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Preface

The rapid advancement of computer technology and the growing 

demand for high-precision industrial design have established simu-

lation as a cornerstone of modern engineering practices. In the fields of 

mechanical and electronic systems, many complex and computationally 

expensive black-box models are widely used. These models are character-

ized by their reliance on known input-output relationships without reveal-

ing internal operations. Expensive black-box models, such as automotive 

crash simulations, aerodynamic calculations for aircraft design, under-

water vehicle shape optimization and structural stability analysis, often 

require substantial computational resources. Each simulation run may 

range from several minutes to several hours, and optimizing the design 

parameters for these models can result in prohibitively high computa-

tional costs.

To overcome these challenges, data-driven optimization techniques 

have emerged as a promising solution. By leveraging data and compu-

tational intelligence, these methods significantly enhance efficiency and 

accuracy in optimization processes, offering transformative potential for 

complex engineering design tasks. These techniques can be broadly cat-

egorized into offline and online data-driven optimization. Offline opti-

mization involves generating a large dataset at the outset, constructing 

surrogate models with satisfactory accuracy, and keeping these mod-

els static throughout the optimization process. While this approach is 

straightforward and easy to implement, especially for system optimiza-

tion, it has notable limitations: it lacks adaptability, heavily relies on ini-

tial sample points and often exhibits poor local approximation accuracy 

near the optimum, making it less suitable for global optimization tasks. 

In contrast, online optimization dynamically updates the database and 

surrogate models during the iterative process. This adaptability enhances 

prediction accuracy near the optimum, enabling precise solutions while 
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significantly reducing computational costs. Online methods are particu-

larly well-suited for scenarios demanding high accuracy and efficiency in 

global optimization.

Despite their advantages, existing data-driven optimization methods 

often rely on single-point sampling strategies, which lead to a high num-

ber of iterations and hinder parallel computation. Future developments 

in optimization should focus on enabling parallel execution of expensive 

simulations during iterative processes, highlighting the critical role of 

multi-point sampling strategies. Furthermore, single surrogate models, 

while effective for specific problem types, may exhibit significant predic-

tion errors when applied to others. For example, polynomial response sur-

face models are well-suited for approximating polynomial-type problems 

but struggle with trigonometric function-based problems. This under-

scores the need for hybrid surrogate modeling techniques or multi-source 

prediction optimization strategies that combine the strengths of different 

models to improve overall performance and robustness. In addition, given 

the inherent error tolerances in real-world manufacturing processes, solu-

tions derived from discrete optimization often better align with actual pro-

duction requirements. As such, advancing global optimization techniques 

tailored for discrete data-driven problems is a pressing research priority.

Given the current state of development and the challenges in this field, 

the authors and their research team have undertaken extensive studies in 

related areas. This book consolidates and presents the data-driven global 

optimization methods developed by the team over recent years. The con-

tent is organized into the following chapters:

• Chapter 1 introduces the development status of advanced data-driven 

optimization methods.

• Chapter 2 provides background knowledge on data-driven optimi-

zation techniques.

• Chapter 3 presents commonly used test functions for validating 

data-driven optimization methods.

• Chapter 4 introduces a multi-start space reduction method based on 

Kriging models.

• Chapter 5 describes a global optimization method combining 

Kriging and polynomial response surface models.
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• Chapter 6 presents a hybrid global optimization method combining 

radial basis function and Kriging models.

• Chapter 7 introduces a score-based multi-surrogate global optimiza-

tion method.

• Chapter 8 describes a surrogate-based constrained global optimiza-

tion algorithm using space reduction.

• Chapter 9 presents a Kriging-assisted teaching-learning-based con-

strained optimization method.

• Chapter 10 describes a Kriging-assisted discrete global optimization 

method.

• Chapter 11 introduces a surrogate-assisted gray wolf optimization for 

high-dimensional, computationally expensive black-box problems.
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National Natural Science Foundation of China (Grant No. 52175251) 

and the Postdoctoral Fellowship Program of CPSF under Grant Number 

GZC20242194. The authors express their sincere gratitude for this sup-
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Xiao-Yao Han, Wenxin Wang, Weibin Ma, Yunyi Zhang and Wenyi Long 

as well as master’s candidates Jing Pan and Jingxue Shen for their assis-

tance in preparing this book.

Data-driven global optimization methods represent a relatively new 

and rapidly evolving research field. The techniques introduced in this book 

reflect cutting-edge developments from the past 5 years, delivering high 

optimization efficiency and robust performance. This book is designed as 

a reference for researchers and engineers involved in the design of com-

plex electromechanical systems. To support comprehension and practi-

cal application, this book includes numerous mathematical examples and 

engineering case studies, making it a valuable resource for both theoreti-

cal exploration and real-world problem-solving.

Given the authors’ limited expertise, errors and omissions may inevi-

tably occur in this book. The authors welcome feedback and constructive 

criticism from readers to improve future editions and enhance the quality 

of the work.
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Introduction

1.1 OVERVIEW

The rapid advancement of computer technology and the increasing demand 

for high-precision industrial products have made simulation-based com-

putation an indispensable tool in modern engineering design. In the 

field of mechanical and electronic engineering, there are numerous com-

plex and costly black-box models (Miller et  al., 2011; Steer et  al., 2002).  

A black-box model is defined as a model where the input-output rela-

tionship is known, but the internal computational mechanisms remain 

unknown (Bunge, 1963). Costly black-box models refer to those models in 

which a set of inputs produces a set of outputs at the expense of significant 

computational resources, such as in automotive crash simulations, aero-

dynamic calculations for aircraft shapes, underwater vehicle design and 

structural stability analysis (Liebeck, 2004; Qin et al., 2004). Each simu-

lation can take anywhere from several minutes to several hours. When 

designers seek a feasible set of design parameters within the design space 

for costly black-box models, the computational cost is typically very high. 

