarm Intelligence for
Dynamic Optimization: Algorithms and Applications. Swarm and Evolutionary
Computation, 33, 1–17. https://doi.org/10.1016/j.swevo.2016.12.005

Mezura-Montes, E., & Coello Coello, C. A. (2011). Constraint-Handling in
Nature-Inspired Numerical Optimization: Past, Present and Future. Swarm
and Evolutionary Computation, 1(4), 173–194. https://doi.org/10.1016/j.
swevo.2011.10.001

https://doi.org/10.1016/j.eswa.2016.04.018
https://doi.org/10.1016/j.eswa.2016.04.018
https://doi.org/10.1016/j.asoc.2019.105752
https://doi.org/10.1016/j.asoc.2020.106303
https://doi.org/10.1016/j.asoc.2020.106303
https://doi.org/10.1007/s00158-017-1826-x
https://doi.org/10.1016/j.swevo.2016.12.005
https://doi.org/10.1007/s00158-016-1482-6
https://doi.org/10.1007/s00158-016-1432-3
https://doi.org/10.1016/j.swevo.2011.10.001
https://doi.org/10.1016/j.swevo.2011.10.001
https://doi.org/10.1109/tevc.2013.2248012
https://doi.org/10.1007/bf00941892
https://doi.org/10.1007/s00158-018-2079-z
https://doi.org/10.1109/tevc.2003.817236
http://doi.org/10.1080/0305215x.2014.971777
http://doi.org/10.1080/0305215x.2014.971777
https://doi.org/10.1007/s00158-018-2079-z
https://doi.org/10.1007/s00158-016-1432-3

KTLBO ◾ 261

Miranda-Varela, M.-E., & Mezura-Montes, E. (2018). Constraint-Handling Techniques
in Surrogate-Assisted Evolutionary Optimization. An Empirical Study. Applied
Soft Computing, 73, 215–229. https://doi.org/10.1016/j.asoc.2018.08.016

Muller, J., & Woodbury, J. D. (2017). GOSAC: Global Optimization with Surrogate
Approximation of Constraints. Journal of Global Optimization, 69(1), 117–
136. https://doi.org/10.1007/s10898-017-0496-y

Ororbia, M. E., Chhabra, J. P. S., Warn, G. P., Miller, S. W., Yukish, M. A., & Qiu,
T. (2020). Increasing the Discriminatory Power of Bounding Models Using
Problem-Specific Knowledge When Viewing Design as a Sequential Decision
Process. Structural and Multidisciplinary Optimization, 62(2), 709–728.
https://doi.org/10.1007/s00158-020-02528-0

Rao, R. V., Savsani, V. J., & Vakharia, D. P. (2011). Teaching-Learning-Based
Optimization: A Novel Method for Constrained Mechanical Design
Optimization Problems. Computer-Aided Design, 43(3), 303–315. https://doi.
org/10.1016/j.cad.2010.12.015

Regis, R. G. (2011). Stochastic Radial Basis Function Algorithms for Large-Scale
Optimization Involving Expensive Black-Box Objective and Constraint
Functions. Computers & Operations Research, 38(5), 837–853. https://doi.
org/10.1016/j.cor.2010.09.013

Wang, Y., & Cai, Z. (2012). Combining Multiobjective Optimization with
Differential Evolution to Solve Constrained Optimization Problems. IEEE
Transactions on Evolutionary Computation, 16(1), 117–134. https://doi.
org/10.1109/tevc.2010.2093582

Wang, Y., Wang, B.-C., Li, H.-X., & Yen, G. G. (2016). Incorporating Objective
Function Information into the Feasibility Rule for Constrained Evolutionary
Optimization. IEEE Transactions on Cybernetics, 46(12), 2938–2952. https://
doi.org/10.1109/tcyb.2015.2493239

Wang, Y., Yin, D.-Q., Yang, S., & Sun, G. (2019). Global and Local Surrogate-Assisted
Differential Evolution for Expensive Constrained Optimization Problems
with Inequality Constraints. IEEE Transactions on Cybernetics, 49(5), 1642–
1656. https://doi.org/10.1109/tcyb.2018.2809430

Wright, J. A., & Farmani, R. (2001). Genetic algorithms: a fitness formulation
for constrained minimization. Proceedings of the Genetic and Evolutionary
Computation Conference (GECCO-2001), Sixth Annual Genetic Programming
Conference (GP-2001), Tenth International Conference on Genetic Algorithms
(ICGA-2001), San Francisco, California, USA, July 7–11, 2001.

Wu, Y., Yin, Q., Jie, H., Wang, B., & Zhao, J. (2018). A RBF-Based Constrained
Global Optimization Algorithm for Problems with Computationally
Expensive Objective and Constraints. Structural and Multidisciplinary
Optimization, 58(4), 1633–1655. https://doi.org/10.1007/s00158-018-1987-2

Yang, Z., Qiu, H., Gao, L., Cai, X., Jiang, C., & Chen, L. (2020). Surrogate-Assisted
Classification-Collaboration Differential Evolution for Expensive
Constrained Optimization Problems. Information Sciences, 508, 50–63.

Yu, H., Tan, Y., Sun, C., & Zeng, J. (2019). A Generation-Based Optimal Restart
Strategy for Surrogate-Assisted Social Learning Particle Swarm Optimization.
Knowledge-Based Systems, 163, 14–25. https://doi.org/10.1016/j.knosys.2018.
08.010

https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1016/j.cad.2010.12.015
https://doi.org/10.1109/tevc.2010.2093582
https://doi.org/10.1109/tevc.2010.2093582
https://doi.org/10.1007/s00158-020-02528-0
https://doi.org/10.1109/tcyb.2015.2493239
https://doi.org/10.1109/tcyb.2015.2493239
https://doi.org/10.1016/j.cor.2010.09.013
https://doi.org/10.1016/j.cor.2010.09.013
https://doi.org/10.1007/s10898-017-0496-y
https://doi.org/10.1016/j.asoc.2018.08.016
https://doi.org/10.1109/tcyb.2018.2809430
https://doi.org/10.1007/s00158-018-1987-2
https://doi.org/10.1016/j.knosys.2018.08.010
https://doi.org/10.1016/j.knosys.2018.08.010

262

C H A P T E R 10

KDGO

Kriging-Assisted Discrete
Global Optimization for
Black-Box Problems with Costly
Objective and Constraints1

10.1 INTRODUCTION

With the rapid progress of computer technology, high-fidelity simulation

has become an indispensable tool in modern industry applications, which

can effectively reduce design budgets and bring higher economic benefits

(Dong et al., 2017; Jiang et al., 2019; Zhou et al., 2018). Simultaneously,

when the accuracy requirement continuously increases, the computa-

tion cost of simulation analysis may get huge, causing difficulty in opti-

mization design (Dong, Li, et al., 2018; H. Liu et al., 2018; Stander et al.,

2016). Besides, many real-world applications, such as management, sched-

uling, logistics, structure design and pattern recognition, involve dis-

crete domains (Ekel & Neto, 2006; Lawler, 1972; Sayadi et al., 2013) and

time-demanding simulation analysis (Dede, 2014). Therefore, discrete and

computationally intensive global optimization problems are challenging,

and have begun to gain more attention in recent years.

For discrete optimization problems, the branch and bound (BB) algo-

rithm (Land & Doig, 2010) that recursively divides the solution set and eval-

uates the bound values can find the optimal combination of these discrete

DOI: 10.1201/9781003636267-10

https://doi.org/10.1201/9781003636267‑10

KDGO ◾ 263

values. For example, Demeulemeester and Herroelen (1992) employed

a BB procedure for multiple resource-constrained project scheduling.

Nakariyakul and Casasent (2007) proposed an adaptive BB algorithm to

select the optimal subsets of features in pattern recognition applications.

However, BB appears inappropriate for computationally expensive global

optimization problems, because it has to construct a relaxed problem

whose global optimum must be found to identify the lower bound, which

will cause many calls of the costly functions especially for multimodal

problems. Variable neighborhood search (VNS) presented by Mladenović

and Hansen is an effective tool for global combinatorial optimization

problems (Mladenović & Hansen, 1997). VNS can systematically explore

the possible neighborhood structures to identify the local optima, and

further find the global optimum with the help of perturbation. VNS has

been extensively applied in various fields like artificial intelligence, cluster-

ing analysis, scheduling and so on (Adibi et al., 2010; Kytöjoki et al., 2007;

Polacek et al., 2004). VNS was primarily developed for box-constrained

integer optimization problems, but it cannot be directly used for nonlinear-

constrained problems. Nonsmooth optimization by mesh adaptive direct

search (NOMAD) (Abramson et al., 2009) was developed for computation-

ally expensive and black-box optimization problems. NOMAD is a deriv-

ative-free optimization method and is applicable for continuous, integer

and mixed design domains. Moreover, NOMAD is also good at handling

nonlinear-constrained optimization problems, making it suitable for most

real-world applications. However, there are no extensive numerical stud-

ies on NOMAD’s capability that deal with computationally expensive

optimization problems. It is worth mentioning that in the existing litera-

ture there is another type of algorithm to deal with discrete and black-box

global optimization problems, that is, swarm intelligence and evolutionary

computation (Anghinolfi & Paolucci, 2009; Guendouz et al., 2017; Zhang

et al., 2015). Generally, swarm/evolution-based algorithms are inspired by

some natural phenomenon and can generate a population in each cycle to

randomly search the design space. With the population updated and the

objective function evaluated many times, promising solutions can be grad-

ually acquired. Most of these discrete metaheuristic algorithms have been

applied to real-world applications. For example, Li et al. (2019) proposed

a discrete particle swarm optimization algorithm (DPSO-PDM) for com-

munity detection in complex networks. DPSO-PDM redefines the particle

velocity and position, and adds the evolutionary operation in discretization

to avoid getting trapped in local optima.

264 ◾ Data-Driven Global Optimization Methods and Applications

Surrogate-assisted optimization (SAO) (Dong, Song, et al., 2018; Shi

et al., 2020; Zhou et al., 2021) plays an important role in simulation-based

engineering applications, because it is rather efficient for computationally

expensive problems. Surrogate modeling techniques like Kriging, radial

basis functions (RBF) or polynomial response surface can effectively orga-

nize the obtained data to predict the potential solutions, considerably

decreasing the number of costly function evaluations. However, most of

the existing literature in this field emphasizes the methods for the con-

tinuous design domain and seldom focuses on discrete cases. Müller et al.

(2013) presented a surrogate-based global optimization algorithm for

mixed-integer black-box problems (SO-MI). SO-MI utilizes RBF to select

candidate samples from discrete and continuous domains. In each cycle,

four groups of cheap points are generated, where three of them are gen-

erated around the present best solution and one is randomly distributed

in the design space. Thereafter, the most promising points are separately

selected from the four sample sets to update the RBF model. It is worth

noting that SO-MI needs at least one feasible point to drive the algorithm

for constrained problems. Therefore, it is difficult for SO-MI to solve the

constrained problems with a smaller feasible space. Furthermore, Müller

et al. (2014) introduced a surrogate-based algorithm SO-I for expensive

nonlinear integer programming problems, in which the RBF value and the

distance to the known samples are synthetically considered to evaluate a

potential point. SO-I shows excellent ability when dealing problems with

costly objective and constraints, and also has impressive performance

on practical engineering applications like hydropower generation and

throughput maximization. J. Liu et al. (2018) extended the multi-start space

reduction (MSSR) (Dong et al., 2016) algorithm for a hybrid energy stor-

age system with integer and continuous design variables. In the extended

MSSR, the discrete variables of those promising samples were rounded to

integers for simulation analysis in each cycle and showed absolute advan-

tages over the genetic algorithm. Similarly, some other SAO algorithms

have been improved or extended to solve computationally expensive and

discrete/mixed-variable engineering applications (Holmström et al., 2008;

Rashid et al., 2013). However, most of the above methods are developed

for a certain type of actual problems (e.g. binary, integer, unimodal, mul-

timodal, box-constrained), and less literature has introduced widely appli-

cable algorithms.

Inspired by SO-I that combines the RBF’s prediction values and the

distance between samples, we expect to develop a Kriging-based global

KDGO ◾ 265

optimization method for computationally expensive problems with gen-

eralized discrete space that allows binary, integer, noninteger, uni/mul-

timodal and box/inequality-constrained types. To make KDGO widely

applicable for most discrete cases, a data matrix with a discrete structure

is proposed to reflect the original design domain. Besides, a multi-start

knowledge mining process is carried out to acquire the promising samples

in each cycle, specifically including four steps: optimization, projection,

sampling and selection. First, a multi-start optimization is used to capture

the promising solutions in the continuous design range. All these potential

solutions are projected to the discrete matrix and a grid sampling method

applicable for low- and high-dimensional space is proposed to get the

promising discrete samples. Thereafter, the k-nearest neighbors (KNN)

search strategy and expected improvement (EI) criterion are jointly used

to select the supplementary samples. KDGO keeps running to update

Kriging and find the most potential samples until a satisfactory solution

is obtained. KDGO is mainly used to solve various discrete problems

including binary, integer, noninteger, unimodal, multimodal, equality and

inequality-constrained problems.

10.2 DISCRETE OPTIMIZATION CONSTRUCTION

More precisely, the problem this chapter concentrates on is described

below:



min

. . 0, 1, ,

, 1, ,

x

x 



()

() ≤ ∀ =

−∞ < ≤ ≤ < ∞ ∀ =

∈Γ ⊂

f

s t g i m

x x x k d

x

i

k
l

k k
u

k k

 (10.1)

where f(x) denotes the computationally intensive black-box objective;

gi(x) is the ith costly black-box constraint; m and d represent the num-

ber of constraints and design variables, respectively. Besides, xk is the kth

discrete variable and kΓ is its corresponding discrete set. It is a remark-

able fact that kΓ 1 can be different from kΓ 2 if k k≠1 2. It is also assumed

that k dk ∞ > Γ ≥ ∀ =2, 1, , . What is more, the values of each discrete

set k dk Γ ∀ =, 1, , are allowed to have uneven distributions as well.

Correspondingly, a 2d illustration is provided in Figure 10.1, and three

representative cases with different characteristics are introduced to make

it more intuitive.

266 ◾ Data-Driven Global Optimization Methods and Applications

To mathematically express a generalized discrete space, a matrix D is

created to save these discrete sets as the preprocessing step for the sub-

sequent surrogate-based optimization. This proposed matrix considers

all the possible situations including even or uneven distributions and the

same or different sizes of discrete sets at each dimension.

max , , , , 1, , , 1, ,

1
1

2
1 1 1

1
2

2
2 2 2

1

D

D

r r r r

r r r r

r

M r i k d

M d
Init

M d

k d

k d

k
M

d k
i

k k

⋯

⋯

⋮ ⋱ ⋮ ⋯ ⋮

⋯

⋯ ⋯

⋯ ⋯

⋮ ⋱ ⋯ ⋮ ⋯ ⋮

⋯ ⋯

… … …()

=

∞ ∞ ∞ ∞
∞ ∞ ∞ ∞

∞ ∞ ∞ ∞



















⇒

=

∞ ∞ ∞





















= Γ Γ ∈Γ ∀ = Γ ∀ =

×

× (10.2)

where DM d
Init

× denotes the initial D matrix that is assigned with M d× infin-

ity values. Thereafter, the discrete sets k dk Γ ∀ =, 1, , are saved into this

initial D matrix. rk
i is the ith element of kΓ , and M refers to the maximal

size of these discrete sets at different dimensions. Thereafter, the points

generated using the design of experiments (DoE) method are correspond-

ingly approximated to their closest discrete values in D, and their objec-

tive and constraints values are calculated, respectively. Furthermore, the

initial Kriging models of objective and constraints are separately built

using these DoE samples. In the following Kriging-assisted optimization

process, new samples selected from the continuous space will be projected

into the defined matrix D to get the promising discrete samples.

FIGURE 10.1 Different discrete design spaces.

KDGO ◾ 267

10.2.1 Multi-Start Knowledge Mining on Kriging

As mentioned above, Kriging can build a continuous mathematical

model to predict the landscape of the original discrete problem. Hence,

efficient search or sampling strategies for continuous optimization prob-

lems can still be utilized to mine the useful discrete information from

surrogate models. Generally, the conventional surrogate-based sampling

strategies consider the most promising positions in the continuous space

as candidate points, like the maximal “expectation of improvement (EI)”

point or the minimal prediction (MP) point. For discrete optimization

problems, these new samples from the continuous space can be approxi-

mated to be the discrete individuals of set Γ, to drive the subsequent

optimization. However, the search may pay too much attention to the gap

between two discrete values of set Γ, decreasing the optimization effi-

ciency, and sometimes no new discrete samples will be supplemented to

update the surrogate models, making the program get stuck. Therefore,

a multi-start knowledge mining approach is presented to capture the

promising discrete samples, which involves four main steps: multi-start

optimization, projection, grid sampling and selection. Correspondingly,

Figures 10.2–10.5 give a 2d illustration to describe this process clearly.

As we all know, Kriging can approximate nonlinear problems and always

generate multiple predicted local optima. Multi-start optimization can iden-

tify these potential local positions, realizing the global search. Mathematically,

the predicted local optimal solutions can be expressed as below

ˆ ˆ

, 1, ,

x x

x x 

()

()

()≤

∀ ∈ ⊂ Ω ∀ ∈

f f

V i q

lo
i

i lo
i

 (10.3)

FIGURE 10.2 Step1: Multi-start optimization.

268 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 10.3 Step2: Projection to matrix D.

FIGURE 10.4 Step3: Grid sampling.