To address this issue, data-driven optimization (DDO) techniques have 

emerged. Since DDO typically involves the use of surrogate models, this 

approach is also referred to as surrogate-based optimization (SBO) in the 

fields of mechanical design and aerospace engineering. Figure  1.1 illus-

trates the simulation system of the blend-wing-body underwater glider, 

showcasing the computational time involved.
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Over the past two decades, computer-aided design and engineering 

(CAD/CAE) have experienced rapid development. Complex computa-

tional models and time-consuming simulations are frequently used to 

model system behavior and improve design quality. It has been reported 

that a single automotive crash simulation conducted by Ford can take 

between 36 and 160 hours (Antoine & Kroo, 2005; Gu, 2001; Gur et al., 

2010; Zhang et  al., 2006). Consider a two-dimensional optimization 

problem where 50 iterations are required, with each iteration involv-

ing one crash simulation. The total computational time would then 

range from 75 days to 11 months. Consequently, traditional optimiza-

tion solvers become infeasible when applied to complex and time-con-

suming black-box models. Reducing the number of evaluations of the 

complex black-box model is crucial for minimizing computational 

costs. Traditional global optimization methods, like genetic algorithms 

(GA), explore the design space randomly and update the population. 

After hundreds or thousands of evaluations of the objective and con-

straint functions, an optimal solution can be found. However, the heavy 

FIGURE 1.1 Simulation system of a blend-wing-body underwater glider.
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reliance on objective function analysis in methods like GA makes them 

unsuitable for handling computationally expensive simulation-based 

optimization problems.

In 1989, Sacks et al. (1989) introduced the concept of design and anal-

ysis of computer experiments (DACE). Figure 1.2 illustrates the applica-

tion process of DACE in engineering design. Typically, multiple sets of 

computer experiments require repeated execution of computational codes, 

and each execution is time-consuming, which is referred to as the “expen-

sive simulation” problem. A set of inputs undergoes expensive simulation 

to produce a set of outputs, which serve as responses and can form the 

objective or constraint functions in an optimization problem. As opti-

mization progresses, the computational cost increases significantly with 

each iteration. To reduce this computational burden, the input and output 

values obtained from the simulation experiments are used to construct 

a “cheaper” surrogate model (also known as an approximation model), 

which replaces the original complex system and predicts the output for 

unknown inputs. To this day, many researchers continue to explore opti-

mization based on surrogate models.

FIGURE 1.2 Application process of DACE in engineering design.
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Wang and Shan (2006) pointed out that computationally intensive design 

problems are becoming increasingly common in industry, with computa-

tional loads typically arising from expensive simulation analyses or complex 

simulation procedures aimed at approximating real physical test results. 

Simpson et al. (2008) noted that over the past two decades, surrogate model 

techniques have achieved remarkable progress in the field of experimental 

design analysis. Based on the performance of surrogate models, future efforts 

should focus on multi-fidelity surrogate models and the feasibility of using 

surrogate models in commercial software. Forrester and Keane (2009) high-

lighted that aerospace design calculations require long runtimes and expen-

sive computer simulations, thereby driving the need for efficient applications 

of surrogate models in aerospace design optimization. Younis and Dong 

(2010a) stated that computationally intensive simulation analyses support 

modern engineering design, and surrogate models can effectively reduce the 

number of evaluations required for expensive objective and constraint simu-

lations. Tabatabaei et al. (2015) emphasized that obtaining objective and con-

straint function values through real computational experiments incurs high 

computational costs, such as in thermodynamic analysis, structural analy-

sis, fluid dynamics analysis, or complex simulations involving differential 

equations. The basic idea to address this time-consuming issue is to build a 

computationally inexpensive surrogate model to replace the real experiment. 

Bartz-Beielstein and Zaefferer (2017) noted that SBO plays an increasingly 

important role in today’s modeling, simulation and optimization processes. 

Additionally, surrogate model optimization techniques can effectively solve 

complex optimization problems with discrete design domains in the real 

world. Liu et al. (2018) pointed out that surrogate models, as a widely adopted 

technique, can reduce the number of time-consuming simulation calcula-

tions and adaptive surrogate model techniques, which learn from existing 

data and models, have gained considerable attention from researchers.

As shown in Figure 1.3, traditional optimization methods often directly 

link complex black-box analysis models to optimization solvers for itera-

tive calculations. General optimization algorithms typically require 

numerous iterations to achieve an optimal result, and if the analysis model 

is an expensive black-box model, the computational burden increases sig-

nificantly. For example, if a GA calls the complex black-box model 1,000 

times to obtain an optimal solution, with each iteration taking 1 minute to 

compute the output, the total computational time would be 1,000 minutes. 

The substantial increase in computational load necessitates a reduction in 

the number of evaluations of the analysis model (Younis & Dong, 2010b).
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As shown in Figure 1.4, by systematically conducting multiple experi-

mental analyses, multiple sets of corresponding input-output pairs can 

be obtained. By combining these input-output pairs, a “cheap predictive 

model,” or surrogate model, can be constructed. Classical optimization 

algorithms can then be directly applied to the surrogate model to itera-

tively obtain an optimal solution. However, the so-called optimal solution 

is a predicted estimate of the “optimal solution,” and its accuracy depends 

on the experimental analysis method and the number of tests conducted. 

Achieving a balance between reducing computational costs and obtaining 

satisfactory results requires intelligent strategies, which will be discussed 

in detail in the following sections.

In summary, SBO is an optimization strategy based on surrogate mod-

els. Figure  1.4 simply illustrates the general relationships between com-

plex black-box analysis models, surrogate models, optimization solvers 

FIGURE  1.3 Direct integration of optimizer with black-box model for 

optimi zation.

FIGURE 1.4 Optimization of complex black-box model using surrogate model 

and optimizer.
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and their respective inputs and outputs. However, to obtain an optimal 

solution to practical problems, the surrogate model needs to be updated 

iteratively to improve its predictive accuracy adaptively. Additionally, 

algorithms need to intelligently select the best predictive results to balance 

computational cost and accuracy.

1.2  APPLICATION OF DDO TECHNIQUES 
IN SIMULATION SYSTEMS

With the development of simulation technologies and the increasing com-

plexity of modern product designs, simulation analysis has been frequently 

applied in system design and optimization, providing precise analysis but 

also resulting in high computational costs. Consequently, DDO tech-

niques have become a key solution for optimizing time-consuming simu-

lation systems. Common surrogate model methods used in DDO include 

polynomial response surfaces (PRS), Kriging, radial basis functions (RBF) 

and support vector regression (SVR) (Haftka et al., 2016).