FIGURE 10.5 Step4: Selection by EI.

KDGO ◾ 269

where ˆ x()f lo
i refers to the Kriging value at the ith predicted local optimal

location xlo
i , Vi denotes the ith vicinity region around xlo

i , Ω is the variable

range, and q is the number of local optimal locations. An efficient way to

get these xlo is to assign a group of starting points that evenly cover the

continuous design space and then run local optimization sequentially. The

search from the starting points that are located in the same region proba-

bly converges to the same optimal solution. In other words, the number of

optima is generally smaller than the number of starting points. Figure 10.2

shows that ten starting points (small black dots) will converge to three local

optimal solutions xlo (triangles). Additionally, a reduced space enclosing

the present best solution is used to improve the computational efficiency of

multi-start optimization.

 2
,

2
,x x 

ξ

[]

()

= − +





= × −

RS
dis dis

a b

dis b a

pbest pbest

 (10.4)

where RS refers to a neighborhood of the present best solution xpbest, [a, b]

represents the original design space, and ξ is a coefficient defined as 0.1.

When the number of iterations reaches an even number, the reduced space

RS is used; otherwise, the original design range is used for the multi-start

optimization. The specific pseudo-code of the multi-start optimization is

shown in Algorithm 10.1(a).

Algorithm 10.1(a): Multi-start Knowledge

Mining: Multi-start Optimization

Input: Kriging model, Original design space [a, b], Number of iteration iter

Output: Predicted local optimal solutions loX

(01) If iter/2∈Z

(02) Range←Build the reduced space RS

(03) h ← Define the number of starting points as 3.

(04) Else

(05) Range←[a, b].

(06) h ← Define the number of starting points as 10.

(07) End if

(08) SP ←Employ LHS to get h starting points in Range.

270 ◾ Data-Driven Global Optimization Methods and Applications

(09) For i from 1 to h

(10) xlo
i
←Run local optimizer on Kriging to get the local optima in

Range.

(11) End for

(12) Xlo← Delete the repeated solutions and save q local optimal

solutions.

(13) Return Xlo

Intuitively, these Xlo locate in the continuous space, which cannot be cho-

sen as the candidate discrete samples directly. Therefore, projection is sug-

gested to obtain the promising discrete samples. As Eq. (10.2) describes,

the D matrix has saved the discrete sets. Project xlo
i to each column of D

and then find its closest lower and upper discrete values lblo
i and ublo

i in

k dk Γ ∀ =, 1, , . Thereafter, the discrete boundary values ,lb ub lo
i

lo
i of

each xlo
i in D are identified as input for grid sampling. Algorithm 10.1(b)

describes the projection process clearly.

Algorithm 10.1(b): Multi-start Knowledge Mining: Projection

Input: Predicted local optimal solutions , , ,1 2X x x x{ }=lo lo lo lo
q , D matrix

Output: Discrete boundary values ,, , , , , ,1 2 1 2lb lb lb ub ub ub    lo lo lo
q

lo lo lo
q

(01) For i from 1 to q

(02) For k from 1 to d

(03) Index← Employ KNN search to find the index of the nearest

individual to x ()klo
i in the kth column kΓ of D.

(04) If k
index

Γ >x ()klo
i /* the nearest discrete value is larger than x ()klo

i
*/

(05) lb ()klo
i

← k
index

Γ()-1 ; ub ()klo
i

← k
index

Γ().

(06) Else if k
index

Γ <x ()klo
i /* the nearest discrete value is smaller than

x ()klo
i

*/

(07) lb ()klo
i

← k
index

Γ(); ub ()klo
i

← k
index

Γ
()+1 .

(08) Else /* the nearest discrete value equals tox ()klo
i

*/

(09) If Index =1

(10) lb ()klo
i

← k
index

Γ(); ub ()klo
i

← k
index

Γ
()+1 .

(11) Else

(12) lb ()klo
i

← k
index

Γ()-1 ; ub ()klo
i

← k
index

Γ().

(13) End if

KDGO ◾ 271

(14) End if

(15) End for

(16) End for

(17) Return ,, , , , , ,1 2 1 2lb lb lb ub ub ub    lo lo lo
q

lo lo lo
q

Figures 10.2 and 10.3 show the projection and grid sampling process in a

two-dimensional space. When all the promising discrete grid samples are

collected together, the repeated points are deleted and nine big darker dots

are flagged as the candidate point set (see Figure 10.4). It is noteworthy that

the number of grid sampling is 2d, which will dramatically increase when

the dimension d gets larger. For example, if there is a 20-dimensional prob-

lem, it will generate 1,048,576 grid sampling points. It is time-consuming

to call the 20-dimensional Kriging model 1,048,576 times in each cycle,

which greatly decreases KDGO’s search efficiency. Therefore, a probabil-

ity-based grid sampling approach is proposed to get the high-dimensional

(d > 8) candidate samples. Specifically, the mathematical expression is

described below as:

P k
x k lb k

ub k lb k

c k ub k if R P k

c k lb k if R P k

i q k d j m

i lo
i

lo
i

lo
i

lo
i

j lo
i i

j lo
i i

  

() () ()
() ()

() () ()
() () ()

=
−

−

= <

= ≥







∀ = ∀ = ∀ =1,2, , . 1,2, , . 1,2, , .

 (10.5)

where P ki () is the probability threshold value, x klo
i () is the kth dimension

of the ith local optimal solution, and its corresponding discrete boundary

values are lb klo
i () and ub klo

i (). Besides, a random variable R between [0, 1]

is defined to be compared with P ki () for selection. It will have a higher

probability to select one of the boundary values lb klo
i () or ub klo

i () that is

closer to the continuous point x klo
i (), and the selected discrete points are

saved in a candidate sample set , , ,1 2C { }= c c cm . Equation (10.5) guaran-

tees that KDGO can extract the most potential points from the complete

grid sampling sets and control the number of points to avoid generating a

large computational cost in each cycle. The pseudo-code of grid sampling

is summarized in Algorithm 10.1(c)

272 ◾ Data-Driven Global Optimization Methods and Applications

Algorithm 10.1(c): Multi-start Knowledge Mining: Grid Sampling

Input: Discrete boundary values ,, , , , , ,1 2 1 2lb lb lb ub ub ub    lo lo lo
q

lo lo lo
q ,

Predicted local optimal solutions , , ,1 2X x x x{ }=lo lo lo lo
q , Search

region Range

Output: Discrete candidate samples , , ,1 2C { }= c c cm

(01) C←∅ /* Initialize the candidate sample set*/

(02) If d < 8 /* if this is a lower dimensional problem*/

(03) Delete the repeated samples in ,, , , , , ,1 2 1 2lb lb lb ub ub ub    lo lo lo
q

lo lo lo
q .

(04) For i from 1 to q

(05) Temp←Generate the grid samples using ,lb ub lo
i

lo
i .

(06) C←C Temp /* Update C */

(07) End for

(08) Else /* if this is a higher dimensional problem*/

(09) For i from 1to q

(10) For j from 1 to m /* m equals to 100d */

(11) For k from 1 to d

(12) Temp←Generate the grid samples based on Eq. (10.5).

(13) C←C Temp /* Update C */

(14) End for

(15) End for

(16) End for

(17) End if

(18) C←Delete the repeated grid samples and update C.

(19) If C is ∅

(20) C← Generate 10d rounded samples in [a, b] by LHS

(21) End if

(22) Return , , ,1 2C { }= c c cm

As Figure 10.5 shows, the further mining is necessary to get the most valu-

able points (two light colored dots with a normal distribution) from C. In

KDGO, the KNN search is used to check the conflict of the known sample

pool S and the candidate points C. Specifically, the judgment conditions

are summarized below as:

feasible if knn S c

infeasible if knn S c

i m

i

i



()
()

≠

=







∀ =

, 0

, 0

1, ,

 (10.6)

KDGO ◾ 273

where m refers to the number of candidate points, and ci is the ith candi-

date point. If a candidate is infeasible, this implies it has appeared in the

expensive sample pool S, and it will not be considered here. Furthermore,

the EI criterion is employed to sort the remaining feasible points in

, , , ,1 2C { }= ≤c c c p mp , and the top n samples with larger EI values will

be selected to update Kriging. According to the basic theory of Kriging, a

candidate sample ci can be regarded as a random variable Yi(x) with mean

value ˆ x()yi and variance ˆ2 x()si . Naturally, the improvement of the new

candidate sample beyond the present best sample ybest from the sample

pool S can be expressed below as:

 max ,0x x()() ()= −I y Yi best i (10.7)

Obviously, Ii(x) is a random variable, and its mathematical expectation is

formulated as follows:

ˆ
ˆ

ˆ
ˆ

ˆ

ˆ
, ˆ 0

0 ˆ 0

1,2, ,

1 2

x
x

x

x

x

x
x

x

…

⋯ ⋯

φ

{ }

()
()

() ()
() () ()

() ()

()
=

− Φ
−





+
−





≠

=










∀ =

= ≥ ≥ ≥ ≥ ≥

x

EI

EI
y y

y y

s
s

y y

s
s

s

i p

EI EI EI EI

i

best i
best i

i
i

best i

i
i

i

n p (10.8)

where φ and Φ represent the probability density and cumulative density

functions, respectively. More precisely, the detailed pseudo-code is given.

Algorithm10.1(d): Multi-start Knowledge Mining: Selection

Input: Discrete candidate samples , , ,1 2C { }= c c cm , Expensive sample

pool S, Kriging model, Number of sampling per cycle n

Output: Promising samples , , ,1 2PS { }= ps ps psn

(01) PS←∅ /* Initialize the promising sample set*/

(02) , , ,1 2C { }= c c cp ← Utilize Eq. (10.8) to update the candidate

sample set.

(03) For i from 1 to p

(04) EIi ← Utilize Eq. (10.8) to get the corresponding EI value.

274 ◾ Data-Driven Global Optimization Methods and Applications

(05) End for

(06) If n < p

(07) PS← Sort C and Select the top n promising samples based on EI

value from C

(08) else

(09) PS← C

(10) End if

(11) Return , , ,1 2PS { }= ps ps psn

Additionally, when the reduced space is used to speed up the multi-start

search, there is some possibility that the promising sample set PS may be

empty. Once it happens, 100d cheap points are generated by LHS in the

original design space, and their corresponding EI values are calculated.

The point with the maximal EI value will be selected and approximated to

the discrete values in matrix D, making the loop continue working.

10.2.2 Constraint Handling

Computationally intensive inequality constraints are also considered in

KDGO. Each constraint function gi(x) is approximated by Kriging and

will be updated with iteration continuing. In the multi-start optimization,

the local search needs to meet the constraint conditions as follows:

ˆ ˆ

ˆ 0, 1, ,

, 1, ,

x x

x

x x





()

()

()

()≤

≤ ∀ ∈

∀ ∈ ⊂ Ω ∀ ∈

f f

g j m

V i q

lo
i

j lo
i

i lo
i

 (10.9)

where m refers to the number of constraints and q is the number of local

optima. Besides, the corresponding constraint information of each sample

is supplemented to the expensive sample pool S and a penalty function is

used to fuse the objective and constraints.

 + max ,0
1

x x x∑ ()() () ()= ×

=

F f P g i

i

m

 (10.10)

where P is a penalty coefficient with a large value 1e10. F(x) will replace

f(x) to identify the current best location and value in Eqs. (10.4) and (10.8).

Moreover, the EI criterion has been modified for constrained problems.

KDGO ◾ 275

ˆ
ˆ

ˆ
ˆ

ˆ

ˆ
, ˆ 0

0 ˆ 0

ˆ ˆ + max ˆ ,0 ,

min ,

1

x
x

x

x
x

x

x
x

x

x x x x

s s S

∑

φ()

()

()
() ()

() () ()
() ()

()

() () ()

()

=
− Φ

−







 +

−







 ≠

=










= × ∈Ω

= ∈

=

EI
F f

F f

s
s

F f

s
s

s

f f P g

F F

best p
best p best p

p i

i

m

best (10.11)

where ˆ x()fp is the penalty function of the predicted objective and con-

straints and Fbest is the current best value in sample pool S.

10.3 OVERALL OPTIMIZATION FRAMEWORK

In this chapter, the whole optimization flow and the detailed steps of

KDGO are provided. Figure 10.6 shows the detailed optimization flow. It

is clear that KDGO mainly includes two parts: one is the initialization, and

the other one is the proposed multi-start knowledge mining. Specifically,

the steps are summarized below as:

• Step 1: Initialize the Matrix D and some basic parameters includ-

ing design range [a, b], the dimension d, the number of DoE points

NDoE, the maximal number of sampling in each cycle n, the number

of starting points in local and global ranges h, the coefficient of local

range ξ , and the number of iterations iter = 0.

• Step 2: Carry out OLHS sampling to get NDoE initial sample points

and project these points to the Matrix D for the discrete samples.

• Step 3: Calculate their objective and constraint function values, sort

them according to Eq. (10.10), and build the initial Kriging models

for the objective and constraints.

• Step 4: As Algorithm 10.1(a) shows, carry out “Multi-start

Optimization” and get the predicted local optimal solutions

, , ,1 2X x x x{ }=lo lo lo lo
q .

• Step 5: As Algorithm 10.1(b) shows, carry out “Projection” and get

the closest bounds ,, , , , , ,1 2 1 2lb lb lb ub ub ub    lo lo lo
q

lo lo lo
q of these pre-

dicted local optimal solutions from D.

276 ◾ Data-Driven Global Optimization Methods and Applications

• Step 6: As Algorithm 10.1(c) shows, carry out “Grid Sampling” and

use these bounds to create grid points , , ,1 2C { }= c c cm as the candi-

date sample points.

• Step 7: As Algorithm 10.1(d) shows, carry out “Selection” and select

top n promising individuals , , ,1 2PS { }= ps ps psn from the candi-

date sample points.

• Step 8: If PS is empty, generate 100d LHS points in the design range

and select the best one with maximal EI value. Moreover, find its

approximate solution in D.

FIGURE 10.6 Overall optimization flow of KDGO.

KDGO ◾ 277

• Step 9: Calculate the objective and constraint values of these promis-

ing points, and sort them.

• Step 10: Update the number of iterations iter = iter + 1, and update the

Kriging models.

• Step 11: If the number of function evaluations (NFE) reaches

maxNFE, KDGO stops. Otherwise, the algorithm goes back to Step 4

and continues this loop.

10.4 ALGORITHMIC TEST
10.4.1 Mathematical Example Tests

To sufficiently verify the KDGO’s ability, 20 representative benchmark

cases with different characteristics are used for test runs, including five

box-constrained problems, eight inequality-constrained problems and

seven black-box engineering applications. All these mathematical func-

tions are regarded as black-box models, meaning that only input and

output data are extracted to complete the optimization search. Table 10.1

shows the specific information of these test cases, where dim refers to the

number of design variables. Moreover, LO, UMO, MMO and BBO indi-

vidually represent linear, unimodal, multimodal and black-box objectives,

and LC and NLC are linear and nonlinear constraints, respectively. In

engineering applications, H1p1, H1p2, H1p3, H2p1, H2p2 and H2p3 are six

subproblems about optimization design of hydropower generation. Since

large hydropower facilities are designed using different generators, the

goal of these applications is to maximize the power output during 1 day

for hydropower plants with five types of generating units. More details can

be found in the reference (Li et al., 2013). Besides, The three-stage buffer

allocation problem (TP) is an application problem of throughput maximi-

zation (Pichitlamken et al., 2006), where the total buffer size and service

rate are restricted. The goal of TP is to maximize the average output rate

in a flow line with 12 stations that will generate 11 variables about buffer

storage and 12 variables about service rate.

Furthermore, six algorithms including genetic algorithm (GA),

NOMAD, SO-I, local-SO-I, SO-MI, and VNS are used as comparisons to

demonstrate KDGO’s powerful ability. Tables 10.2–10.6 directly come from

Müller’s work (Müller et al., 2014). For a fair comparison, KDGO uses the

same termination criterion that the algorithm will stop after 400 function

278 ◾ Data-Driven Global Optimization Methods and Applications

evaluations, and the mean of the best values and the standard errors of the

means (SEM) after 30 runs are recorded in Tables 10.2–10.6. It is worth

noting that there are two versions of VNS for inequality-constrained prob-

lems. VNS-i uses a similar strategy as SO-I that minimizes the constraint

violation function to find the first feasible point, while VNS-ii directly uses

SO-I to find the feasible solutions as the starting points. Moreover, the

rank in Tables 10.2–10.6 lists the ranks of all the algorithms and NF refers

to the number of test runs that cannot get the feasible solutions. NF is

the first priority to determine the performance of one algorithm, mean

and SEM are the second and third, respectively. If the algorithm A has a

smaller NF value than the algorithm B, it indicates A is better than B. If

NF values of A and B are the same and the mean of A is smaller than B, it

suggests that A is better than B. Similarly, if the NF and mean values of A

and B are the same, the better algorithm should have a smaller SEM.

Table 10.2 provides the comparison results on box-constrained cases.