NASA funded early research on response surface methods, which led to 

the development of several key theories based on response surface meth-

odology (RSM) (Cox & John, 1992; Dennis & Torczon, 1997; Giunta et al., 

1997; Otto et al., 1997; Wujek et al., 1997). RSM typically utilizes polyno-

mials as basis functions and applies the least squares method to construct 

a predictive model (Box & Wilson, 2018). Virginia Tech developed a vari-

able complexity response surface modeling (VCRSM) approach (Giunta 

et  al., 1996), which uses information of varying fidelity to reduce the 

design space, supplementing expensive samples only in the regions most 

likely to contain the optimal solution, thus reducing the computational 

cost. The University of Notre Dame developed a concurrent subspace opti-

mization (CSSO) method (Renaud & Gabriele, 1991; Renaud & Gabriele, 

1994; Wujek et al., 1996) and applied it to multidisciplinary design optimi-

zation (MDO) to coordinate the optimization of various subspaces. Haftka 

et al. (1998) and Hardy (1971) also conducted extensive research on RSM 

in mechanical and aerospace engineering.

In the past decade, most researchers have shifted their focus from PRS 

methods to a variety of surrogate model techniques, including RBF (Dyn 

et  al., 1986), Kriging (Cressie, 1988), SVR (Smola & lkopf, 2004) and 

artificial neural networks (ANNs) (Paliwal & Kumar, 2009). Numerous 

scholars both domestically and internationally have proposed optimi-

zation methods based on these surrogate models and applied them to 

engineering design fields. In aerospace engineering, SBO has been used 
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for designing high-speed civil transport aircraft (Booker et  al., 1998), 

wing shape optimization (Rai & Madavan, 2000), diffuser shape opti-

mization (Madsen et  al., 2000) and supersonic turbines (Papila et  al., 

2002). Iuliano and Pérez (2016) proposed an SVR-based SBO method to 

optimize aerodynamic shapes. This method combines evolutionary algo-

rithms (EA) with an intelligent estimation search with sequential learn-

ing (IES-SL) sampling strategy to efficiently explore the design space. 

The surrogate model constructed by SVR replaces computational fluid 

dynamics (CFD) to calculate the objective function values, ultimately 

achieving the globally optimal aerodynamic shape while reducing com-

putational costs. Iuliano and Pérez (2016) introduced a surrogate model 

method that implements proper orthogonal decomposition (POD) of 

aerodynamic flow fields and reconstructs aerodynamic flow fields at 

unknown design points using RBF. Additionally, to achieve global opti-

mization, this method was coupled with EA and two sampling strategies 

based on goal enhancement and prediction error reduction were pro-

posed. As a result, only 100 CFD calls were needed to obtain the global 

optimal solution. Ulaganathan and Asproulis (2013) argued that a key 

challenge in the development of aerospace systems lies in understanding 

system behavior. While high-precision computations provide valuable 

insights for high-specification designs and enhanced understanding of 

system responses, their high computational cost limits their application 

across the entire system. They suggested a surrogate-based analysis (SBA) 

method based on Kriging and Hammersley sequence sampling for accu-

rate aerodynamic predictions, which was combined with a GA for global 

optimization on the surrogate model. This approach achieved satisfac-

tory aerodynamic efficiency while significantly reducing computational 

costs. Glaz et  al. (2008) compared the prediction accuracy of Kriging, 

RBF and RSM surrogate models in helicopter vibration problems. They 

did not focus on how to search the design space to capture the global 

optimum, but rather on the adaptability of the surrogate model meth-

ods to vibration reduction problems. They ultimately found that Kriging 

provided the best average accuracy for this problem.

Based on the surrogate model methods, SBA techniques have gradually 

been applied in engineering design. Today, due to their powerful predic-

tive capabilities, SBA has expanded into fields such as structural design, 

aerodynamic shape design, multidisciplinary optimization design and 

electronic system simulation design. Leading research institutions, includ-

ing Virginia Tech, the University of Notre Dame, Rensselaer Polytechnic 
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Institute, Old Dominion University and NASA Langley Research Center, 

have been at the forefront of developing SBA to address optimization design 

problems in engineering (Balabanov & Venter, 2004; Schmit & Farshi, 

1974; Stanford et al., 2013; Sun et al., 2011; Yamazaki, 2012; Yamazaki & 

Mavriplis, 2013). Take finite element analysis (FEA) as an example, which 

is commonly used for structural simulation design. Directly coupling FEA 

with general optimization solvers to find an optimal solution can lead to 

high computational costs. An earlier approach involved constructing an 

approximate empirical formula using first-order sensitivity analysis (Sacks 

et al., 1989), with the optimization process sequentially executed on this 

formula. Pedersen (1981) employed sequential linear programming (SLP) 

to solve structural optimization problems; Fleury and Braibant (1986) pro-

posed the convex linearization method (CONLIN); and Svanberg (1987) 

introduced the method of moving asymptotes (MMA). These meth-

ods extracted the response and first-order sensitivity information from 

the current design point, and therefore, they are collectively referred to 

as single-point approximation methods. Later, Haftka et  al. (1987) and 

Fadel et  al. (1990) developed a two-point approximation method using 

both the current and previous points’ values and derivative informa-

tion. Rasmussen (1990) further proposed an accumulated approximation 

technique that utilizes the values and gradients at the current point while 

also incorporating all previously obtained points’ values and derivatives. 

Finally, Toropov (1989) summarized the concept of multi-point approxi-

mations (MA), where regression analysis is used to predict the response at 

the current point in each iteration. By leveraging information from previ-

ous solutions, optimization is carried out within a locally valid sub-region 

to reduce the number of FEA evaluations.

Besides, DDO methods also have significant potential in system optimi-

zation design, particularly in reducing the number of calls to time-consum-

ing simulation units. For example, Mohammad Zadeh and Sadat Shirazi 

(2017) employed a two-layer multidisciplinary optimization method to 

design a complex satellite system, replacing time-consuming simulation 

units with quadratic response surface (QRS) models that meet accuracy 

requirements, thus reducing the number of calls. Similarly, Wang et  al. 

(2017b) proposed a novel system optimization method for lithium-ion bat-

tery thermal management system design, where surrogate models replace 

costly responses such as temperature and pressure variations, greatly 

improving computational efficiency. Wang et  al. (2017b) introduced an 

improved collaborative optimization algorithm for automotive structural 
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design. By constructing QRS models, they effectively reduced the compu-

tational load caused by FEA, yielding satisfactory results. Although these 

methods reduce the computational costs of optimizing time-consuming 

simulation systems to varying degrees, they all employ offline DDO tech-

niques. Specifically, a surrogate model is constructed using a large number 

of samples that meet accuracy requirements for optimization, but the sur-

rogate model is not updated during the optimization process. While this 

approach is simple to implement and easy to apply in system optimization, 

it lacks adaptability, heavily relies on initial sample points and does not 

provide high local approximation accuracy at optimal locations, making it 

unsuitable for global optimization.