For the two unimodal problems Cf and Nvs, all seven algorithms can find

TABLE 10.1 Specific Information about the Test Cases

Types ID Cases dim Design Space Description

Box-
constrained
problems

1 Cf 8 [−10, 10]8 UMO

2 Nvs 10 [3, 9]10 UMO

3 Anvs 10 [3, 99]10 MMO

4 Rast01 12 [−1, 3]12 MMO

5 Rast02 12 [−10, 30]12 MMO

Inequality-
constrained
problems

6 G6 2 [13, 100] × [0, 100] MMO, 2NLC

7 Ex 5 [0, 10]3 × [0, 1]2 LO, 2NLC, 3LC

8 G4 5 [78, 102] × [33,
45] × [27, 45]3

UMO, 6NLC

9 Aex 5 [0, 10]3 × [0, 1]2 LO, 3LC

10 G9 7 [−10, 10]7 UMO, 4NLC

11 G1 13 [0, 1]10 × [0, 100]3 MMO, 9LC

12 G1m 13 [0, 100]13 MMO, 9LC

13 Hmi 16 [0, 1]16 MMO, 7NLC

Engineering
applications

14 H1p1 5 [0, 10]5 BBO, 1NLC

15 H1p2 5 [0, 10]5 BBO, 1NLC

16 H1p3 5 [0, 10]5 BBO, 1NLC

17 H2p1 5 [0, 10]5 BBO, 2NLC

18 H2p2 5 [0, 10]5 BBO, 2NLC

19 H2p3 5 [0, 10]5 BBO, 2NLC

20 TP 23 [1, 20]23 BBO, 2LC

KDGO ◾ 279

the global optimal solutions within 400 function evaluations except GA

on Cf. Besides, GA and VNS seem to have difficulty in dealing with Anvs,

while others can successfully find its global optimum. Rast02, an extended

version of Rast01, has a larger design space, increasing the search difficulty

TABLE 10.2 Comparison Results on Box-Constrained Cases

Cases Algorithms #NF Mean(SEM) Rank

Cf KDGO 0 0.00 (0.00) 1

GA 0 2.72 (0.95) 7

SO-I 0 0.00 (0.00) 1

local-SO-I 0 0.00 (0.00) 1

SO-MI 0 0.00 (0.00) 1

NOMAD 0 0.00 (0.00) 1

VNS-i/ VNS-ii 0 0.00 (0.00) 1

Nvs KDGO 0 −43.13 (0.00) 1

GA 0 −43.13 (0.00) 1

SO-I 0 −43.13 (0.00) 1

local-SO-I 0 −43.13 (0.00) 1

SO-MI 0 −43.13 (0.00) 1

NOMAD 0 −43.13 (0.00) 1

VNS-i/VNS-ii 0 −43.13 (0.00) 1

Anvs KDGO 0 −9,591.72 (0.00) 1

GA 0 −9,289.87 (81.24) 6

SO-I 0 −9,591.72 (0.00) 1

local-SO-I 0 −9,591.72 (0.00) 1

SO-MI 0 −9,591.72 (0.00) 1

NOMAD 0 −9,591.72 (0.00) 1

VNS-i/VNS-ii 0 −5,448.97 (358.19) 7

Rast01 KDGO 0 −12.00 (0.00) 1

GA 0 −10.87 (0.19) 6

SO-I 0 −12.00 (0.00) 1

local-SO-I 0 −10.03 (0.77) 7

SO-MI 0 −12.00 (0.00) 1

NOMAD 0 −12.00 (0.00) 1

VNS-i/VNS-ii 0 −12.00 (0.00) 1

Rast02 KDGO 0 −12.00 (0.00) 1

GA 0 33.83 (4.52) 7

SO-I 0 −12.00 (0.00) 1

local-SO-I 0 −12.00 (0.00) 1

SO-MI 0 −12.00 (0.00) 1

NOMAD 0 −10.67 (1.33) 5

VNS-i/VNS-ii 0 16.47 (22.67) 6

280 ◾ Data-Driven Global Optimization Methods and Applications

TABLE 10.3 Comparison Results on Inequality-Constrained
Cases-Part1

Cases Algorithms #NF Mean(SEM) Rank

G6 KDGO 0 −3,971.00 (0.00) 1

GA 2 −3,971.00 (0.00) 5

SO-I 0 −3,971.00 (0.00) 1

local-SO-I 19 −3,971.00 (0.00) 7

SO-MI 0 −3,971.00 (0.00) 1

NOMAD 30 NA 8

VNS-i 14 −3,971.00 (0.00) 6

VNS-ii 0 −3,971.00 (0.00) 1

Ex KDGO 0 0.00 (0.00) 1

GA 0 0.72 (0.14) 7

SO-I 0 0.00 (0.00) 1

local-SO-I 0 0.00 (0.00) 1

SO-MI 0 0.00 (0.00) 1

NOMAD 0 0.00 (0.00) 1

VNS-i 10 0.00 (0.00) 8

VNS-ii 0 0.03 (0.03) 6

G4 KDGO 0 −30,456.91 (2.76) 1

GA 0 −30,073.77 (43.30) 5

SO-I 0 −30,303.66 (31.17) 2

local-SO-I 0 −29,069.70 (106.61) 8

SO-MI 0 −30,075.73 (53.15) 4

NOMAD 0 −30,192.67 (35.29) 3

VNS-i 0 −29,574.12 (92.80) 6

VNS-ii 0 −29,486.62 (68.83) 7

Aex KDGO 0 −8.00 (0.00) 1

GA 0 −7.10 (0.16) 5

SO-I 0 −8.00 (0.00) 1

local-SO-I 0 −6.88 (0.21) 6

SO-MI 0 −8.00 (0.00) 1

NOMAD 8 −8.00 (0.00) 7

VNS-i 16 −7.75 (0.11) 8

VNS-ii 0 −7.93 (0.04) 4

of GA, NOMAD and VNS. Intuitively, the three surrogate-based algo-

rithms KDGO, SO-I and SO-MI almost have the same performance on

these box-constrained cases, and outperform the other four algorithms.

For inequality-constrained problems, NF is an important indicator to

evaluate the performance of these algorithms. For example, local-SO-I,

NOMAD and VNS-i have worse Rank on G6, because they frequently get

KDGO ◾ 281

TABLE 10.4 Comparison Results on Inequality-Constrained
Cases-Part2

Cases Algorithms #NF Mean (SEM) Rank

G9 KDGO 0 744.80 (8.93) 1

GA 0 896.53 (29.21) 4

SO-I 0 771.40 (14.97) 2

local-SO-I 0 997.10 (246.89) 5

SO-MI 0 812.17 (12.46) 3

NOMAD 0 1,770.50 (462.58) 6

VNS-i 4 8,906.35 (6,161.61) 8

VNS-ii 0 2,097.17 (1,367.02) 7

G1 KDGO 0 −14.57 (0.15) 2

GA 0 −6.07 (0.59) 6

SO-I 0 −14.83 (0.10) 1

local-SO-I 0 −12.00 (0.00) 4

SO-MI 0 −12.00 (0.32) 5

NOMAD 0 −5.97 (0.03) 7

VNS-i 30 NA 8

VNS-ii 0 −14.37 (0.24) 3

G1m KDGO 0 −50,197.70 (1.34) 1

GA 1 −40,105.07 (3,175.53) 7

SO-I 0 −40,687.10 (3,145.90) 5

local-SO-I 0 −42,185.67 (1,966.68) 4

SO-MI 0 −50,024.17 (36.40) 2

NOMAD 0 −48,363.03 (1,197.02) 3

VNS-i 30 NA 8

VNS-ii 0 −35,687.03 (3,252.89) 6

Hmi KDGO 0 13.20 (0.14) 1

GA 8 17.73 (0.86) 3

SO-I 14 14.00 (0.68) 7

local-SO-I 8 20.96 (3.11) 4

SO-MI 14 13.50 (0.50) 6

NOMAD 22 13.00 (0.00) 8

VNS-i 4 13.73 (0.44) 2

VNS-ii 14 13.00 (0.00) 5

stuck in infeasible regions. In particular, NOMAD cannot succeed once on

G6, thus gets Rank 8. Compared with Aex, Ex has two additional nonlinear

constraints. However, most algorithms can find satisfactory solutions on

Ex, while having difficulty on Aex. VNS-i and VNS-ii use different man-

ners to find feasible solutions, thus they have different search efficiency.

Intuitively, VNS-ii seems better than VNS-i, because VNS-i always has

282 ◾ Data-Driven Global Optimization Methods and Applications

larger NF values on Ex and Aex. G4 has a larger feasible space ratio, thus

all eight algorithms can successfully identify the feasible area and go close

to the global optimum. It is obvious that KDGO has the best mean value

−30,456.91 on G4 and is much better than others. Similarly, KDGO still

gets rank 1 on G9 and SO-I has satisfactory performance as well. However,

VNS-i, VNS-ii and NOMAD perform so badly on G9 that their mean val-

ues are much larger than 1,000. Although GA sometimes may fail to get

feasible solutions, it has better global exploration ability and can always

obtain acceptable results. For example, GA gets the mean value 896.53 on

G9, much better than local-SO-I.

G1m is an extended version of G1 and has a larger search space. There

is no doubt that SO-I outperforms others on G1 and gets the best mean

value −14.83. Relatively, KDGO finds the true global optimum −15 for

TABLE 10.5 Comparison Results on Engineering
Applications-Part1

Cases Algorithms #NF Mean(SEM) Rank

H1p1 KDGO 0 758.25 (0.00) 1

GA 0 735.34 (6.75) 7

SO-I 0 758.25 (0.00) 1

local-SO-I 0 681.38 (10.25) 8

SO-MI 0 754.38 (0.88) 4

NOMAD 0 744.00 (0.96) 6

VNS-i 0 753.83 (1.54) 5

VNS-ii 0 755.04 (1.12) 3

H1p2 KDGO 0 2,021.67 (0.22) 1

GA 0 2,008.83 (4.68) 5

SO-I 0 2,020.67 (1.33) 2

local-SO-I 0 1,835.14 (24.94) 8

SO-MI 0 2,015.46 (1.51) 3

NOMAD 0 2,003.83 (5.01) 7

VNS-i 0 2,010.83 (3.81) 4

VNS-ii 0 2,006.46 (6.91) 6

H1p3 KDGO 0 4,116.39 (4.31) 3

GA 0 4,108.84 (4.49) 5

SO-I 0 4,114.63 (2.50) 4

local-SO-I 0 3,890.61 (20.74) 8

SO-MI 0 4,117.98 (2.58) 2

NOMAD 0 4,125.75 (12.06) 1

VNS-i 0 4,075.42 (10.44) 7

VNS-ii 0 4,099.17 (6.69) 6

KDGO ◾ 283

TABLE 10.6 Comparison Results on Engineering
Applications-Part2

Cases Algorithms #NF Mean(SEM) Rank

H2p1 KDGO 0 1,679.05 (1.91) 1

GA 0 1,560.36 (25.96) 6

SO-I 0 1,677.17 (2.10) 2

local-SO-I 0 1,443.12 (46.42) 7

SO-MI 0 1,657.08 (3.75) 4

NOMAD 0 1,626.18 (19.64) 5

VNS-i 4 1,653.65 (13.92) 8

VNS-ii 0 1,671.50 (2.92) 3

H2p2 KDGO 0 4,124.70 (7.08) 1

GA 0 4,016.17 (23.14) 5

SO-I 0 4,097.40 (11.86) 2

local-SO-I 0 3,668.60 (50.60) 7

SO-MI 0 4,095.50 (6.96) 3

NOMAD 0 3,899.40 (25.57) 6

VNS-i 2 4,000.93 (28.66) 8

VNS-ii 0 4,070.83 (16.29) 4

H2p3 KDGO 0 8,302.33 (7.99) 1

GA 0 8,220.67 (22.22) 4

SO-I 0 8,299.00 (12.84) 2

local-SO-I 0 7,550.17 (73.20) 8

SO-MI 0 8,253.17 (9.62) 3

NOMAD 0 8,122.33 (32.05) 5

VNS-i 0 8,055.83 (49.83) 6

VNS-ii 0 7,996.33 (64.34) 7

TP KDGO 0 4.18 (0.19) 1

GA 0 3.10 (0.17) 4

SO-I 0 3.15 (0.20) 3

local-SO-I 0 2.07 (0.22) 6

SO-MI 0 3.82 (0.13) 2

NOMAD 0 0.89 (0.06) 7

VNS-i 26 1.74 (0.39) 8

VNS-ii 0 2.52 (0.20) 5

22 times and also gets a satisfactory mean −14.57. On the other hand,

KDGO becomes the only method that can obtain a mean result smaller

than -−50,000 on G1m. Furthermore, according to the statistical results,

KDGO successfully reaches the global optimum −50,200 for 21 times on

G1m, showing its superior robustness. When it comes to Hmi, all the algo-

rithms except KDGO seem to encounter some troubles. This is because

284 ◾ Data-Driven Global Optimization Methods and Applications

Hmi is a binary problem with high dimension and seven nonlinear con-

straints. However, KDGO can accurately find the global optimum 13 for

28 times and get the impressive mean 13.20, once again demonstrating its

high efficiency.

For the constrained engineering cases, it seems that all the algorithms

except VNS-i can easily find feasible solutions but they have different con-

vergence abilities. KDGO and SO-I can always find the global optimum

758.25 on H1p1. Besides, KDGO maintains the first on H1p2, H2p1, H2p2

and H2p3. And SO-I follows KDGO closely in most cases. According to

the results in Tables 10.5 and 10.6, it can be found that KDGO not only

has a better mean but also has a smaller SEM, demonstrating its excel-

lent stability. For H1p3, NOMAD wins the competition and SO-MI has

impressive results as well.

It is clear from Table 10.1 that TP is a high-dimensional case that gen-

erally needs more function evaluations to explore the design space. After

30 test runs, KDGO undoubtedly acquires the biggest mean 4.18 that has

a 9% improvement over SO-MI. In the 20 test cases, KDGO gets 18 Rank

1, 1 Rank 2 and 1 Rank 3; SO-I gets 10 Rank 1, 6 Rank 2 and 1 Rank 3;

SO-MI acquires 8 Rank 1, 3 Rank 2 and 4 Rank 3. To sum it up, KDGO is

not only good at dealing with mathematical benchmark cases, but also has

extraordinary ability to solve actual engineering applications. The results

in Tables 10.2–10.6 verify KDGO’s functionality and demonstrate its supe-

rior performance.

10.4.2 Practical Engineering Application

In this chapter, the presented KDGO is used for structure optimization

of a blended-wing-body underwater glider (BWBUG). When the BWBUG

is lifted from the water, stress concentration may arise in the skeleton

structure because of the vertical downward force on the two wings, which

involves the gravities of skeleton, equipment and buoyancy material. For

the equipment, the total gravity is defined as 1,500N that depends on the

specific tasks and functions of this BWBUG. On the other hand, for the

buoyancy material, the density buoyancyρ is 500 kg/m3, the occupied vol-

ume is Vairfoil ≈ 0.11 m3, and the weight of the material is 55 kg. Therefore,

the total gravity of the buoyancy material is G W g Nbuoyancy buoyancy= ≈ 550 . To

get the lightest weight and meanwhile satisfy the stress and deformation

constraints, the specific design parameters and optimization formula are

summarized below.

KDGO ◾ 285

Figure 10.7 shows the ten design variables including: four thickness param-

eters t1, t2, t3 and t4; six relative position parameters l1, l2, l3, l4, l5 and l6. The

total length and width of this BWBUG are 1,000 and 3,000 mm, respectively.

Besides, the numbers of transverse and longitudinal beams in the body are

constants 4 and 2, and those in the wings are constants 3 and 5, respectively.

The design objective is to minimize the skeleton weight and meanwhile need

to be subject to the equivalent stress and total deformation constraints.

W

s t

d

t

t

t

t

discrete erval

l

l

l

discrete erval

l

l

l

discrete erval

skeleton

s

int

int

int

σ σ γ

≤
≤

≤ ≤

≤ ≤

≤ ≤

≤ ≤














⇒

≤ ≤

≤ ≤

≤ ≤










⇒

≤ ≤

≤ ≤

≤ ≤










⇒
































min

. . /

50 mm

4 10

4 10

3 7

3 7

0.05

255 345

50 120

250 320

0.5

0.10 0.35

0.45 0.55

0.65 0.90

0.01

max

max

1

2

3

4

1

2

3

4

5

6

 (10.12)

FIGURE 10.7 Structure parameters and illustration.

286 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 10.8 Illustration of mesh generation.

32

Wskeleton:4.8245 kg

Iterative trend
Feasible results
Infeasible results
Best results

σmax:110.3534 MPa

dmax:49.9857 mm

Wskeleton:5.8822 kg

Iterative InfillingDoE

9.5

9

8.5

8

7.5

7

W
e

ig
h

t(
k
g

)

6.5

6

5.5

5

4.5
0 10 20 30 40 50 60 70

Number of Function Evaluations

80 90 100 110 120 130 140 150

σmax:114.3651 MPa

dmax:45.6150 mm

FIGURE 10.9 Iterative process of KDGO on structure design.

where Wskeleton is the weight of the skeleton structure, σ max is the maximal

equivalent stress, sσ is the tensile/compressive yield strength, γ refers to

safety factor and dmax denotes the maximal total deformation. In this exper-

iment, the structure material is aluminum alloy with density 2,770 kg/m3,

Young’s modulus 71,000 MPa, and Poisson’s ratio 0.33. Besides, the safety

factor is 1.6 and sσ is 280 MPa. The finite element analysis is used to simu-

late this actual case, and Figure 10.8 shows the specific structure mesh.

Furthermore, Figure 10.9 shows the detailed iterative process, where the

stars refer to the feasible solutions, the dots represent infeasible designs,

and the best feasible solution is located at the 89th NFE. From Figure 10.9,

it is clear that the initial samples from the DoE phase have a wide distribu-

tion in the design space, while the efficient infilling strategy makes KDGO

find the feasible and optimal regions rapidly. After several iterations, the

search focuses on the boundary of the deformation constraint. Intuitively,

KDGO ◾ 287

KDGO begins to converge after 80 simulations and finally identifies the

best objective value after 88 simulations.