Online DDO methods, on the other hand, involve using a sampling 

strategy during the iteration process to collect samples and automatically 

update the surrogate model. This dynamic process typically improves the 

prediction accuracy near the optimal location, allowing for precise opti-

mal solutions with fewer computational costs. Recent studies have increas-

ingly applied online DDO methods in system optimization workflows. 

For instance, Ollar et  al. (2017) optimized the overall design of a wing 

anti-collision system by constructing Kriging models for two time-con-

suming analysis units—linear static and explicit dynamics. The entire 

optimization process was carried out using a local trust region method, 

with Kriging models continuously updated during iterations, ultimately 

determining the optimal solution with fewer computational costs. Pires 

et al. (2013) employed an RBF-based EA to minimize the total cost of a 

complex thermal system, constructing an RBF model for the time-con-

suming objective. In each iteration, the EA searches for the optimal sample 

predicted by the RBF model and iteratively updates it until a satisfactory 

solution is found. Yao et  al. (2012) proposed a new method combining 

multidisciplinary feasibility and collaborative subspace optimization 

strategies. This method approximates time-consuming state variables, 

objectives and constraints using surrogate models and updates the surro-

gate model by supplementing the dataset with predicted optimal solutions 

obtained during each optimization step, facilitating rapid identification 

of the real optimal target. While these online DDO methods can focus 

samples in regions predicted to be optimal, they struggle with handling 

large-scale, highly nonlinear simulation systems. To achieve global opti-

mization, more intelligent sampling strategies are required to adaptively 

balance the “exploitation of surrogate models” and “effective exploration 

of the design space” (Liu et al., 2018).
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1.3  DEVELOPMENT OF DATA-DRIVEN GLOBAL 
OPTIMIZATION TECHNIQUES

A significant amount of research has been conducted by scholars on 

data-driven global optimization (DDGO). Jones et  al. (1998) first pro-

posed the efficient global optimization (EGO) algorithm, which con-

structs an expected improvement function using Kriging and updates 

the sample points by maximizing this function. Regis and Shoemaker 

(2007) introduced a stochastic response surface method that simultane-

ously considers space-filling and the prediction of optimal values to select 

candidate points for supplementation. In recent years, domestic scholars 

have also carried out extensive research on DDGO. For example, Long 

et al. (2015) used a space intelligence exploration strategy to accelerate the 

convergence speed of adaptive response surface optimization, which was 

validated through various test functions and wing plate structural design. 

Jie et al. (2015) proposed a multi-surrogate global optimization algorithm 

that constructed a new model combining Kriging and RBF, adjusting 

internal parameters adaptively to balance global and local exploration. 

Gu et al. (2012) developed a hybrid adaptive optimization method using 

three surrogate models, which divided candidate points into several sub-

sets and selected a different number of samples for updating the surrogate 

model based on the importance of each subset, applied to an automotive 

crash example.

Haftka et  al. (2016) from the University of Florida pointed out that 

improving the multi-point sampling capability (parallelism) is crucial 

for DDGO. Collecting multiple sample points in each iteration and per-

forming simulation analyses in parallel can significantly shorten the 

design cycle. Both domestic and international teams have since researched 

multi-point sampling techniques for DDGO and published new methods. 

For instance, the Shoemaker team at Cornell University (Krityakierne 

et al., 2016) employed a non-dominated sorting method to find supplemen-

tal sample points for single-objective optimization problems; Zhan et al. 

(2017) from Huazhong University of Science and Technology captured 

multiple extreme points of the expected improvement function as supple-

mental sample sets; Li et al. (2016) from Dalian University of Technology 

proposed a new domain decomposition technique to enhance multi-point 

sampling capabilities based on the EGO algorithm.

Most existing DDO methods use single-point sampling strategies, 

such as the classic expected improvement (EI) or minimize prediction 

(MP). These sampling strategies often lead to numerous iterations during 
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optimization, which is not conducive to parallel computation. As Professor 

Haftka mentioned, the future development of optimization should involve 

parallel execution of expensive simulations during iterations, making the 

development of multi-point sampling strategies particularly important. 

Additionally, a single surrogate model may perform well for certain prob-

lems but produce large prediction errors for others. For example, PRS mod-

els can provide accurate approximations for polynomial-type problems 

but may struggle with precise expressions for problems involving trigono-

metric functions. Therefore, developing hybrid surrogate model optimi-

zation methods or multi-source prediction optimization techniques can 

lead to more robust results. Furthermore, considering the error precision 

in real-world structural manufacturing processes, the optimal solution 

obtained from discrete optimization is often more consistent with actual 

production conditions. Thus, developing discrete DDGO techniques is 

also of significant importance.

1.4 CHAPTER SUMMARY

This chapter provides an overview of advanced DDO methods, highlight-

ing the historical development of DDO techniques and their application 

in practical simulation systems. It demonstrates the significant advantages 

of DDO approaches in addressing computationally expensive black-box 

problems. These methods effectively learn from and mine historical data, 

construct surrogate models, predict potentially beneficial samples, acceler-

ate the exploration of design space and greatly reduce the number of calls 

to time-consuming simulation models, thus holding significant implica-

tions for simulation-based product design and optimization.
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C H A P T E R  2

Data-Driven 

Optimization Framework

2.1 SAMPLING METHODS

Data-driven optimization (DDO) begins with the use of experimental 

design methods (design of experiment, DOE) to perform initial data sam-

pling. DOE is a mathematical and statistical approach for planning and 

analyzing experiments (Myers et al., 2016), primarily aimed at obtaining 

ideal experimental results with a minimal number of experiments, shorter 

experimental duration and lower costs.

2.1.1 Traditional Design of Experiment Methods

Traditional DOE methods include full factorial design, fractional fac-

torial design, central composite design (CCD) (Chen, 1995) and Box–

Behnken design (BBD) (Box & Behnken, 1960). Full factorial design 

considers all possible combinations of design factors and levels. Here, 

factors refer to design parameters or variables, while levels represent spe-

cific values assigned to a given factor within the design space. The main 

advantage of full factorial design is its ability to provide comprehensive 

information, allowing for a robust estimation of both the main effects 

of design variables on the response and the interaction effects between 

variables. However, the primary drawback is the substantial increase in 

the number of required experiments, which results in higher labor and 

resource consumption. The goal of fractional factorial design is to select 

a subset of valuable information from the full factorial design, making 

17DOI: 10.1201/9781003636267-2
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the experiment more efficient. A fractional factorial design can be viewed 

as a subset of a full factorial experiment.