Additionally, the best results obtained in different phases (the DoE

phase and the final phase) are summarized in Tables 10.7 and 10.8. Here,

DoE-opt refers to the best result obtained after DoE and Final-opt denotes

the final best result. The final weight has an 18% improvement after the

iterative infilling process. Correspondingly, the equivalent stress and total

deformation diagrams are provided in Figures 10.10 and 10.11. In sum-

mary, KDGO cannot only deal with complex mathematical cases but can

also efficiently tackle the actual engineering application.

FIGURE 10.10 Equivalent stress diagram. (a) DoE-opt. (b) Final-opt.

TABLE 10.7 Best Solutions in Different Phases

Solutions 1t 2t 3t 4t 1l 2l 3l 4l 5l 6l

DoE-opt 5.15 4 5.2 6.75 278 72.5 263.5 0.15 0.47 0.77

Final-opt 4 4 3 4.7 255 120 250 0.17 0.51 0.65

TABLE 10.8 Best Response Values in Different
Phases

Response (kg)Wskeleton (mm)maxd (MPa)maxσσ

DoE-opt 5.8822 45.6150 114.3651

Final-opt 4.8245 49.9857 110.3534

288 ◾ Data-Driven Global Optimization Methods and Applications

10.5 CHAPTER SUMMARY

In this chapter, a novel discrete global optimization method named

KDGO is presented, which can effectively solve computationally expensive

black-box problems. In KDGO, an efficient infilling criterion is proposed to

iteratively supplement new expensive samples, which involves a multi-start

knowledge mining process. The new samples are generated by four steps:

optimization, projection, sampling and selection. And the greatest advan-

tage of this method is its ability to solve a wide range of discrete problems,

including binary, integer and discrete number set black-box problems. In

addition, its strong stability is demonstrated through its application in a

wide range of engineering problems.

NOTE
 1 Based on “Kriging-assisted Discrete Global Optimization (KDGO) for

black-box problems with costly objective and constraints,” published in
[Applied Soft Computing], [2020]. Permission obtained from [Elsevier].

REFERENCES

Abramson, M. A., Audet, C., Chrissis, J. W., & Walston, J. G. (2009). Mesh Adaptive
Direct Search Algorithms for Mixed Variable Optimization. Optimization
Letters, 3, 35–47.

Adibi, M. A., Zandieh, M., & Amiri, M. (2010). Multi-Objective Scheduling of
Dynamic Job Shop Using Variable Neighborhood Search. Expert Systems
with Applications, 37(1), 282–287.

Anghinolfi, D., & Paolucci, M. (2009). A New Discrete Particle Swarm Optimization
Approach for the Single-Machine Total Weighted Tardiness Scheduling
Problem with Sequence-Dependent Setup Times. European Journal of
Operational Research, 193(1), 73–85.

FIGURE 10.11 Total deformation diagram. (a) DoE-opt. (b) Final-opt.

KDGO ◾ 289

Dede, T. (2014). Application of Teaching-Learning-Based-Optimization Algorithm
for the Discrete Optimization of Truss Structures. KSCE Journal of Civil
Engineering, 18, 1759–1767.

Demeulemeester, E., & Herroelen, W. (1992). A Branch-and-Bound Procedure
for the Multiple Resource-Constrained Project Scheduling Problem.
Management Science, 38(12), 1803–1818.

Dong, H., Li, C., Song, B., & Wang, P. (2018). Multi-Surrogate-Based Differential
Evolution with Multi-Start Exploration (MDEME) for Computationally
Expensive Optimization. Advances in Engineering Software, 123, 62–76.

Dong, H., Song, B., Dong, Z., & Wang, P. (2016). Multi-Start Space Reduction
(MSSR) Surrogate-Based Global Optimization Method. Structural and
Multidisciplinary Optimization, 54, 907–926.

Dong, H., Song, B., Dong, Z., & Wang, P. (2018). SCGOSR: Surrogate-Based
Constrained Global Optimization Using Space Reduction. Applied Soft
Computing, 65, 462–477.

Dong, H., Song, B., & Wang, P. (2017). Kriging-Based Optimization Design for
a New Style Shell with Black Box Constraints. Journal of Algorithms &
Computational Technology, 11(3), 234–245.

Ekel, P. Y., & Neto, F. H. S. (2006). Algorithms of Discrete Optimization and Their
Application to Problems with Fuzzy Coefficients. Information Sciences,
176(19), 2846–2868.

Guendouz, M., Amine, A., & Hamou, R. M. (2017). A Discrete Modified Fireworks
Algorithm for Community Detection in Complex Networks. Applied
Intelligence, 46, 373–385.

Holmström, K., Quttineh, N.-H., & Edvall, M. M. (2008). An Adaptive Radial Basis
Algorithm (ARBF) for Expensive Black-Box Mixed-Integer Constrained
Global Optimization. Optimization and Engineering, 9, 311–339.

Jiang, C., Wang, D., Qiu, H., Gao, L., Chen, L., & Yang, Z. (2019). An Active
Failure-Pursuing Kriging Modeling Method for Time-Dependent Reliability
Analysis. Mechanical Systems and Signal Processing, 129, 112–129. https://
doi.org/10.1016/j.ymssp.2019.04.034

Kytöjoki, J., Nuortio, T., Bräysy, O., & Gendreau, M. (2007). An Efficient Variable
Neighborhood Search Heuristic for Very Large Scale Vehicle Routing
Problems. Computers & Operations Research, 34(9), 2743–2757.

Land, A. H., & Doig, A. G. (2010). An automatic method for solving discrete pro-
gramming problems. Springer.

Lawler, E. L. (1972). A Procedure for Computing the k Best Solutions to Discrete
Optimization Problems and Its Application to the Shortest Path Problem.
Management Science, 18(7), 401–405.

Li, F.-F., Shoemaker, C. A., Wei, J.-H., & Fu, X.-D. (2013). Estimating Maximal
Annual Energy Given Heterogeneous Hydropower Generating Units with
Application to the Three Gorges System. Journal of Water Resources Planning
and Management, 139(3), 265–276.

Li, X., Wu, X., Xu, S., Qing, S., & Chang, P.-C. (2019). A Novel Complex Network
Community Detection Approach Using Discrete Particle Swarm Optimization
with Particle Diversity and Mutation. Applied Soft Computing, 81, 105476.

https://doi.org/10.1016/j.ymssp.2019.04.034
https://doi.org/10.1016/j.ymssp.2019.04.034

290 ◾ Data-Driven Global Optimization Methods and Applications

Liu, H., Ong, Y.-S., & Cai, J. (2018). A Survey of Adaptive Sampling for Global
Metamodeling in Support of Simulation-Based Complex Engineering
Design. Structural and Multidisciplinary Optimization, 57, 393–416.

Liu, J., Dong, H., Jin, T., Liu, L., Manouchehrinia, B., & Dong, Z. (2018).
Optimization of Hybrid Energy Storage Systems for Vehicles with Dynamic
On-Off Power Loads Using a Nested Formulation. Energies, 11(10), 2699.

Mladenović, N., & Hansen, P. (1997). Variable Neighborhood Search. Computers
& Operations Research, 24(11), 1097–1100.

Müller, J., Shoemaker, C. A., & Piché, R. (2013). SO-MI: A Surrogate Model
Algorithm for Computationally Expensive Nonlinear Mixed-Integer Black-
Box Global Optimization Problems. Computers & Operations Research,
40(5), 1383–1400.

Müller, J., Shoemaker, C. A., & Piché, R. (2014). SO-I: A Surrogate Model Algorithm
for Expensive Nonlinear Integer Programming Problems Including Global
Optimization Applications. Journal of Global Optimization, 59, 865–889.

Nakariyakul, S., & Casasent, D. P. (2007). Adaptive Branch and Bound Algorithm for
Selecting Optimal Features. Pattern Recognition Letters, 28(12), 1415–1427.

Pichitlamken, J., Nelson, B. L., & Hong, L. J. (2006). A Sequential Procedure
for Neighborhood Selection-of-the-Best in Optimization via Simulation.
European Journal of Operational Research, 173(1), 283–298.

Polacek, M., Hartl, R. F., Doerner, K., & Reimann, M. (2004). A Variable
Neighborhood Search for the Multi Depot Vehicle Routing Problem with
Time Windows. Journal of Heuristics, 10, 613–627.

Rashid, K., Ambani, S., & Cetinkaya, E. (2013). An Adaptive Multiquadric Radial
Basis Function Method for Expensive Black-Box Mixed-Integer Nonlinear
Constrained Optimization. Engineering Optimization, 45(2), 185–206.

Sayadi, M. K., Hafezalkotob, A., & Naini, S. G. J. (2013). Firefly-Inspired Algorithm
for Discrete Optimization Problems: An Application to Manufacturing Cell
Formation. Journal of Manufacturing Systems, 32(1), 78–84.

Shi, R., Liu, L., Long, T., Wu, Y., & Gary Wang, G. (2020). Multi-Fidelity Modeling
and Adaptive Co-Kriging-Based Optimization for All-Electric Geostationary
Orbit Satellite Systems. Journal of Mechanical Design, 142(2), 021404.

Stander, J. N., Venter, G., & Kamper, M. J. (2016). High Fidelity Multidisciplinary
Design Optimisation of an Electromagnetic Device. Structural and
Multidisciplinary Optimization, 53, 1113–1127.

Zhang, S., Lee, C. K. M., Chan, H. K., Choy, K. L., & Wu, Z. (2015). Swarm
Intelligence Applied in Green Logistics: A Literature Review. Engineering
Applications of Artificial Intelligence, 37, 154–169.

Zhou, Q., Rong, Y., Shao, X., Jiang, P., Gao, Z., & Cao, L. (2018). Optimization
of Laser Brazing onto Galvanized Steel Based on Ensemble of Metamodels.
Journal of Intelligent Manufacturing, 29(7), 1417–1431. https://doi.
org/10.1007/s10845-015-1187-5

Zhou, Q., Wu, J., Xue, T., & Jin, P. (2021). A Two-Stage Adaptive Multi-Fidelity Surrogate
Model-Assisted Multi-Objective Genetic Algorithm for Computationally
Expensive Problems. Engineering with Computers, 37, 623–639.

https://doi.org/10.1007/s10845-015-1187-5
https://doi.org/10.1007/s10845-015-1187-5

C H A P T E R 11

SAGWO

Surrogate-Assisted Gray Wolf
Optimization for High-Dimensional,
Computationally Expensive
Black-Box Problems1

11.1 INTRODUCTION

In searching for the optimal solution, surrogate models are commonly

employed to approximate the objective function, thereby replacing expen-

sive simulations and significantly reducing the number of evaluations of

costly functions (Dong et al., 2016; Forrester & Keane, 2009). Two types of

surrogate-based optimization strategies are typically utilized during the

optimization search process. The first is the direct offline optimization

approach (Goel et al., 2007; Guo et al., 2018; Hajikolaei & Gary Wang,

2014), which focuses on constructing an accurate surrogate model using a

set of well-distributed expensive sample points. Subsequent evolutionary

computation (EC) or swarm intelligence (SI) searches are then performed

on the surrogate model without further evaluations of the expensive

objective function. However, it is challenging to construct a globally

accurate surrogate model with a limited number of samples, especially

for multimodal or high-dimensional optimization problems. The sec-

ond is the dynamic or online optimization approach (Dong et al., 2018a;

Liu et al., 2017; Long et al., 2015; Müller et al., 2014; Regis & Shoemaker,

2013), which begins with a coarse surrogate model and adaptively refines

291DOI: 10.1201/9781003636267-11

https://doi.org/10.1201/9781003636267‑11

292 ◾ Data-Driven Global Optimization Methods and Applications

it by adding new expensive samples according to certain infill strategies

during each iteration of the search process. The key challenges in online

optimization lie in designing effective infill strategies and balancing the

exploration of unknown regions with the exploitation of the current

model (Haftka et al., 2016).

These stated search methods could sufficiently utilize the predic-

tive information of surrogate models and perform well on lower dimen-

sional (D < 10) problems, but the algorithms also encountered challenges

in the higher dimensional (D ≥ 10), computationally expensive optimi-

zations. One reason is that the high-dimensional problems have much

larger exploration space and more local optima, leading to the difficulty

in global optimization search. The other contributing factor is that the

current approximation techniques generate huge errors in search of a

high-dimensional problem, mistakenly guiding the search and wasting a

large amount of computational effort. Too much dependence on surrogate

models makes the search method inefficient, ineffective and even infea-

sible for solving high-dimensional optimization problems (Dong et al.,

2018b; Shan & Wang, 2010).

Surrogate-assisted EC or SI algorithms (SAEC/SIAs) are different

from the methods discussed above. Although the SAEC/SIAs still need

intelligent infill sampling to update new individuals and the generation

of points, they do not overly rely on the prediction information com-

ing from the surrogates. SAEC/SIAs retain the metaheuristic character-

istics that stochastically capture new samples around the present best

solution or go to the unknown area for global exploration. Generally,

SAEC/SIAs utilize the surrogate models as the prescreening tools to

select promising individuals, which makes SAEC/SIAs more suitable for

high-dimensional, computationally expensive global optimization. The

strategies for managing surrogates in SAEC/SIAs can be classified into

generation-based, individual-based and population-based methods. In

the generation-based methods, the points of some generations are created

using surrogates, while the others are still produced by evaluating the

expensive fitness/objective function. In the individual-based strategies,

surrogates are used to evaluate the fitness of some individual points in

each generation. In the population-based methods, each subpopulation

has its surrogate, and some of the subpopulations can use surrogates for

fitness evaluations to reduce computation costs. Recently, considerable

progress has been made in improving the SAEC/SIAs search schemes.

Lim et al. (2009) used an ensemble model composed of several different

SAGWO ◾ 293

surrogates to mitigate prediction error and applied polynomial response

surface (PRS) to acquire a smooth function with fewer local minima.

Training data for building the surrogates is chosen in the vicinity of each

individual, and initial individuals are gradually replaced by higher qual-

ity solutions from the proposed surrogates. Liu et al. (2013) developed

a surrogate-based evolutionary algorithm (GPEME) for expensive opti-

mization problems with 20–50 design variables. The Gaussian process

surrogate model assisted evolutionary algorithm for medium-scale com-

putationally expensive optimization problems (GPEME) utilizes GP to

build surrogates and adaptively coordinates the exploitation of surrogates

and evolutionary search. Besides, Sammon mapping is used to reduce the

design dimension so that GP can generate more accurate surrogates in

a low-dimensional space. Regis (2014) introduced an RBF (radial basis

function)-assisted particle swarm optimization (PSO) algorithm for

30–36 dimensional problems, where RBF is used to identify the best trial

in each swarm, and the present best trial needs to be redefined by a pos-

sible trial in its vicinity. Sun et al. (2017) presented the surrogate-assisted

cooperative swarm optimization (SA-COSO) method for 50–100 dimen-

sional, expensive optimization problems, in which the surrogate-assisted

PSO and social learning-based PSO (SL-PSO) schemes are cooperatively

used to search for the global optimum. In SA-COSO, a fitness estima-

tion strategy was also presented to assist the PSO search to generate more

promising individuals. Furthermore, Yu et al. (2018) developed a surro-

gate-assisted hierarchical PSO algorithm (SHPSO) that also combines

PSO and SL-PSO to enhance the global and local search, and SHPSO

had an impressive performance on 30-, 50- and 100-dimensional cases.

Recently, Wang et al. (2019) introduced the novel evolutionary sampling

assisted optimization (ESAO) algorithm that builds two surrogate models

for global and local searches, respectively. Expensive samples were used

to build the global model, while several better individuals were collected

to construct the local model. The ESAO has shown excellent performance

in the tests using 20–200 dimensional benchmark cases.

This chapter introduces a new search method, called surro-

gate-assisted gray wolf optimization (SAGWO), which uses RBF to assist

the gray wolf optimization (GWO) (Mirjalili et al., 2014) algorithm in

solving high-dimensional computationally expensive black-box prob-

lems. SAGWO operates in three phases: initial exploration, RBF-assisted

metaheuristic exploration and knowledge mining on the RBF model.

In the initial exploration phase, a group of well-distributed samples is

294 ◾ Data-Driven Global Optimization Methods and Applications

generated using the design of experiments (DoE) to roughly approxi-

mate the high-dimensional design space, and the original wolf pack and

leaders are sequentially identified. Furthermore, knowledge mining on

the RBF model combines global search using GWO and multi-start local

search around promising regions. During the RBF-assisted metaheuris-

tic exploration phase, the predictive information from the RBF model

is utilized to guide the generation of wolf leaders in each iteration, and

the positions of the wolf pack dynamically change following the wolf

leaders, thus achieving a balance between global exploration and local

exploitation.

11.2 GRAY WOLF OPTIMIZATION

Since GWO was presented by Mirjalili et al. (2014), the method has received

considerable attention and has been successfully applied in various engi-

neering applications. For example, Sánchez et al. (2017) proposed a gray

wolf optimizer for modular granular neural network (MGNN) that was

applied to human recognition. Compared with other algorithms, GWO

could find the optimal architecture parameters of MGNN more efficiently.

Rodríguez et al. (2017) proposed a new hierarchical transformation opera-

tor with five variants in the hunting process of GWO. Through a large

amount of tests, they proved that the fuzzy hierarchical operator can

maximize the improvement of GWO’s performance. Moreover, Majumder

and Eldho (2020) utilized an artificial neural network (ANN) to build the

surrogate model for the groundwater flow and solute transport processes.

The comparative study demonstrated that GWO could successfully iden-

tify the optimal solution of the ANN model and had better stability and

convergence behavior. In recent years, how to improve GWO and how to

apply GWO to solve certain problems have become research hotspots. Due

to GWO’s high efficiency and strong stability, this chapter expects to draw

support from GWO’s search mechanism to solve high-dimensional expen-

sive black-box optimization problems.

GWO is a nature-inspired GO algorithm, mathematically describing

the gray wolves’ social hierarchy and hunting mechanism. In GWO, the

wolf pack mainly includes four hierarchies: the fittest solution alpha (α),

the second and third best solutions beta (β) and delta (δ), and the others

omega (ω). Alpha, beta and delta will guide omega to hunt the prey that is

the global optimal solution. Generally, gray wolves will track and encircle

the prey before the attack, and the general formulation of the approach is

summarized below:

SAGWO ◾ 295

 () ()= ⋅ −D C X Xt tp (11.1)

 () ()+ = − ⋅X X A D1t tp (11.2)

 = ⋅ − = ⋅A r C r2 , 21 2a a (11.3)

where Xp(t) refers to the prey’s position in the present iteration, r1 and r2

are two random vectors, and a is a parameter that linearly decrease from

2 to 0. It is worth noting that A and C are two random factors for exploi-

tation and exploration, respectively. To simulate the hunting behavior

mathematically, all the wolves update their positions with the guidance of

alpha, beta and delta. The formulas are summarized as follows:

() ()

() ()

() ()

= ⋅ −

= ⋅ −

= ⋅ −

α α

β β

δ δ

D C X X

D C X X

D C X X

1

2

3

t t

t t

t t

 (11.4)

 ()

()

()

= − ⋅

= − ⋅

= − ⋅

α α

β β

δ δ

X X A D

X X A D

X X A D

1 1

2 2

3 3

 (11.5)

 ()+ =
+ +

X
X X X

1
3

1 2 3t (11.6)

where X(t) is the position of a wolf in the current iteration, X(t + 1) is the

corresponding new position in the next iteration. X1, X2 and X3 are three

updated positions based on the wolf leaders alpha, beta and delta. The ran-

dom factors Ci and Ai in Eqs. (11.4)–(11.6) are independent.

11.3 SURROGATE-ASSISTED GWO

Surrogate-assisted EC and SI algorithms have shown a superior capability

in dealing with higher dimensional, computation-expensive optimization

problems, and GWO is a widely used, efficient swarm intelligent GO algo-

rithm. In this chapter, the RBF with a simple structure and very efficient

model-building mechanism for high-dimensional problems is used as the

surrogate model to assist the search in the GWO algorithm. The specific

introduction and expression of RBF can be seen in Chapter 6. The new

296 ◾ Data-Driven Global Optimization Methods and Applications

SAGWO algorithm integrates RBF and GWO in the optimization loop to

explore the high-dimensional design space, as shown in Figure 11.1.

Details of the new search SAGWO method are further illustrated using

the following algorithm descriptions.

Algorithm 11.1 Surrogate-Assisted Gray Wolf Optimization

(01) Design of Experiments: Employing Latin Hypercube Sampling (LHS)

to choose m wolves S in the design space, evaluating their function

values Y, and saving them in an archive DB.

(02) Initialize Wolf Pack: Sorting S based on Y, and choose the top n

wolves as the initial Wolf Pack WPinit.

(03) Initial knowledge mining on RBF: Training an RBF model by DB, get-

ting the predicted best solution fpbest from RBF, and saving it into DB.

(04) Generate three best wolves Alpha, Beta, Delta from WPinit.

(05) iteration ← 1;

(06) Repeat

(07) Run Surrogate-assisted metaheuristic exploration

(08) Run Knowledge mining on surrogate models

(09) Update Alpha, Beta, Delta.

FIGURE 11.1 Surrogate-assisted gray wolf optimization.

SAGWO ◾ 297

(10) Sort DB based on function values and find the best sample Best

in DB.

(11) iteration ← iteration +1;

(12) Until the termination criterion is satisfied.

(13) Return Best.

In Algorithm 11.1, a database DB is created to store expensive samples.

In the beginning, 2(d + 1) sample points are generated using LHS, where

top n samples are selected as the initial positions of the wolf pack based

on their function values. Here, d refers to the dimension, and n is the size

of the wolf pack. The initial knowledge mining is carried out on the lin-

ear RBF model to get the predicted best solution and the corresponding

function value is calculated to update DB. After the initial alpha, beta

and delta are identified from the wolf pack, the entire optimization loop

begins. Figure 11.2 shows how the first wolf pack is generated in the initial

process. More details on the RBF-assisted metaheuristic exploration and

knowledge mining on RBF are provided in the following sections.

11.3.1 Surrogate-Assisted Metaheuristic Exploration

Assume that an experienced wolf coming from other wolf packs or getting

special training by more intelligent creatures. Naturally, this experienced

wolf may better guide other wolves to hunt prey. As per the previous dis-

cussion, RBF can collect the hunting data of the wolf pack in each cycle,

and provide an approximate prediction, to generate an “experienced wolf.”

From Algorithm 11.1 and Figure 11.1, it is clear that the database DB

includes two types of information: the iterative positions of the wolf pack

and the predicted samples of RBF. Intuitively, one way to find experienced

FIGURE 11.2 Generation of initial wolf pack.

298 ◾ Data-Driven Global Optimization Methods and Applications

leaders for the wolf pack is to choose promising solutions from DB to

update alpha, beta and delta. Equation (11.7) provides the formulation.

{
{
{

}

}

}

()

() ()

() () ()

() () () ()

()

+ = ∈

+ = ∈ − +

+ = ∈ − + − +

= =

α

β α

δ α β

= =

1 arg min ,

1 arg min , 1

1 arg min , 1 1

,
1 1

t f

t f t

t f t t

i j

x

x

x

i

t

j

t

X x x WP S

X x x WP S X

X x x WP S X X

WP WP S S

rbf

rbf

rbf

rbf rbf 







(11.7)

where 1X ()+α t , 1X ()+β t and 1X ()+δ t are the updated alpha, beta and

delta, respectively. WP()i are the positions of the wolf pack in the ith itera-

tion, ()jSrbf are the predicted samples from RBF in the jth iteration, and

f(x) is the objective function. From Eq. (11.7), it is easy to find that the new

leaders of the wolf pack possess more knowledge that not only comes from

the experience of the wolf pack, but also comes from the prediction by the

RBF. After the wolf leaders are obtained by Eq. (11.7), Eqs. (11.4)–(11.6) are

continuously used to update the whole wolf pack. To make it clearer, an

illustration about the data flow of the proposed metaheuristic exploration

is shown in Figure 11.3.

Moreover, another way to fuse the wolves’ experience and the predic-

tion of RBF is also presented for comparison. The method used in the sub-

sequent experiments is named SAGWO_M. Here, alpha, beta and delta are

FIGURE 11.3 Data flow of the proposed metaheuristic exploration.

SAGWO ◾ 299

updated using the original way, and the present best solution in DB is used

to guide others, leading to the following formulations:

 S{ }() ()= ∈arg min ,t f
x

X x x WPBest rbf (11.8)

 () ()= ⋅ −4 t tD C X XBest Best (11.9)

 ()= − ⋅4 4X X A DBest Best (11.10)

 1 =
+

4
1 2 3 4

X
X X X X

()+
+ +

t (11.11)

where BestX ()t refers to the present best solution, and 4C and 4A are two

independent random factors. To explain the search process of SAGWO, the

search steps are listed in Algorithm 11.2. It is worth noting that SAGWO

and SAGWO_M have the same optimization flow except that different

equations to get 1X()+t and wolf leaders are used.

Algorithm 11.2 Surrogate-Assisted MetaHeuristic Exploration

(01) Update Alpha, Beta and Delta based on (11).

(02) for i ← 1 to n (Here, n refers to the wolf pack size)

(03) for j ← 1 to dim (Here, dim refers to dimension)

(04) Use (8) to (10);

(05) On the jth dimension, Generate X1 based on the ith wolf

and Alpha;

(06) On the jth dimension, Generate X2 based on the ith wolf and

Beta;

(07) On the jth dimension, Generate X3 based on the ith wolf

and Delta;

(08) Update the jth dimension of the ith wolf ’s position by X1, X2,

X3. (Using (11.6))

(09) endfor

(10) Make sure the ith wolf ’s position inside the original range.

(11) endfor

(12) Evaluate the function values at the new positions of the wolf pack.

(13) Save all the positions and function values of wolf pack into DB.

(14) Update the RBF model using the samples in DB.

(15) Return DB and an updated RBF model.

300 ◾ Data-Driven Global Optimization Methods and Applications

11.3.2 Knowledge Mining on Surrogate Models

In general, it is difficult to build a globally accurate surrogate model and

it is easier to make accurate predictions in a local trust region. Therefore,

this work focuses on a small region around the present best solution using

the following formulations:

()

()

()

()

= − ⋅ − 

= + ⋅ − 

=












max ,

min ,

_

w

w

Local region

local pos

local pos

local

local

L Best U L L

U Best U L U

L

U

b b b b

b b b b

b

b

_

_

_

_

 (11.12)

where Bestpos is the present best solution, Lb and Ub are the lower and upper

bounds of the original design region, and w is a scaling factor. To acquire

useful knowledge from the RBF model, a combination search of global

optimization and multi-start local optimizations is conducted. The global

optimizer is used to get the predicted best solutions Gbestglobal and Gbestlocal

in the original space and in the local region, respectively. The multi-start

optimization process is carried out in the local region to capture the pre-

dicted local optimal solutions Lbestlocal. In this algorithm, the gray wolf

optimizer is employed as the global optimizer, and the sequential qua-

dratic programming (SQP) is used as the local optimizer.

In the multi-start optimization, several starting points are generated

using LHS over the defined region, and local optimization is then con-

ducted using these starting points. After the predictive local optimal solu-

tions are obtained from RBF, a separation distance is used to avoid the

obtained points getting too close to the known samples.

In Figure 11.4, the method of multi-start optimization is illustrated

using a 1-D example graphically. In the diagram, the darkest black dots

represent selected promising solutions, the lightest gray dots correspond

to known samples in the database, and the medium gray dots indicate

inappropriate local optima (including repeated points and those posi-

tioned too close to the known sample points). A multi-start optimization

process can find several local optima of a surrogate model, but the method

cannot determine which ones are appropriate to be retained. To extract

the representative local optimal solutions, eliminate redundant points,

and avoid increasing the number of function evaluations, the defined dis-

tance given in Eq. (11.13) is used in an iterative process to select promising

SAGWO ◾ 301

optimal solutions. The pseudo-codes for this knowledge mining search

process are provided in Algorithm 11.3.

 ∑ε ()= ⋅ −

=

U Li ib b

dim

() ()
2

1

Dist

i

 (11.13)

where dim refers to dimension, and ε is a scaling coefficient.

Algorithm 11.3 Knowledge Mining on Surrogate Models

(01) Bestpos ← Acquire the best solution from the database DB;

(02) Gbestglobal ← Search the original space to get the predicted best solu-

tion from RBF by a global optimizer;

(03) Evaluate the function value of Gbestglobal and update DB and RBF;

(04) Local_region ← Create the local search region based on (16);

(05) Gbestlocal ← Search Local_region to get the predicted best solution

from RBF by a global optimizer;

(06) Evaluate the function value of Gbestlocal and update DB and RBF;

(07) Dist ← Define the separation distance based on (17);

FIGURE 11.4 Demonstration of multi-start optimization search.

302 ◾ Data-Driven Global Optimization Methods and Applications

(08) Start_point ← Generate M sample points in Local_region by LHS;

(09) for i ← 1 to M

(10) Predict_bestlocal (i) ← At the starting point Start_point(i), call a

local optimizer to get the ith local optimal solution from RBF in

Local_region;

(11) endfor

(12) Temp ← Define a temporary variable that initially equals to the sam-

ple points in DB;

(13) LocalPredict ← ∅;

(14) for i ← 1 to M

(15) Min_Dist ← Find the closest point to Predict_bestlocal(i) from Temp

and calculate the minimum distance between them;

(16) if Min_Dist > Dist

(17) LocalPredict ← LocalPredict  Predict_bestlocal (i);

(18) Temp ← Temp  Predict_bestlocal(i);

(19) endif

(20) endfor

(21) Sort the samples in LocalPredict according their RBF values;

(22) if |LocalPredict| > Local_sample_num

(23) Lbestlocal ← Choose the top Local_sample_num samples from

LocalPredict;

(24) else

(25) Lbestlocal ← LocalPredict;

(26) endif

(27) Evaluate the function values of Lbestlocal and update DB and RBF;

(28) Return DB and an updated RBF.

Intuitively, the knowledge mining process includes global search and

local search. In the global search (Algorithm 11.3, Lines 2–3) Gbestglobal

is obtained, and in the local search (Algorithm 11.3, Lines 4–24) Gbestlocal

and Lbestlocal are identified to refine the RBF model. Specifically, Lines

7–18 of the algorithm describe how the multi-start optimization works,

and Lines 19–23 explain how to select the promising samples. The scaling

factor w is defined as 0.05, and the scaling coefficient ε is set as 1e-5 in Eqs.

(11.12) and (11.13). The algorithm returns the updated database DB and

RBF model that have collected all valuable information.

11.3.3 Optimization Flow

The previous sections discussed the three contributing elements of the

new SAGWO algorithm, initial exploration, RBF-assisted metaheuristic

SAGWO ◾ 303

exploration and knowledge mining on RBF. The database, DB, which stores

all expensive sample points, plays as the link to each of these three parts.

Initial exploration identifies the initial parameters and carries out an ini-

tial global search on the original RBF model. RBF-assisted metaheuris-

tic exploration gives SAGWO effective exploration capability. Knowledge

mining on RBF sufficiently exploits the RBF to guide the metaheuristic

exploration and accomplishes the balance between exploration and exploi-

tation. The flowchart of the SAGWO algorithm is shown in Figure 11.5.

11.4 EXPERIMENTS AND DISCUSSION

The new SAGWO algorithm is tested using 21 benchmark test cases with

30, 50 and 100 design variables, which have been frequently used for eval-

uating computationally expensive high-dimensional optimization search

algorithms. These include seven representative functions with different

characteristics, as listed in Table 11.1. Besides, comparisons of search

efficiency and robustness between the new SAGWO algorithm and three

groups of other well-known advanced GO search algorithms have been

made. The first group includes the well-known EC and SI algorithms,

including the genetic algorithm (GA), differential evolution (DE) and

FIGURE 11.5 Flow chart of SAGWO.

304 ◾ Data-Driven Global Optimization Methods and Applications

GWO. The second group consists of the recently introduced SAEC/SIAs,

including GPEME (Liu et al., 2013), SA-COSO (Sun et al., 2017), SHPSO

(Yu et al., 2018) and ESAO (Wang et al., 2019). The last group covers the

SAGWO method with different implementations, including SAGWO_M,

SAGWO_G and RBFGWO.

As previously discussed, the SAGWO and SAGWO_M have the

same search strategies, except that SAGWO uses Eqs. (11.4)–(11.7) and

SAGWO_M uses Eqs. (11.4)–(11.5) and (11.8)–(11.11) to update the wolf

leaders and the new positions. The SAGWO_G is nearly the same as

SAGWO, but SAGWO_G does not conduct knowledge mining on RBF in

its initial exploration and does not use a local search strategy in Algorithm

11.3. The RBFGWO does not include metaheuristic exploration, and it just

uses the GWO method to produce the best solution from RBF in each cycle.

During the test runs, the number of function evaluations (NFE) that

represents the computational cost for a computation-expensive opti-

mization problem is monitored and set to be less than its maximum of

1,000. The population sizes for GA, DE, GWO, SAGWO, SAGWO_M and

SAGWO_G are set as 10. In the SAGWO, the number of starting points

(M in Algorithm 11.3) and the number of sampling (Local_sample_num

in Algorithm 11.3) in the multi-start optimization are defined as 5 and 2,

respectively. Besides, the gray wolf optimizer uses the default parameters

as its original paper, while the size of the population is 20 and the number

of the generation is set as 500.

The statistical results come from 20 independent runs, and the Wilcoxon

rank-sum tests (W-test) were calculated at a significance level of 5%. In

the statistical tables, “≈” means no significant difference between the two

groups of results, “+” indicates that SAGWO is relatively better, and “−”

denotes that SAGWO is worse. Since the statistical results of GPEME,

TABLE 11.1 Benchmark Test Functions

Cases Description Characteristics

Global

Optimum

F1 Ellipsoid Unimodal 0

F2 Rosenbrock Multimodal with narrow valley 0

F3 Ackley Multimodal 0

F4 Griewank Multimodal 0

F5 Shifted rotated rastrigin (F10) Very complicated multimodal −330

F6 Rotated hybrid composition
function (F16)

Very complicated multimodal 120

F7 Rotated hybrid composition
function (F19)

Very complicated multimodal
with narrow valley

10

SAGWO ◾ 305

SA-COSO and SHPSO directly came from the original research references,

“*” was used to indicate that their Wilcoxon test results cannot be provided.