BBD was proposed by George in 1960 and is primarily applied in PRS 

design. BBD is a standalone second-order design that does not include 

embedded fractional factorial designs. It selects the midpoint of the 

boundaries of the design space as well as the center point of the entire 

design, typically choosing three design levels for each dimension. BBD is 

particularly useful for problems where design variables have a nonlinear 

relationship with the response values. Similarly, CCD is also applied to 

nonlinear problems and is mainly used in PRS design. However, CCD 

typically requires the inclusion of axial points. Figures 2.1 and 2.2 illus-

trate the sampling methods of BBD and CCD in three-dimensional 

space, showing that both DOE methods provide good coverage of the 

entire design space.

The GS method is similar to the previously described full factorial 

design. GS divides each dimension of the design space into several equal 

parts, and all grid points obtained by intersecting the divisions across 

FIGURE 2.1 BBD sampling method.
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dimensions are considered as design points. It is important to note that at 

least two nodes are selected for each dimension. Equation (2.1) provides the 

relationship between the number of design points m and the dimensional-

ity n, where q(i) denotes the number of design nodes in the i-th dimension.

 ∏ ( )=
=1

m q i
i

n

 (2.1)

There are various experimental design methods, and choosing an appro-

priate one typically involves considering the following factors: (1) the cost 

of a single experiment, (2) the size of the design space, and (3) the type of 

surrogate model the designer needs to construct.

If the experimental cost is high, it is preferable to choose a DOE strategy 

that generates fewer sample points. If the experimental cost is relatively low, 

increasing the sample size can be considered, and even full factorial design or 

GS may be viable options. If the design space is large (i.e., the design dimen-

sionality is high), DOE methods that correlate the number of sample points 

with the number of dimensions should not be used. Different surrogate mod-

eling techniques are suited to different DOE strategies. For instance, PRSs are 

FIGURE 2.2 CCD sampling method.
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often combined with CCD sampling methods to construct approximation 

models. In summary, experimental design is the first step in the DDO frame-

work, and its choice should be based on the overall design process.

2.1.2 Latin Hypercube Sampling

LHS is a widely used statistical sampling method (Iman, 2008). Figure 2.3 

illustrates 25 sample points from an LHS process, while Figure 2.4 shows 

25 sample points from a GS for comparison. In the statistical sampling 

process, each row and column of the grid can contain only one sample 

point. LHS refers to a square matrix in which no two elements in the same 

row or column are identical. Figure 2.5 provides a visual representation of 

the Latin hypercube and LHS.

Figure 2.5a shows one possible arrangement of the four letters ‘LHSD’ 

in a Latin hypercube. As seen in figure, each row and column contains a 

unique permutation of the letters ‘LHSD,’ ensuring that each letter occu-

pies a distinct row and column in the matrix. Figure  2.5b–d shows the 

three random outcomes of LHS with four points.

By combining Figures 2.3 and 2.5, it is evident that LHS is random but 

effectively covers the entire design space. For continuous design problems, 

FIGURE 2.3 LHS (25 samples).
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FIGURE 2.4 Grid sampling (25 samples).

FIGURE 2.5 Explanation of Latin hypercube and Latin hypercube sampling. (a) 

Permutation without repetition. (b) Random situation 1. (c) Random situation 2. 

(d) Random situation 3.
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LHS divides each dimension of the space into m equal parts (consider-

ing a two-dimensional space), and the design points are randomly placed 

within m × m grid areas.

As mentioned earlier, GS evenly covers the design space, but this 

comes at the cost of a significant increase in the number of experiments. 

Figure 2.6 shows 225 sample points obtained through GS, with 15 design 

levels for each dimension. Executing all 225 sample points can lead to a 

costly computation. A key focus of sampling strategy research is how to 

effectively reduce the number of sample points while retaining valuable 

information. Typically, when a large sample set is obtained in a practi-

cal problem, a selection strategy is needed to identify a smaller, more effi-

cient subset. One such mature sampling strategy is the ‘max–min’ strategy, 

where the ‘min’ refers to the smallest distance between any two sample 

points, and the ‘max’ aims to maximize this minimum distance.

 ( )−



≠

max min =dis P P
i j

ij i j  (2.2)

Equation (2.2) provides the calculation formula for the max–min strategy. 

Figures 2.7–2.9 show the optimal results selected by the max–min criterion 

for 100, 1,000 and 10,000 iterations, respectively.

FIGURE 2.6 Grid sampling (225 samples obtained).
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FIGURE 2.7 After 100 iterations using max–min criterion.

FIGURE 2.8 After 1,000 iterations using max–min criterion.
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Suppose that 25 points are to be selected from 225 sample points, where 

Pi and Pj represent any two distinct points from the 25 selected points. 

The minimization process involves finding the smallest distance among 

all pairwise combinations of the 25 points. The maximization process 

involves selecting the 25 points from the 225 sample points in such a way 

that the minimum distance between any two selected points is maximized. 

To achieve this process, typically two nested loops are required: an inner 

loop for minimization and an outer loop for maximization. It is evident 

that as the number of iterations increases, the sample points become more 

evenly distributed across the entire design space.

Currently, many SBO methods tend to employ modified LHS as the 

DOE process to obtain initial samples. Modified LHS typically retains the 

randomness of LHS while more evenly filling the design space. Symmetric 

Latin hypercube sampling (SLHS) (Kenny et al., 2000) is a popular sam-

pling method, and it can be considered one of the best results produced by 

LHS. The term ‘symmetric’ refers to any point in the space being symmet-

ric about the central position. For example, in a two-dimensional space, 

suppose six design samples are needed. The first dimension is divided into 

FIGURE 2.9 After 104 iterations using max–min criterion.
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six equal parts, with levels 1, 2, 3, 4, 5 and 6 assigned in order. The second 

dimension randomly generates a sequence from 1 to 3, here given as 3, 1, 2. 