Table 11.2 presents the statistical optimization results of the ten algo-

rithms using the 30-variable test examples, and Figure 11.6 shows the

TABLE 11.2 Statistical Results on 30-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F1 ESAO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

8.6562e-05
4.4782e-02
1.5500e-02
1.7420e+02
1.2174e+02
4.1835e-02
6.2568e+00
9.8207e-06
2.0920e-05
2.8334e-04

2.7820e-01
7.2024e-01
1.6470e-01
5.0388e+02
3.3717e+02
3.6898e-01
1.0768e+02
3.3038e-04
6.0433e-04
5.4808e-03

2.7470e-02
2.1199e-01
7.6200e-02
2.8109e+02
2.1891e+02
1.6522e-01
2.6374e+01
6.5846e-05

2.3151e-04
2.1042e-03

6.9640e-02
1.5229e-01
4.0100e-02
8.9302e+01
5.8507e+01
9.0830e-02
2.4171e+01
7.5113e-05
1.7282e-04
1.5143e-03

4
7
5

10
9
6
8
1
2
3

*

*

*

+

+

+

+

+

+

F2 ESAO

SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

2.2158e+01
2.7726e+01
2.6262e+01
3.7213e+02
2.0792e+02
2.8257e+01
8.9374e+01
2.6790e+01
2.7340e+01
2.7493e+01

2.9404e+01
2.9290e+01
8.8233e+01
1.1200e+03
5.5223e+02
3.0637e+01
1.7144e+02
2.8826e+01
2.8889e+01
3.0209e+01

2.5036e+01

2.8566e+01
4.6177e+01
6.5968e+02
3.7956e+02
2.9461e+01
1.2920e+02
2.8297e+01
2.8454e+01
2.8510e+01

1.5701e+00
4.0441e-01
2.5520e+01
2.0312e+02
1.1401e+02
6.9142e-01
2.5974e+01
5.1705e-01
4.4128e-01
6.4083e-01

1
5
7

10
9
6
8
2
3
4

*

*

*

+

+

+

+

≈

≈

F3 ESAO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

7.8000e-02
5.6091e-01
1.9491e+00
1.2686e+01
1.1868e+01
9.4736e-01
5.1997e-01
7.9048e-14
7.1114e-08
2.1652e-07

3.9096e+00
2.9574e+00
4.9640e+00
1.6785e+01
1.6831e+01
3.3947e+00
7.9820e+00
2.4603e-13
1.2881e-05
9.0396e-05

2.5213e+00
1.4418e+00
3.0105e+00
1.4571e+01
1.4546e+01
1.8725e+00
4.2738e+00
1.4371e-13

3.1803e-06
1.6106e-05

8.3960e-01
7.7404e-01
9.2500e-01
1.1448e+00
1.3243e+00
6.8009e-01
2.6978e+00
4.1280e-14
3.6527e-06
2.1110e-05

6
4
7

10
9
5
8
1
2
3

*

*

*

+

+

+

+

+

+

F4 ESAO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

7.8600e-01
7.0609e-01
7.3680e-01
3.2320e+01
4.3282e+01
7.4976e-01
1.9313e+00
1.3153e-06
5.9291e-05
2.5690e-04

1.0221e+00
1.0275e+00
1.0761e+00
9.6362e+01
1.3185e+02
1.2102e+00

9.9980e+00
1.3466e-01
1.7021e-01
5.8268e-02

9.5340e-01
9.2053e-01
9.9690e-01
6.3395e+01
7.1151e+01
1.0177e+00
3.8270e+00
1.5756e-02

2.7857e-02
1.6397e-02

5.0370e-02
8.8062e-02
1.0800e-01
1.9597e+01
2.3785e+01
9.5911e-02
1.8501e+00
3.1977e-02
4.4472e-02
1.7899e-02

5
4
6
9

10
7
8
1
3
2

*

*

*

+

+

+

+

+

+

(Continued)

306 ◾ Data-Driven Global Optimization Methods and Applications

convergence of the programs at different iterations. In Table 11.2, “Rank”

is made according to the “Mean” values of the results. The SAGWO out-

performed others on F1, F3, F4 and F5; and showed superior performance

on F1 and F3, getting close to the global optima after 1,000 NFEs. SAGWO

achieved satisfactory results, although the algorithm performed less well

than SHPSO on F6 and F7. ESAO performed best on F2 and F7, while

SAGWO showed similar capability in these two cases. The W-test showed

that SAGWO and SAGWO_M performed similarly on F6, and SAGWO

is superior to others on F7. For the pure metaheuristic algorithms, GWO

outperforms GA and DE on F1 to F4; and GA showed better performance

on F5 to F7. For the SAEC/SIAs, ESAO and SHPSO demonstrated excel-

lent performance on most test cases, but SAGWO outperformed others.

TABLE 11.2 (Continued) Statistical Results on 30-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F5 ESAO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

−3.5780e+01
−1.3297e+02
−5.7068e+01
−7.1404e+01

8.5727e+01
−3.7374e+01
−1.5782e+02
−1.7600e+02
−1.5603e+02
−1.2844e+02

9.0332e+01
−5.9993e+01

1.8033e+01
1.4600e+02
3.3614e+02
1.4639e+02

−5.2813e+01
−5.8706e+01
−4.6490e+01
−2.7194e+01

6.3250e+00
−9.2830e+01
−2.1861e+01

1.7739e+01
1.7987e+02
5.3641e+01

−9.6542e+01
−1.2881e+02

−1.1389e+02
−7.1915e+01

2.6477e+01
2.2544e+01
3.6449e+01
5.9584e+01
6.3066e+01
5.6215e+01
2.5925e+01
3.0823e+01
2.5695e+01
2.5471e+01

7
4
6
8

10
9
3
1
2
5

*

*

*

+

+

+

+

≈

+

F6 SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M

SAGWO_G

3.2715e+02
—

4.4815e+02
5.7205e+02
3.9666e+02
4.1579e+02
3.4843e+02
3.5066e+02
3.7243e+02

6.4948e+02
—

1.1268e+03
9.7630e+02
7.8791e+02
8.0178e+02
6.7579e+02
6.6762e+02
7.1133e+02

4.6433e+02
—

5.9053e+02
7.0275e+02
6.2881e+02
6.3440e+02
4.8985e+02
4.3004e+02

5.1102e+02

8.5125e+01
—

1.6047e+02
9.9422e+01
1.2028e+02
1.2117e+02
1.2882e+02
7.4478e+01
1.1015e+02

2
—
5
8
6
7
3
1
4

*

*

+

+

+

+

≈

≈

F7 ESAO

SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

9.2335e+02
9.2248e+02
9.3316e+02
9.8180e+02
1.0485e+03
1.0118e+03
1.1028e+03
9.4251e+02
8.8750e+02
9.6278e+02

9.5389e+02
9.6363e+02
9.9286e+02
1.2008e+03
1.2358e+03
1.1926e+03
1.2123e+03
1.0158e+03
1.0190e+03
1.1059e+03

9.3167e+02

9.3961e+02
9.5859e+02
1.0565e+03
1.1345e+03
1.1048e+03
1.1541e+03
9.7323e+02
9.8662e+02
1.0407e+03

8.9417e+00
9.0177e+00
2.5695e+01
5.5053e+01
4.9333e+01
4.6367e+01
3.1691e+01
1.8469e+01
2.9923e+01
3.9036e+01

1
2
3
7
9
8

10
4
5
6

*

*

*

+

+

+

+

+

+

SAGWO ◾ 307

FIGURE 11.6 Iteration graph on 30-dimensional cases. (a) F1 Ellipsoid function.

(b) F2 Rosenbrock function. (c) F3 Ackley function. (d) F4 Griewank function. (e)

F5 shifted rotated Rastrigin function. (f) F6 rotated hybrid composition function.

(g) F7 rotated hybrid composition function.

308 ◾ Data-Driven Global Optimization Methods and Applications

These tests and results of RBFGWO also showed that pure exploitation

of surrogates could not produce satisfactory performance. The combina-

tion of metaheuristic exploration and knowledge mining on RBF is more

effective in producing an efficient and robust global optimization method.

The comparisons of SAGWO and SAGWO_G showed that the introduced

local search could improve search efficiency.

In short, based on the tests using the 30-dimensional benchmark exam-

ples, SAEC/SIAs could get better results within 1,000 function evaluations,

and SAGWO demonstrated top performance among all tested algorithms.

Figure 11.6 supports the same conclusion that SAGWO, SAGWO_M and

SAGWO_G converge faster.

Table 11.3 presents the statistical optimization results of the 11 algo-

rithms using the 50-variable test examples, and Figure 11.7 shows the

convergence of the programs at different iterations. The first group of algo-

rithms, GA, DE, GWO, showed poor performance and appeared to need

more function evaluations to get close to the global optima. Among the

recently published SAEC/SIAs, ESAO and SHPSO are more efficient and

TABLE 11.3 Statistical Results on 50-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F1 ESAO
SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

1.6460e-01
—
—

1.3407e+02
9.3344e+02
6.0249e+02
1.5149e+00
5.8383e+00
6.8653e-04
9.1396e-04
1.3819e-02

2.2644e+00
—
—

3.7256e+02
2.2346e+03
1.4331e+03
6.0444e+00
3.1042e+01
1.5296e-02
3.9234e-02
1.5799e-01

7.3950e-01
5.1475e+01
4.0281e+00
2.2108e+02
1.5104e+03
1.0032e+03
3.4329e+00
1.3503e+01
4.0117e-03

1.0930e-02
5.0418e-02

5.5490e-01
1.6246e+01
2.0599e+00
8.1612e+01
2.8574e+02
2.2722e+02
1.1829e+00
5.9945e+00
3.5801e-03
9.5852e-03
3.7407e-02

4
8
6
9

11
10

5
7
1
2
3

*

*

*

*

+

+

+

+

+

+

F2 ESAO

SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

4.3122e+01
—
—

1.7235e+02
1.0121e+03
5.8820e+02
5.0603e+01
1.1727e+02
4.8349e+01
4.8011e+01
4.8368e+01

4.9249e+01
—
—

4.0142e+02
2.4886e+03
1.5955e+03
6.5986e+01
1.6160e+02
4.9936e+01
4.9356e+01
5.0528e+01

4.7391e+01

2.5258e+02
5.0800e+01
2.5828e+02
1.7525e+03
9.7703e+02
5.5470e+01
1.3764e+02
4.9055e+01
4.8813e+01
4.8983e+01

1.7118e+00
4.0744e+01
3.0305e+00
8.0188e+01
3.7181e+02
3.0630e+02
4.5469e+00
1.3016e+01
4.4925e-01
3.3765e-01
4.4391e-01

1
8
5
9

11
10

6
7
4
2
3

*

*

*

*

+

+

+

+

≈

≈

(Continued)

SAGWO ◾ 309

TABLE 11.3 (Continued) Statistical Results on 50-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F3 ESAO
SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

1.0571e+00
−

−

9.2524e+00
1.5595e+01
1.4801e+01
2.6962e+00
4.3642e-10
2.0735e-11
7.3469e-10
1.3714e-09

2.4326e+00
−

−

1.4934e+01
1.9068e+01
1.7466e+01
3.9506e+00
6.8794e+00
5.6329e-11
2.2275e-05
3.1482e-06

1.4311e+00
8.9318e+00
1.8389e+00
1.3233e+01
1.7102e+01
1.5737e+01
3.5012e+00
1.3882e+00
4.0079e-11

2.7050e-06
5.2386e-07

2.4910e-01
1.0668e+00
5.6370e-01
1.5846e+00
7.6469e-01
6.7673e-01
3.0424e-01
2.5183e+00
1.0122e-11
5.7588e-06
9.7825e-07

5
8
6
9

11
10

7
4
1
3
2

*

*

*

*

+

+

+

+

+

+

F4 ESAO
SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

8.5180e-01
—
—

2.2546e+01
1.5005e+02
1.0250e+02
1.2701e+00
1.6733e+00
3.4783e-05
1.9460e-03
7.1163e-03

1.0207e+00
—
—

6.4977e+01
2.7782e+02
2.3169e+02
3.5371e+00
4.1050e+00
2.2988e-01
7.6486e-01
7.6487e-01

9.4040e-01
6.0062e+00
9.4521e-01
3.6646e+01
2.1681e+02
1.6610e+02
1.7563e+00
2.4182e+00
2.5573e-02

9.2928e-02
2.7410e-01

4.2090e-02
1.1043e+00
6.1404e-02
1.3176e+01
2.8582e+01
3.6249e+01
5.3188e-01
7.3815e-01
5.8155e-02
1.6997e-01
2.4844e-01

4
8
5
9

11
10

6
7
1
2
3

*

*

*

*

+

+

+

+

+

+

F5 ESAO
SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

1.1625e+02
—
—
—

2.9296e+02
5.9319e+02
2.5640e+02
1.8959e+02
-1.6634e+01
3.4501e+01
1.1560e+02

2.8909e+02
—
—
—

5.6739e+02
9.4458e+02
5.6726e+02
3.2630e+02
1.6151e+02
1.8412e+02
2.5694e+02

1.9861e+02
1.9716e+02
1.3442e+02

—
4.3421e+02
7.7043e+02
4.0821e+02
2.5815e+02
9.8391e+01

1.0542e+02
2.0888e+02

4.5825e+01
3.0599e+01
3.2256e+01

—
7.6263e+01
1.1676e+02
8.6890e+01
3.2843e+01
4.6901e+01
3.8417e+01
3.2617e+01

5
4
3

—
9

10
8
7
1
2
6

*

*

*

*

+

+

+

+

≈

+

F6 SA-COSO
SHPSO

GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

—
—
—

5.5945e+02
6.4938e+02
5.7645e+02
5.5029e+02
4.3018e+02
3.9391e+02
5.0321e+02

—
—
—

7.2480e+02
1.0490e+03
1.0145e+03
8.2425e+02
5.6424e+02
6.0399e+02
7.5871e+02

1.0809e+03
4.7438e+02

—
6.5803e+02
8.8082e+02
7.3131e+02
6.6000e+02
5.0206e+02
5.1080e+02
5.8543e+02

3.2859e+01
4.2029e+01

—
5.0251e+01
1.1662e+02
1.1967e+02
6.6359e+01
4.5251e+01
6.0870e+01
5.7061e+01

9
1

—
5
8
7
6
2
3
4

*

*

*

+

+

+

+

≈

+

(Continued)

310 ◾ Data-Driven Global Optimization Methods and Applications

TABLE 11.3 (Continued) Statistical Results on 50-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F7 ESAO

SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

9.4099e+02
—
—
—

1.0730e+03
1.1714e+03
1.1087e+03
9.1022e+02
9.1000e+02
1.0251e+03
1.0940e+03

1.0499e+03
—
—
—

1.2872e+03
1.3582e+03
1.2296e+03
1.2186e+03
1.1320e+03
1.0917e+03
1.1889e+03

9.7532e+02

—
9.9660e+02

—
1.1593e+03
1.2741e+03
1.1723e+03
1.1583e+03
1.0441e+03
1.0610e+03
1.1369e+03

3.7110e+01
—

2.2145e+01
—

5.2797e+01
4.9794e+01
3.4390e+01
8.2127e+01
4.0828e+01
1.5866e+01
2.2134e+01

1
—
2

—
7
9
8
6
3
4
5

*

*

*

*

+

+

+

+

+

+

performed best on F2, F6 and F7. RBFGWO with just knowledge mining

showed slower convergence in most cases. On the other hand, SAGWO

showed superior performance on F1, F3 and F4; and SAGWO achieved

satisfactory results on all the seven cases. Although SAGWO is ranked

second and third on F6 and F7, its results are much closer to the minimum.

SAGWO_M also showed good performance, although it was not a match

for SAGWO, especially in cases F1 and F3.

The results from SAGWO and SAGWO_G also indicated that the

introduced local search strategy in Algorithm 3 played an important role

in search efficiency. The iterative curves of SAGWO, SAGWO_M and

SAGWO_G descended more quickly, as shown in Figure 11.7. According to

the W-test results, SAGWO is good at solving these 50-dimensional cases.

Table 11.4 presents the statistical optimization results of the ten algo-

rithms using the 100-variable test examples, and Figure 11.8 shows the

convergence of the programs at different iterations. Compared with DE

and GA, GWO had performed better in cases F1–F4 and F7; and for F5

and F6, GA performed better. SAEC/SIAs used fewer function evalua-

tions to get satisfactory results on these 100-dimensional problems. For

F6, SHPSO and SAGWO had very close results. However, SAGWO per-

formed much better than SHPSO in all other cases. Similarly, ESAO out-

performed SAGWO on F5, but SAGWO was more robust, considering its

overall performance.

In these tests, SAGWO_M and SAGWO_G could not be always as effi-

cient as SAGWO, and they showed advantages in some cases. For exam-

ple, SAGWO_M ranked first on F7, and SAGWO_G ranked first on F2.

SAGWO ◾ 311

FIGURE 11.7 Iteration graph on 50-dimensional cases. (a) F1 Ellipsoid function.

(b) F2 Rosenbrock function. (c) F3 Ackley function. (d) F4 Griewank function. (e)

F5 shifted rotated Rastrigin function. (f) F6 rotated hybrid composition function.

(g) F7 rotated hybrid composition function.