The remaining numbers of three are calculated as (6 + 1 − 2), (6 + 1 − 1) and 

(6 + 1 − 3). Additionally, there is a 50% chance that any of the first three 

numbers in this sequence will be swapped with their corresponding coun-

terparts in the last three, and in this case, the second and fifth numbers are 

exchanged. The final sequence for the second dimension becomes three, 

(6 + 1 − 1), 2, (6 + 1 − 2), 1, (6 + 1 − 3). Figure 2.10a shows the final result of 

SLHS in a two-dimensional space for six points. When an odd number of 

points is required, the central point is selected, and the remaining points 

are symmetrically distributed about the center. Figure 2.10b illustrates the 

situation for seven sample points.

Similarly, the optimal Latin hypercube sampling (OLHS) algorithm 

has been widely adopted for optimization purposes, such as genetic algo-

rithm-optimal Latin hypercube sampling (GA-OLHS) and enhanced 

stochastic evolutionary algorithm-optimal Latin hypercube sampling 

(ESEA-OLHS) (Jin et  al., 2005). To ensure the sample points uniformly 

fill the design space, OLHS typically utilizes a global optimization solver 

to determine an optimal criterion, such as the aforementioned max–min 

criterion, entropy principle or centered discrepancy criterion L2.

Shannon (1948) quantified information content using entropy, where a 

lower entropy value indicates more precise information. Minimizing the 

‘posterior entropy’ is equivalent to finding a set of experimental design 

FIGURE  2.10 Symmetric Latin hypercube sampling points for even and odd 

cases. (a) Even case. (b) Odd case.
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points with the least amount of information. Koehler and Owen (1996) 

further demonstrated that the entropy principle criterion is equivalent to 

the following minimization expression:

 log10 R−  (2.3)

where R is the correlation matrix with elements defined in Eq. (2.4).

 ∑θ= −








 ≤ ≤ ≤ ≤

=

exp , 1 , ; 1 2
1

R x x i j n tij k ik jk

t

k

m

 (2.4)

where θ ( )= 1, ,k mk   is the correlation coefficient.

The centered discrepancy criterion L2 is a method for measuring the 

difference between the empirical cumulative distribution function and 

the uniform cumulative distribution function of an experimental design. 

In other words, L2 is used to express the non-uniformity of an experimen-

tal design. Hickernell (1998) proposed three formulas for L2, among which 

the centered L2 formula is the most expressive.
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Minimizing Eq. (2.5) ensures that the experimental design’s non-unifor-

mity is minimized.

For comparison with other DOE methods, Figure  2.11 presents the 

results of SLHS with 25 sample points, while Figure 2.12 shows the results 

of OLHS with 25 sample points. It is evident that SLHS performs well, but 

OLHS provides a more uniform spatial distribution. Compared to previ-

ous methods, it is clear that OLHS provides the best space-filling capabil-

ity while retaining the randomness characteristic of LHS.

2.2 SURROGATE MODEL CONSTRUCTION

Common surrogate models include PRS, RBF, Kriging, and SVR. All of 

these methods generally incorporate interpolation and regression con-

cepts. RBF and Kriging are commonly used interpolation methods, PRS 
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uses polynomial least squares regression, and SVR is a regression analysis 

method derived from machine learning for classification.

2.2.1 Polynomial Response Surface

PRS has been widely and effectively applied in numerous engineering 

designs, as it can accurately represent convex function problems. The 

approximate expression of PRS is obtained through least squares. The 

first-order and second-order polynomial functions of PRS are shown in 

Eqs. (2.6) and (2.7).

 ∑β β( ) = +

=

ˆ 0

1

y xi i

i

n

x  (2.6)

 ∑ ∑ ∑∑β β β β( ) = + +

= =

ˆ +0

1

2

1

y x x x xi i

i

n

ii i

i

n

ij i j

ji

x  (2.7)

 > + +
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3

2
12N d dsampling  (2.8)

FIGURE 2.11 SLHS with 25 samples.
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where n represents the number of design variables. βi denotes the coeffi-

cients of univariate polynomials. βii represents the coefficients of the qua-

dratic terms. βij indicates the coefficients of the hinge terms between two 

variables. y(x) is the true function, while ˆ( )y x  is its approximate expres-

sion. Nsampling denotes the number of samples. Generally, if Nsampling does 

not satisfy the condition in Eq. (2.8), the PRS model will exhibit significant 

prediction errors.

Given the sample points and corresponding response values, the poly-

nomial parameters can be determined based on Eq. (2.9):

 β [ ]= ′ ′−1
X X X y (2.9)

where X represents the design matrix of the sample points. y contains the 

response values for all the sample points. PRS is relatively easy to con-

struct, and its continuous and smooth nature aids in the rapid convergence 

of optimization problems with noise. However, due to its simplicity, it is 

often difficult for PRS to accurately predict and express nonlinear prob-

lems. PRS has a wide range of applications, including robust optimization, 

FIGURE 2.12 OLHS with 25 samples.
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multidisciplinary optimization, adaptive strategies for global optimiza-

tion and manufacturing analysis.

2.2.2 Radial Basis Function

RBF was initially proposed by Hardy as an interpolation strategy. Then 

Dyn made the RBF method more practical, smoothing the data while 

retaining the interpolation function. RBF expresses the overall approxi-

mation function as a weighted sum of a series of basis functions, where the 

basis functions are derived from the Euclidean distance between known 

sample points or between known sample points and the points to be tested.

Given a set of sample points { }= , , ,(1) (2) ( )x x x n T
X  and the corre-

sponding real response values { }= , , ,(1) (2) ( )y y y n T
y , the approximate 

expression is given by Eq. (2.10):

 
1

( )∑ψ ψ ( )( ) = = −
∧

=

y x w w x cT
i

i

n

i

c

 (2.10)

where c(i) represents the center of the i-th basis dunction, ψ (•) is the basis 

function, x means a unobserved point; wi denotes the weight coefficients. 

There are various forms of basis functions commonly used in RBF inter-

polation, each defined by different mathematical expressions. Some of the 

most widely used forms include

Linear function:

 ψ ( ) =r r  (2.11)

Cubic function:

 ψ ( ) = 3r r  (2.12)

Thin-plate splines:

 ψ ( ) = ln2r r r  (2.13)

Gaussian function:

 ψ ( ) = σ− /22 2

r e r  (2.14)

Multiquadric function:

 ψ σ( )( ) = +2 2 1/2
r r  (2.15)
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Inverse multiquadric function:

 ψ σ( )( ) = +
−2 2 1/2

r r  (2.16)

The weight coefficients w in Eq. (2.10) can be obtained through the inter-

polation conditions.

 ˆ , 1, , .
1

x x c ∑ ψ ( )( ) = − = =( ) ( ) ( )( )

=

y w y j n
j

i
j i

i

n

j
c

 (2.17)

In Eqs. (2.10) and (2.17), nc = n and x(i) = c(i), then the Kram matrix can be 

represented as:

 ψψ ψ ( )− ( )( )= x xij
i j

 (2.18)

Thus, the weight coefficient matrix can be easily obtained:

 1w yψψ= −  (2.19)

By observing Eqs. (2.10)–(2.19), it can be observed that RBF is highly simi-

lar to artificial neural networks. In fact, RBF is essentially a simple sin-

gle-layer neural network.

2.2.3 Kriging

In statistics, specifically in geostatistics, Kriging (also known as Gaussian 

process regression) is an interpolation strategy that is fundamentally dif-

ferent from piecewise-polynomial spline methods. This strategy is mod-

eled through Gaussian process interpolation and is influenced by the 

prior covariance. Under suitable prior assumptions, Kriging provides the 

best linear unbiased prediction for the interpolated values, which has led 

to its widespread application in statistical sciences. Another important 

and rapidly developing application is in engineering, where determin-

istic computer simulation outputs are used as the interpolation targets. 

In this context, Kriging is employed as a surrogate model tool to address 

black-box problems. In many engineering design problems, a single simu-

lation analysis can take several hours or even days. Therefore, the Kriging 

interpolation method can quickly predict the response to inputs, signifi-

cantly reducing the number of costly simulation runs.
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The Kriging surrogate model has been widely applied due to its excep-

tional ability to solve nonlinear problems. To construct a Kriging model 

for a function f(x), where x is an n-dimensional vector, the function F(x) is 

defined to represent the deterministic response of f(x), as expressed in the 

following formula:

 ( ) ( )x xµ= +F Z  (2.20)

where μ is defined as a constant. Z(x) is a stochastic process with the fol-

lowing statistical behavior:

 

∏

σ

θ

=

′ = Θ ′

Θ ′ = − ′

=

[ ( )] 0

Cov[ ( ), ( )] ( , , )

( , , ) ( , )

2

1

E Z

Z Z R

R R x xj j j j

j

n

x

x x x x

x x

 (2.21)

where σ2 represents the process variance of the response value. Θ ′( , , )R x x  

is the correlation model between any two points x and ′x . θ θ θΘ = { , , , }1 2 n  

is the parameter of the correlation model, namely the correlation param-

eters. In this book, the Gaussian correlation function is used for modeling.

 θ θ( )′ = − − ′( , , ) exp
2

R x x x xj j j j j j  (2.22)

Next, assume there are N sample points , , ,(1) (2) ( )Nx x x , and the corre-

sponding response values for the function f(x) are calculated. According 

to Eq. (2.20), the Kriging model is represented as:

 µ( ) ( ) ( )= = +( ) ( ) ( )f F Zi i ix x x  (2.23)

In the Kriging model, the three parameters , ,2µ σ Θ are obtained through 

maximum likelihood estimation (MLE):
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where = [ ( ), ( ), , ( )](1) (2) ( )f f f N Tf x x x . R is a covariance matrix of size 

N × N, where the element in the i-th row and j-th column is ΘΘ( , , )( ) ( )i jx xR .

Finally, the mean square error (MSE) is minimized.

 = −





ˆ ( ) Var ˆ( ) ( )2s f Fx x x  (2.25)

Meanwhile, the following non-Bayesian constraint needs to be satisfied:

 



 =ˆ( ) [ ( )]E f E Fx x  (2.26)

The predicted function, ˆ( )f x , obtained through the best linear unbiased 

estimation, is expressed as:

 ˆ( ) ˆ ( ) ( ˆ)1x r x R f 11µ µ= + −−f T  (2.27)

where r(x) is a N-dimensional vector. The i-th element of r(x) is ΘΘ( , , )( )ix xR .  

x is any sample point for which prediction is required. The final form of 

the estimated MSE is
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T
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(1 ( ))2 2 1
1 2

1x r x R r x
R r x
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11

11 11
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
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




−
−

−s T  (2.28)

Figure 2.13 illustrates the prediction diagram of Kriging in a one-dimen-

sional example. The circles represent the known samples, the curve indi-

cates the predicted function values, and the surrounding area represents 

the prediction uncertainty. From the figure, it can be observed that the 

uncertainty is close to 0 at the known sample points, and the uncertainty 

increases as the distance from the known sample points grows.

2.3 DYNAMIC SAMPLING TECHNIQUES

In most cases, a surrogate model is constructed using known sample data. 

However, if optimization is performed solely on the surrogate model to 

obtain the optimal solution, this optimal solution may not correspond to 

the true global optimum. This is because the surrogate model is constructed 

based on available information, and while it has predictive capabilities, it 

is not always perfectly accurate. To improve the accuracy of the surrogate 

model, one approach is to increase the initial sample size—by adding more 

samples during the experimental design phase—so that the model utilizes 



Data-Driven Optimization Framework   ◾   33

more real data. However, this typically results in a significant increase in 

computational cost. Another approach is to construct a rough surrogate 

model that captures the general trend of the original model. Such a model 

typically requires fewer samples. Then, promising regions of the surrogate 

model are identified to select new sample points. The previous samples are 

stored in a database, and new samples are chosen iteratively to update the 

database, with the surrogate model being updated accordingly. This itera-

tive process improves the accuracy of the model at certain preferred loca-

tions. This second approach avoids large-scale blind sampling in the early 

stages and adopts a strategy of optimizing while incrementally adding new 

samples, thus saving significant computational costs.

2.3.1 Minimizing the Predictor

Minimizing the predictor (MP), namely a constructed surrogate, to obtain 

a new sample is a commonly used updating strategy (Hastie et al., 2004), 

as illustrated in Figure 2.14. Suppose the surrogate model is sufficiently 

accurate, and a robust optimization solver is used to find the minimum 

of this surrogate model. After many iterations, the global optimum will 

be reached. At this point, high-precision computational simulations are 

performed at the predicted optimal solution, and the high-precision 

response obtained will often differ from the response predicted by the 

surrogate model. This set of high-precision results is then added to the 

FIGURE 2.13 Illustration of Kriging prediction on a 1D example.
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original database, and the surrogate model is reconstructed. This process is 

repeated, gradually reducing the deviation between the predicted and true 

values, ultimately obtaining the true minimum. MP strategy is a relatively 

simple and intuitive sample update strategy, where the predicted optimal 

solution or a nearby solution is used as the update sample. However, a 

drawback of this approach is that the optimization process may become 

trapped in local optimum regions and fail to escape. After constructing 

the surrogate models for the objective function and constraint functions, 

the following optimization problem is solved, where n represents the num-

ber of constraint functions.