312 ◾ Data-Driven Global Optimization Methods and Applications

TABLE 11.4 Statistical Results on 100-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F1 ESAO
SA-COSO
SHPSO
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

1.1023e+03
—
—

9.6266e+03
4.3560e+03
7.8078e+01
9.9654e+00
1.6621e-02
2.5521e-01
5.7410e-01

1.5388e+03
—
—

1.3324e+04
7.7354e+03
2.4459e+02
2.8113e+01
3.7119e-01
1.4308e+00
2.1091e+00

1.2829e+03
1.0332e+03
7.6106e+01
1.1443e+04
5.9378e+03
1.4172e+02
1.4063e+01
1.3996e-01

6.4491e-01
1.3740e+00

1.3439e+02
3.1718e+02
2.1447e+01
1.1186e+03
9.7446e+02
4.7117e+01
4.0008e+00
9.6807e-02
2.7070e-01
5.4002e-01

8
7
5

10
9
6
4
1
2
3

*

*

*

+

+

+

+

+

+

F2 ESAO
SA-COSO
SHPSO
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

5.2120e+02
—
—

6.1550e+03
1.7335e+03
1.3736e+02
1.5642e+02
1.0490e+02
1.0097e+02
1.0000e+02

6.7324e+02
—
—

9.6522e+03
4.1449e+03
3.5146e+02
2.0095e+02
1.4481e+02
1.3276e+02
1.0658e+02

5.7884e+02
2.7142e+03
1.6559e+02
8.1846e+03
2.9532e+03
2.0982e+02
1.7642e+02
1.2338e+02
1.0981e+02
1.0228e+02

4.4767e+01
1.1702e+02
2.6366e+01
1.0429e+03
5.8400e+02
5.7589e+01
1.2410e+01
1.1021e+01
7.6818e+00
1.8874e+00

7
8
4

10
9
6
5
3
2
1

*

*

*

+

+

+

+

−

−

F3 ESAO
SA-COSO
SHPSO
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

9.9664e+00
—
—

1.8575e+01
1.5880e+01
4.8145e+00
3.7299e-07
3.0570e-08
1.6243e-07
5.2082e-07

1.0732e+01
—
—

1.9567e+01
1.7640e+01
7.5527e+00
7.1981e-07
7.4842e-08
1.8590e-06
1.1662e-06

1.0364e+01
1.5756e+01
4.1134e+00
1.9114e+01
1.6727e+01
5.7254e+00
5.6679e-07
5.4035e-08

6.1486e-07
7.7398e-07

2.1130e-01
5.0245e-01
5.9247e-01
2.5621e-01
5.0897e-01
6.6842e-01
8.1550e-08
1.2163e-08
3.8472e-07
1.9042e-07

7
8
5

10
9
6
2
1
3
4

*

*

*

+

+

+

+

+

+

F4 ESAO
SA-COSO
SHPSO
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

4.7346e+01
—
—

6.8970e+02
3.3230e+02
6.0071e+00

1.3520e+00
2.0766e-04
4.1044e-01
9.7929e-01

6.9225e+01
—
—

1.0325e+03
5.2619e+02
1.7320e+01
1.9886e+00
2.2883e-01
1.0941e+00
1.0898e+00

5.7342e+01
6.3353e+01
1.0704e+00
8.6827e+02
4.1035e+02
1.1922e+01
1.5518e+00
2.3993e-02

8.8984e-01
1.0394e+00

5.8387e+00
1.9021e+01
2.0485e-02
1.0941e+02
5.3397e+01
2.7013e+00
1.5690e-01
5.1906e-02
1.9976e-01
3.6336e-02

7
8
4

10
9
6
5
1
2
3

*

*

*

+

+

+

+

+

+

F5 ESAO

SA-COSO
SHPSO
GA
DE
GWO

6.6263e+02
—
—

1.3010e+03
1.7739e+03
1.5030e+03

7.5881e+02
—
—

2.0001e+03
2.3571e+03
2.0142e+03

7.1347e+02

1.2731e+03
8.0173e+02
1.6525e+03
2.0889e+03
1.7658e+03

2.6454e+01
1.1719e+02
7.2252e+01
1.7493e+02
1.3163e+02
1.2086e+02

1
7
3
8

10
9

*

*

*

+

+

+

(Continued)

SAGWO ◾ 313

Furthermore, the W-test results showed that SAGWO was more capable of

solving these 100-dimensional problems.

To better illustrate the results from this comparative study, the perfor-

mances of all these GO algorithms on the 21 test cases are summarized

in Tables 11.5 and 11.6. The SAGWO algorithm won the first place rank

(rank 1) most frequently and had the best average rank value of 1.8095.

The SAGWO_M algorithm obtained an average rank of 2.5238, a little

bit behind the SAGWO, SAGWO_G, SHPSO and ESAO received much

closer average ranks. The search methods that only used knowledge min-

ing, like RBFGWO, or only employed metaheuristic exploration, like

GA, DE and GWO, had worse average rank values. SAGWO considerably

outperformed the GPEME and SA_COSO algorithms in these test cases.

Table 11.6 shows the average rank values of all the 11 algorithms on the

three groups of test cases. The performance of GPEME declines when the

dimension of the GO problem increases. Conversely, RBFGWO performed

better regardless of the increase in the problem dimension. SHPSO, GWO,

TABLE 11.4 (Continued) Statistical Results on 100-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

RBFGWO
SAGWO
SAGWO_M
SAGWO_G

1.0018e+03
6.7665e+02
7.0889e+02
9.8444e+02

1.2626e+03
9.1895e+02
1.2225e+03
1.2294e+03

1.1238e+03
8.0016e+02
8.9599e+02
1.0976e+03

6.4233e+01
7.9265e+01
1.1499e+02
6.0589e+01

6
2
4
5

+

+

+

F6 SA-COSO
SHPSO

GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

—
—

6.4216e+02
8.7437e+02
6.9914e+02
6.5325e+02
4.8201e+02
4.7606e+02
5.5642e+02

—
—

8.5115e+02
1.2478e+03
1.0099e+03
7.6724e+02
5.5528e+02
6.3633e+02
6.6950e+02

1.3657e+03
5.1619e+02

7.0946e+02
1.0626e+03
8.3791e+02
6.9796e+02
5.1866e+02
5.4038e+02
6.1328e+02

3.0867e+01
3.2060e+01
5.2281e+01
9.1659e+01
7.8673e+01
3.3667e+01
2.0540e+01
3.6162e+01
2.7442e+01

9
1
6
8
7
5
2
3
4

*

*

+

+

+

+

+

+

F7 ESAO
SA-COSO
SHPSO
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M

SAGWO_G

1.3218e+03
—
—

1.3964e+03
1.4037e+03
1.3729e+03
1.3339e+03
9.1015e+02
9.4134e+02
1.3236e+03

1.4271e+03
—
—

1.5606e+03
1.4734e+03
1.4896e+03
1.4079e+03
1.4372e+03
1.4302e+03
1.4273e+03

1.3724e+03
—

1.4198e+03
1.4760e+03
1.4400e+03
1.4306e+03
1.3761e+03
1.3500e+03
1.3326e+03

1.3634e+03

2.7539e+01
—

3.8238e+01
4.1399e+01
2.1206e+01
2.9696e+01
2.2113e+01
1.0747e+02
1.1856e+02
2.2508e+01

4
—
6
9
8
7
5
2
1
3

*

*

*

+

+

+

≈

≈

≈

314 ◾ Data-Driven Global Optimization Methods and Applications

FIGURE 11.8 Iteration graph on 100-dimensional cases. (a) F1 Ellipsoid func-

tion. (b) F2 Rosenbrock function. (c) F3 Ackley function. (d) F4 Griewank func-

tion. (e) F5 shifted rotated Rastrigin function. (f) F6 rotated hybrid composition

function. (g) F7 rotated hybrid composition function.

SAGWO ◾ 315

SAGWO, SAGWO_M and SAGWO_G showed stable performance in all

three groups of cases.

In the presented SAGWO, the computation complexity mainly con-

sists of five parts, that is, the computation time for initial search, sur-

rogate modeling, function evaluations, global search and local search.

In this chapter, we empirically compare the computation time required

by these algorithms on the benchmark case ellipsoid. Different num-

bers of function evaluations and variables are used to form nine cases

for comparative study. All the algorithms were implemented on a com-

puter with two 2.40-GHz processors and 32-GB RAM, and the average

computation time of 20 runs was summarized in Table 11.7. There is

TABLE 11.6 Summary of Ranks on Different Cases

Algorithms Ave. Rank on 30 dim Ave. Rank on 50 dim Ave. Rank on 100 dim

ESAO 4.0000 3.3333 5.6667

SA-COSO NA 7.5000 7.8333

SHPSO 4.0000 4.0000 4.0000

GPEME 5.6667 9.0000 NA

GA 8.4286 9.2857 9.0000

DE 9.1429 9.5714 8.8571

GWO 6.7143 6.7143 6.7143

RBFGWO 7.4286 6.2857 4.5714

SAGWO 1.8571 1.8571 1.7143

SAGWO_M 2.5714 2.5714 2.4286

SAGWO_G 3.8571 3.7143 3.2857

TABLE 11.5 Summary of Ranks

Algorithms Cases No. Sum of Rank Rank 1 No. Ave. Rank

ESAO 18 78 5 4.3333

SA-COSO 12 92 0 7.6667

SHPSO 21 84 2 4.0000

GPEME 10 70 0 7.0000

GA 21 187 0 8.9048

DE 21 193 0 9.1905

GWO 21 141 0 6.7143

RBFGWO 21 128 0 6.0952

SAGWO 21 38 11 1.8095

SAGWO_M 21 53 2 2.5238

SAGWO_G 21 76 1 3.6190

316 ◾ Data-Driven Global Optimization Methods and Applications

no doubt that the conventional metaheuristic algorithms GA, DE and

GWO require less time than the surrogate-based algorithms RBFGWO,

SAGWO, SAGWO_M and SAGWO_G. Moreover, when the dimension

and NFE increase, the required computation time for GA, DE and GWO

still stays at a lower level. On the contrary, these surrogate-based algo-

rithms are dramatically affected by the two factors NFE and dimension.

This is because a higher dimension and larger NFE will greatly increase

the computation time for surrogate modeling and optimization search on

surrogate models. Among these surrogate-based algorithms, SAGWO has

performed similar to SAGWO_M, SAGWO_G requires the least compu-

tation time and RBFGWO spends the most CPU time. Compared with

SAGWO, SAGWO_G lacks the initial search and local search that increase

the computation complexity, thus it can run faster. On the other side, since

RBFGWO purely exploits RBF to capture new samples per cycle, it needs

more calls to the surrogate models. Thus, RBFGWO runs slower and is

more sensitive to dimension and NFE. It is worth noting that the com-

putation time for function evaluations can be ignored in this experiment

because one run for the mathematical expression takes less than 1e-2 sec-

onds. However, the required time for an actual expensive problem may be

several minutes, hours or even days. For the time-consuming engineering

problems, the time for running the algorithm itself can be ignored and the

total computation cost will mainly come from the NFEs.

In summary, the newly proposed SAGWO algorithm showed supe-

rior search efficiency and outstanding robustness on all 21 benchmark

test cases; and the algorithm is able to solve high-dimensional, computa-

tion-expensive, black-box global optimization problems.

TABLE 11.7 Average Computation Time of Different Algorithms

Parameters CPU Time (s) of Different Algorithms

Dim. NFE GA DE GWO RBFGWO SAGWO SAGWO_G SAGWO_M

30d 300 0.555 0.043 0.013 91.34 27.67 9.02 28.73

600 0.508 0.038 0.014 311.23 87.78 31.28 89.97

1,000 0.644 0.063 0.018 821.56 226.72 87.78 233.53

50d 300 0.648 0.020 0.007 115.54 54.83 11.01 54.20

600 0.804 0.042 0.013 436.74 175.06 43.92 180.05

1,000 0.975 0.075 0.022 1,166.65 428.46 120.80 443.99

100d 300 1.267 0.023 0.010 112.49 80.15 10.89 74.52

600 1.515 0.047 0.019 660.65 420.17 66.54 419.12

1,000 1.876 0.078 0.033 1,912.84 1,099.27 195.49 1,125.28

SAGWO ◾ 317

11.5 CHAPTER SUMMARY

In this chapter, a novel RBF-assisted, metaheuristic algorithm, surro-

gate-assisted gray wolf optimization (SAGWO), for solving high-dimen-

sional, computation-expensive, black-box global optimization problems

is presented. The new algorithm conducts the search in three successive

phases, initial exploration, RBF-assisted metaheuristic exploration and

knowledge mining on RBF.

In the “initial exploration,” a group of DoE samples is generated and

stored in a database, DB, to capture the overall feature of the design

space. After that, the initial wolf pack with better fitness function val-

ues is selected from the DB, and the wolf leaders are identified. In the

“knowledge mining on the surrogate,” the RBF model is dynamically

updated and is sufficiently exploited by a dedicated optimization process

consisting of a global optimization search and a multi-start optimiza-

tion search. A small region around the present best solution is also cre-

ated for the local search to speed up convergence. In the “RBF-assisted

metaheuristic exploration,” the precious knowledge from RBF is used to

assist the generation of wolf leaders that will guide the whole wolf pack

to explore the design space.

Representative test cases and published data from four top-rated surro-

gate-assisted evolutionary algorithms are used for a comparative study in

this work to test the functionality and verify the performance of the new

SAGWO algorithm. The comparison experiments on 21 test cases, rang-

ing from 30 to 100 design variables showed that the SAGWO has superior

computation efficiency and robustness.

For now, SAGWO can be directly used for computationally expensive

constrained problems by the penalty-function method. However, when

the number of expensive constraints increases, SAGWO may have diffi-

culty in finding feasible solutions by the penalty function. In future work,

it is of interest to extend SAGWO’s capability to solve high-dimensional

optimization problems with multiple costly inequality constraints that are

another huge challenge in the engineering optimization field. Moreover,

SAGWO will be used for the large-scale smart grid design and shape design

of full-parameter blended-wing-body underwater gliders in the next stage.

NOTE
 1 Based on “Surrogate-assisted Grey wolf optimization for high-dimensional,

computationally expensive black-box problems,” published in [Swarm and
Evolutionary Computation], [2020]. Permission obtained from [Elsevier].

318 ◾ Data-Driven Global Optimization Methods and Applications

REFERENCES

Dong, H., Song, B., Dong, Z., & Wang, P. (2016). Multi-Start Space Reduction
(MSSR) Surrogate-Based Global Optimization Method. Structural and
Multidisciplinary Optimization, 54, 907–926.

Dong, H., Song, B., Wang, P., & Dong, Z. (2018a). Hybrid Surrogate-Based
Optimization Using Space Reduction (HSOSR) for Expensive Black-Box
Functions. Applied Soft Computing, 64, 641–655.

Dong, H., Song, B., Wang, P., & Dong, Z. (2018b). Surrogate-Based Optimization
with Clustering-Based Space Exploration for Expensive Multimodal
Problems. Structural and Multidisciplinary Optimization, 57, 1553–1577.

Forrester, A. I. J., & Keane, A. J. (2009). Recent Advances in Surrogate-Based
Optimization. Progress in Aerospace Sciences, 45(1–3), 50–79.

Goel, T., Haftka, R. T., Shyy, W., & Queipo, N. V. (2007). Ensemble of Surrogates.
Structural and Multidisciplinary Optimization, 33, 199–216.

Guo, Z., Song, L., Park, C., Li, J., & Haftka, R. T. (2018). Analysis of Dataset
Selection for Multi-Fidelity Surrogates for a Turbine Problem. Structural and
Multidisciplinary Optimization, 57, 2127–2142.

Haftka, R. T., Villanueva, D., & Chaudhuri, A. (2016). Parallel Surrogate-Assisted
Global Optimization with Expensive Functions–A Survey. Structural and
Multidisciplinary Optimization, 54, 3–13.

Hajikolaei, K. H., & Gary Wang, G. (2014). High Dimensional Model Representation
with Principal Component Analysis. Journal of Mechanical Design, 136(1),
011003.

Lim, D., Jin, Y., Ong, Y.-S., & Sendhoff, B. (2009). Generalizing Surrogate-Assisted
Evolutionary Computation. IEEE Transactions on Evolutionary Computation,
14(3), 329–355.

Liu, B., Zhang, Q., & Gielen, G. G. E. (2013). A Gaussian Process Surrogate Model
Assisted Evolutionary Algorithm for Medium Scale Expensive Optimization
Problems. IEEE Transactions on Evolutionary Computation, 18(2), 180–192.

Liu, J., Song, W. P., Han, Z. H., & Zhang, Y. (2017). Efficient Aerodynamic
Shape Optimization of Transonic Wings Using a Parallel Infilling Strategy
and Surrogate Models. Structural and Multidisciplinary Optimization, 55,
925–943.

Long, T., Wu, D., Guo, X., Wang, G. G., & Liu, L. (2015). Efficient Adaptive Response
Surface Method Using Intelligent Space Exploration Strategy. Structural and
Multidisciplinary Optimization, 51, 1335–1362.

Majumder, P., & Eldho, T. I. (2020). Artificial Neural Network and Grey Wolf
Optimizer Based Surrogate Simulation-Optimization Model for Groundwater
Remediation. Water Resources Management, 34(2), 763–783.

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. Advances in
Engineering Software, 69, 46–61.

Müller, J., Shoemaker, C. A., & Piché, R. (2014). SO-I: A Surrogate Model Algorithm
for Expensive Nonlinear Integer Programming Problems Including Global
Optimization Applications. Journal of Global Optimization, 59, 865–889.

SAGWO ◾ 319

Regis, R. G. (2014). Particle Swarm with Radial Basis Function Surrogates for
Expensive Black-Box Optimization. Journal of Computational Science, 5(1),
12–23.

Regis, R. G., & Shoemaker, C. A. (2013). A Quasi-Multistart Framework for Global
Optimization of Expensive Functions Using Response Surface Models.
Journal of Global Optimization, 56, 1719–1753.

Rodríguez, L., Castillo, O., Soria, J., Melin, P., Valdez, F., Gonzalez, C. I., Martinez,
G. E., & Soto, J. (2017). A Fuzzy Hierarchical Operator in the Grey Wolf
Optimizer Algorithm. Applied Soft Computing, 57, 315–328.

Sánchez, D., Melin, P., & Castillo, O. (2017). A Grey Wolf Optimizer for Modular
Granular Neural Networks for Human Recognition. Computational
Intelligence and Neuroscience, 2017(1), 4180510.

Shan, S., & Wang, G. G. (2010). Survey of Modeling and Optimization Strategies to
Solve High-Dimensional Design Problems with Computationally-Expensive
Black-Box Functions. Structural and Multidisciplinary Optimization, 41,
219–241.

Sun, C., Jin, Y., Cheng, R., Ding, J., & Zeng, J. (2017). Surrogate-Assisted Cooperative
Swarm Optimization of High-Dimensional Expensive Problems. IEEE
Transactions on Evolutionary Computation, 21(4), 644–660.

Wang, X., Wang, G. G., Song, B., Wang, P., & Wang, Y. (2019). A Novel Evolutionary
Sampling Assisted Optimization Method for High-Dimensional Expensive
Problems. IEEE Transactions on Evolutionary Computation, 23(5), 815–827.

Yu, H., Tan, Y., Zeng, J., Sun, C., & Jin, Y. (2018). Surrogate-Assisted Hierarchical
Particle Swarm Optimization. Information Sciences, 454, 59–72.

https://taylorandfrancis.com

321

Index

Ackley function 45–46, 149–150, 175, 178,

307, 311, 314

adaptive meta-model-based global

optimization (AMGO) 115

adaptive response surface method

(ARSM) 89–90

aerospace design optimization 4

Alpine function 49

Alpine1 function 56

Alpine2 function 57

Altered ex1221 74

AlteredNvs09 function 65

AQUARS 115

artificial neural networks (ANN) 6, 30

Augmented Function 202, 204, 206

Banana function 52–53, 91, 95, 100–101

bat algorithm (BA) 167

Beale function 41–42

binary problem 284

Bird function 58

box-behnken design (BBD) 17–18

BR 131–132, 182–183, 208–216, 220–221

Brianin 72

buckling critical load 255

buoyancy material 284

central composite design (CCD) 17–20

class and shape function transformation

(CST) 189

CMODE 225, 239–241, 251–254

COBRA 116

computational fluid dynamics (CFD)

7, 191

computer-aided design (CAD) 2

computer-aided engineering (CAE) 2

constrained EI 259

constrained MSE 259

constraint handling 200, 274

constraint violation 225–226, 230, 232, 278

ConstrLMSRBF 116, 226, 239–246

Convex function 27, 64

data-driven optimization (DDO) 1, 6,

8–11, 17, 20, 37

design and analysis of computer

experiments (DACE) 3, 93

design of experiment (DOE) 17–19, 24,

26, 95, 98, 101, 103–104, 118,

125–126, 128, 167, 178, 209, 218,

229, 241, 245, 256–259, 266, 275,

286–288, 294, 296, 317

differential evolution (DE) 103–104, 167,

181, 225, 227, 303–306, 308–310,

312–313, 315–316

DIRECT 103–104, 218, 226

disconnected feasible regions 218–219

discrete optimization 11, 39, 262,

265, 267

drag coefficient 189

Easom function 58–59

efficient global optimization (EGO) 10,

89, 103–104, 115, 132–136, 138,

140–141,145, 155, 159–163,

167–168,180–183, 199

engineering application cases 82, 241

evolutionary algorithm (EA) 7, 9, 25, 144,

168, 227, 293, 317

evolutionary computation (EC) 144,

166–167, 225–226, 263, 291–292,

295, 303

322 ◾ Index

evolutionary sampling assisted

optimization (ESAO) 293,

304–306, 308–310, 312–313, 315

Ex1221 74

expected improvement (EI) 10, 36, 89, 103,

115, 155, 167–168, 227, 233–234,

259, 265, 267–268, 273–274, 276

expensive black-box optimization problem

(EBOP) 110, 112,114–116, 141,

163, 166–167, 169, 188, 195,

199, 294

feasibility rules with objective function

information (FROFI) 225,

239–241, 251–254

finite element analysis (FEA) 8–9, 286

fractional factorial design 17–18

full factorial design 17–19

F1 function 50, 132–136, 155, 160–162,

180–187, 304–308, 310–312, 314

F16 function 69–70, 102–106, 133–136,

155, 159–162, 181, 184–188, 304

Gaussian process 30, 293

Generalized polynomial function 40–41

generation-based methods 292

genetic algorithms (GA) 2–4, 7, 114, 225,

277, 279–283, 303–306, 308–310,

312–313, 315–316

global and local surrogate-assisted DE

(GLoSADE) 227

GN 131–132, 182–183

GP 102–106, 108, 132, 180, 182–187, 293

Goldstein-Price function 54–55

Gomez 71, 218–220

GPEME 293, 304–306, 308–310, 313, 315

gray wolf optimization (GWO) 115–119,

138, 141, 167, 173, 291, 293–296,

304–306, 308–310, 312–313,

315–317

grid sampling (GS) 18–20, 21–22, 104, 265,

267–268, 270–272, 276

Griewank Function 45–47, 130, 149, 304,

307, 311, 314

GW 46, 130–131, 149, 155, 160–162, 181,

184–188

GW2 46, 133–136

GW10 46, 133–136

hammersley sequence sampling 7

harmony search (HS) 103–104

Hartman6 function 63

high-dimensional problems 40, 63, 76,

87, 92, 102, 104–108, 132–133,

136–137, 155, 188, 245, 292, 295

Himmelblau function 51

Hmittelman 81

HN/HN6 102–103, 105–106, 108, 131–136,

155, 159–162, 181–188

hybrid adaptive meta-model (HAM) 90,

104–108, 132–136, 138, 140–141,

145, 155, 159–163, 168, 183–188,

191–192

infilling strategy 286

initial sampling methods 37

integer optimization 263

k-nearest neighbors (KNN) 235–236,238–

239, 265, 270, 272

Kriging-assisted discrete global

optimization (KDGO)

262–289

Kriging-assisted learning phase (KALP)

227, 231, 236, 238–239, 259

Kriging-assisted teaching phase (KATP)

227, 231–232, 235–236,

239, 259

Kriging-based multi-start (KMS) 90,

132–136, 138, 140–141

Latin hypercube sampling (LHS) 20–26,

90–92, 112, 117, 120–123, 148,

150–152, 154, 169, 176, 178–179,

202, 218, 230, 269, 272, 274, 276,

296–297, 300, 302

Leon function 44

Levy function 60–61

lift coefficient 189–191

local trust region 9, 300

maximum improvement expectation

criterion (MIEC) 36

maximum improvement probability

criterion (MIPC) 34–35

max-min 22–25, 37, 169, 176–177,

179, 195

Index ◾ 323

mean square error (MSE) 32, 36, 92–95,

97–98, 112, 153–154, 163, 169,

171, 179, 195, 201, 205–206, 227,

237, 259

metaheuristic algorithms 227, 240–241,

253, 263, 306, 316

MGOSIC 166–198, 226

minimize prediction (MP) 10, 33–34,

37, 267

MPS 103–104

multidisciplinary design optimization

(MDO) 6

multimodal functions 40, 163

multiple surrogates EGO (MSEGO)

131–132, 145, 168, 182–183

multi-point approximations (MA) 8

Multi-start space reduction (MSSR)

89–113, 183–188, 191–192,

200–201, 209, 212, 215–216, 239,

241–246, 264

multi-start SQP (MSSQP) 117–118, 132,

138, 141

multi-surrogate EGO (MSEGO) 131–132,

145, 168, 182–183

newBranin 218–219

NOMAD 263, 277, 279–284

Nvs09 function 64–65

optimal Latin hypercube sampling

(OLHS) 25–26, 28, 91, 98, 111,

169, 230, 241, 275

parallel sampling 168

particle swarm optimization (PSO) 114,

145, 151, 167, 225, 263, 293

Paviani function 65

penalty function 116, 137, 141, 191, 201,

203–204, 221, 231, 236, 239, 259,

274–275, 317

PK 131–132

polynomial response surface (PRS) 6, 11,

18–19, 26–29, 226, 264, 293

posterior entropy 25

possibility of feasibility 234, 237

pressure vessel design (PVD) 84–85,

108–109, 111, 208–211, 213–216,

220–221

quadratic response surface (QRS) 8–9,

116–119, 136, 138, 141, 167–169,

171, 173–175, 178–179, 182,

186, 195

radial basis function (RBF) 6–7, 9–10,

26, 29–30, 90, 115, 144–153,

155–156, 163, 167–169, 171, 173,

175, 178–179, 195, 199–200, 209,

226–227, 264, 293–304, 308,

316–317

Rastrigin function 54–55, 307, 311, 314

Rastrigin01 function 66–67

Rastrigin02 function 67

regression analysis 8, 27

response surface methodology (RSM) 6–7

Rosenbrock function 136, 307, 311, 314

RS 131–132, 181,183–188, 269

SA-COSO 293, 304–305, 308–310, 312–313

SAGWO 291–319

safety factor 255, 286

Sasena 53–54, 72, 217–218

SC 102–106, 108, 131, 182

SCGOSR 199–223, 226–227, 239, 241–246,

256–258

Schaffer2 function 59–60

Schwefel3 function 63–64

SE 131–136, 180–187, 208–216, 220–221,

240–241, 245–246, 250, 253

sequential quadratic programming (SQP)

90–93, 100, 106, 111–112, 117,

119, 129, 151–152, 154, 168, 202,

218, 300

Shekel function 61–62

SHPSO 293, 304–306, 308–310,

312–313, 315

Shubert function 52

simulation–based constrained

optimization 256

single–point approximation methods 8

single–point sampling 10

Six-hump camel-back function 43–44

skeleton structure 284, 286

SL-PSO 293

SOCE 114–143, 182–183

SO-I 264, 277–284

SO-MI 264, 277, 279–284

324 ◾ Index

Space-filling 10, 26, 95, 177, 179, 231, 233

speed reducer design (SRD/SR7) 85–86,

108–109, 111, 138, 140–141,

208–217, 220–221, 240–241,

245–246, 250, 253–254

sphere function 68–69

stepped cantilever beam design (SCBD)

86–87, 208–216, 220–221,

240–241, 245–246, 250, 253–254

stress concentration 284

structural stability analysis 1

structure optimization 284

Styblinski-Tang function (ST/ST5) 47–49,

155, 160–162, 181, 184–188

Sum squares function 67–68

superEGO 217–218

surrogate-assisted optimization (SAO) 264

surrogate modeling techniques 19, 264

support vector regression (SVR) 6–7,

26–27

swarm intelligence (SI) 144, 167, 225–227,

263, 291–292,295,303

symmetric Latin hypercube sampling

(SLHS) 24–27, 117,119

tension/compression spring design (TSD)

82–83, 108–109, 111, 208–

211,213–217, 220–221, 240–241,

245–246, 250, 253–254

termination criterion 124, 155,159, 167,

171,180, 185, 277,297

TLBO 227–228, 231–232, 235–236,

238–241, 251–254, 258

Trid function 65–66

trust-region 37, 144

unconstrained high-dimensional cases

63–70

unconstrained low-dimensional cases

40–63

unconstrained optimization 39–70

underwater glider 1–2, 255, 284, 317

underwater vehicle design 1

variable neighborhood search (VNS) 263,

277–284

welded beam design (WBD) 83–84,

108–109, 111, 138, 208–211,

213–217, 220–221

Wilcoxon rank–sum test (W-test) 304,

306, 310, 313

Zakharov function 41–42

	Cover
	Half Title
	Title Page
	Copyright Page
	Table of Contents
	List of Figures
	List of Tables
	Preface
	Chapter 1 Introduction
	1.1 Overview
	1.2 Application of DDO Techniques in Simulation Systems
	1.3 Development of Data-Driven Global Optimization Techniques
	1.4 Chapter Summary
	References

	Chapter 2 Data-Driven Optimization Framework
	2.1 Sampling Methods
	2.1.1 Traditional Design of Experiment Methods
	2.1.2 Latin Hypercube Sampling

	2.2 Surrogate Model Construction
	2.2.1 Polynomial Response Surface
	2.2.2 Radial Basis Function
	2.2.3 Kriging

	2.3 Dynamic Sampling Techniques
	2.3.1 Minimizing the Predictor
	2.3.2 Maximum Improvement Probability Criterion
	2.3.3 Maximum Improvement Expectation Criterion

	2.4 Chapter Summary
	References

	Chapter 3 Benchmark Functions for Data-Driven Optimization Methods
	3.1 Introduction
	3.2 Unconstrained Optimization Problems
	3.2.1 Unconstrained Low-Dimensional Problems
	3.2.2 Unconstrained High-Dimensional Problems

	3.3 Constrained Optimization Problems
	3.3.1 Constrained Low-Dimensional Problems
	3.3.2 Constrained High-Dimensional Problems

	3.4 Engineering Application Cases
	3.4.1 Tension/Compression Spring Design (TSD)
	3.4.2 Welded Beam Design (WBD)
	3.4.3 Pressure Vessel Design (PVD)
	3.4.4 Speed Reducer Design (SRD/SR7)
	3.4.5 Stepped Cantilever Beam Design (SCBD)

	3.5 Chapter Summary
	References

	Chapter 4 MSSR: Multi-Start Space Reduction Surrogate-Based Global Optimization Method
	4.1 Introduction
	4.2 Kriging-Based Model
	4.3 The Proposed Multi-Start Optimization Process
	4.4 Space Reduction Approach
	4.5 The Entire Optimization Process
	4.6 Test Cases and Results
	4.6.1 The Algorithmic Test
	4.6.2 Engineering Case Testing

	4.7 Chapter Summary
	Note
	References

	Chapter 5 SOCE: Surrogate-Based Optimization with Clustering-Based Space Exploration for Expensive Multimodal Problems
	5.1 Introduction
	5.2 Soce Algorithm
	5.2.1 Surrogate Modeling and Optimization
	5.2.2 Initialization and Loop of SOCE
	5.2.3 Clustering-Based Space Exploration

	5.3 Overall Optimization Framework of SOCE
	5.3.1 Overall Optimization Process
	5.3.2 Parameters Analysis of SOCE

	5.4 Experiments on Benchmark Examples
	5.4.1 Comparison Test on Bound-Constrained Examples
	5.4.2 Comparison Test on Nonlinear-Constrained Examples

	5.5 Chapter Summary
	Note
	References

	Chapter 6 HSOSR: Hybrid Surrogate-Based Optimization Using Space Reduction for Expensive Black-Box Functions
	6.1 Introduction
	6.2 Hsosr Algorithm
	6.2.1 Surrogate Models – Radial Basis Function
	6.2.2 HSOSR Construction Process

	6.3 Comparison Experiments
	6.4 Chapter Summary
	Note
	References

	Chapter 7 MGOSIC: Multi-Surrogate-Based Global Optimization Using a Score-Based Infill Criterion
	7.1 Introduction
	7.2 Algorithm Flow
	7.3 Multi-Point Infill Criterion
	7.4 Exploration of Unknown Area
	7.5 Comparison Experiments
	7.5.1 Preliminary Comparison and Analysis
	7.5.2 Analysis and Discussion
	7.5.3 Engineering Applications

	7.6 Chapter Summary
	Note
	References

	Chapter 8 SCGOSR: Surrogate-Based Constrained Global Optimization Using Space Reduction
	8.1 Introduction
	8.2 Scgosr Algorithm
	8.2.1 Multi-Start Constrained Optimization
	8.2.2 Space Reduction for Constrained Optimization
	8.2.3 Exploration on Unknown Area
	8.2.4 Optimization Flow

	8.3 Computational Experiments
	8.3.1 Preliminary Test
	8.3.2 Comparison and Analyses
	8.3.3 Further Comparison and Analyses
	8.3.4 Specific Analyses on Space Reduction

	8.4 Chapter Summary
	Note
	References

	Chapter 9 KTLBO: Kriging-Assisted Teaching Learning-Based Optimization to Solve Computationally Expensive Constrained Problems
	9.1 Introduction
	9.2 Teaching Learning-Based Optimization
	9.3 The Proposed KTLBO
	9.3.1 Initialization of KTLBO
	9.3.2 Kriging-Assisted Teaching Phase
	9.3.3 Kriging-Assisted Learning Phase
	9.3.4 Overall Optimization Framework of KTLBO

	9.4 Comparison Experiments
	9.5 Engineering Applications
	9.6 Chapter Summary
	Note
	References

	Chapter 10 KDGO: Kriging-Assisted Discrete Global Optimization for Black-Box Problems with Costly Objective and Constraints
	10.1 Introduction
	10.2 Discrete Optimization Construction
	10.2.1 Multi-Start Knowledge Mining on Kriging
	10.2.2 Constraint Handling

	10.3 Overall Optimization Framework
	10.4 Algorithmic Test
	10.4.1 Mathematical Example Tests
	10.4.2 Practical Engineering Application

	10.5 Chapter Summary
	Note
	References

	Chapter 11 SAGWO: Surrogate-Assisted Gray Wolf Optimization for High-Dimensional, Computationally Expensive Black-Box Problems
	11.1 Introduction
	11.2 Gray Wolf Optimization
	11.3 Surrogate-Assisted GWO
	11.3.1 Surrogate-Assisted Metaheuristic Exploration
	11.3.2 Knowledge Mining on Surrogate Models
	11.3.3 Optimization Flow

	11.4 Experiments and Discussion
	11.5 Chapter Summary
	Note
	References

	Index