 
( )

≤ =

∧

∧

0, 1,2, ,

Minimize y X

st g i ni 

 (2.29)

When the objective is a smooth and continuous function, the MP sampling 

method will at least find a local optimal solution of the surrogate model. 

However, the convergence rate depends on the properties of the function.

2.3.2 Maximum Improvement Probability Criterion

Maximum improvement probability criterion (MIPC) aims to find the next 

sample point x that maximizes the probability of improving the current 

FIGURE 2.14 MP strategy.



Data-Driven Optimization Framework   ◾   35

best observed value, ymin. Let ~ [ ˆ( ), ( )]2Y N y x s x  be a random variable fol-

lowing a normal distribution, and the improvement degree over ymin is 

denoted as = − ( )minI y Y x . Therefore, the probability that the predicted 

objective value is better than the current best observed value is given by:

 [ ] ( )
( )

< = Φ
−











∧

min
min

P Y y
y y x

s x
 (2.30)
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 (2.31)

Figure 2.15 provides a graphical interpretation of Eq. (2.30), along with a 

Gaussian normal distribution in the vertical direction, where the mean 

is ˆ( )y x  and the variance is ( )2s x . This Gaussian distribution represents the 

uncertainty of the predicted result ˆ( )y x . The area below the dashed line 

indicates the probability of improvement over the current best value, and 

the enclosed area represents the improvement probability.

FIGURE 2.15 MIPC strategy.
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2.3.3 Maximum Improvement Expectation Criterion

Maximum improvement expectation criterion (MIEC) refers to the 

expected improvement at an unobserved point x. Let ~ [ ˆ( ), ( )]2Y N y x s x  be 

a random variable following a normal distribution, ŷ is the predicted value 

from the surrogate model, 2s  is the estimated MSE. Given ŷ and 2s , not 

only can the probability of improvement be calculated, but the expected 

improvement can also be estimated. The expected improvement calcula-

tion is shown in Eq. (2.32).
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where Φ ⋅( ) and ( )φ ⋅  represent the cumulative distribution function and 

the probability density function of the standard normal distribution, 

respectively.

In Figure 2.16, the expected improvement can be intuitively understood 

as the area below the current optimal value, which represents the average 

FIGURE 2.16 MIEC strategy.
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value of the integral of the probability density under the Gaussian distri-

bution function. When =ˆ ( ) 02s x , = =[ ( )] [ ( )] 0P I x E I x .

Another classic update method is the trust-region method (TR). 

Alexandrov et al. (1998) have rigorously proven that the TR method can 

converge to a local optimum, regardless of the starting point, under the 

condition that the gradient information of the real model at the interpola-

tion points is available. TR can also match the gradient of the objective 

function using the first-order scaling method suggested by Haftka (1991) 

or the second-order scaling method proposed by Eldred et al. (2004). In 

general, both TR and MP belong to strategies that exploit the design space 

through the use of surrogate models, often referred to as exploitation-based 

infill criteria. While MP can easily miss the true global optimum when 

dealing with highly nonlinear problems, TR guarantees the search for a 

local optimum from any starting point, although it does not ensure find-

ing the global optimum.

To determine the global optimum, a new element, namely space explora-

tion, needs to be introduced. Pure design space exploration can essentially 

be viewed as filling gaps between known design points with new samples. 

The simplest approach is a sequential space sampling plan, such as Sobol 

sequences or LP arrays, although these methods perform poorly when the 

number of samples is small (Sobol, 1979; Statnikov & Matusov, 2012). New 

sample points can also be determined by the max–min criterion. If the 

residual estimate of the surrogate model is available, selecting the loca-

tion with the largest residual to add a new sample is also a viable strategy. 

However, pure space exploration can sometimes be time- consuming, as 

designers are typically less concerned with the overall accuracy of the sur-

rogate model and more focused on the precision at the global optimum 

location.

2.4 CHAPTER SUMMARY

This chapter provides an overview of the DDO process, detailing the initial 

sampling techniques, surrogate modeling methods and dynamic sampling 

strategies employed in DDO. The initial sampling methods, as the founda-

tion of DDO, determine the distribution of the initial samples. Surrogate 

modeling, as the key component of the process, ensures the accuracy of 

the model predictions. Dynamic sampling strategies, as the core of DDO, 

guarantee a thorough search of the design space.
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C H A P T E R  3

Benchmark Functions 

for Data-Driven 

Optimization Methods

3.1 INTRODUCTION

In recent years, various optimization algorithms have rapidly developed, 

addressing optimization problems that are challenging for traditional 

numerical optimization methods. Benchmark function testing is one of the 

most commonly used methods by researchers to assess the performance 

and robustness of optimization algorithms. In the subsequent chapters of 

this book, a wide range of benchmark functions is employed to validate 

the accuracy and efficiency of various optimization methods. This chapter 

provides a comprehensive summary and classification of these functions. 

Specifically, it introduces single-objective optimization test functions 

(Jamil & Yang, 2013; Surjanovic & Bingham, 2013), constrained and uncon-

strained optimization test functions (Adorio & Diliman, 2005; Akbari & 

Kazerooni, 2020; Jamil & Yang, 2013; Liang et al., 2006; Liu et al., 2021; 

Liu et al., 2017; Mezura-Montes & Cetina-Domínguez, 2012; Surjanovic & 

Bingham, 2013), discrete optimization test functions (Dong et al., 2020; Li 

et al., 2013; Müller et al., 2013; Müller et al., 2014; Pichitlamken et al., 2006) 

and high-dimensional optimization test functions (Adorio & Diliman, 

2005; Jamil & Yang, 2013; Surjanovic & Bingham, 2013).
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Besides, functions that possess multiple local optima are referred to as 

multimodal functions. These functions are used to test an algorithm’s abil-

ity to escape local minima. If the exploration process of an algorithm is 

poorly designed, it will fail to effectively search for the global optimum, 

causing the algorithm to become trapped in local minima. For many algo-

rithms, escaping from multimodal functions with numerous local minima 

represents a major challenge. Another difficulty is the search process for 

plate-shaped functions, as the minimal variation in the function makes it 

difficult for the algorithm to gather useful information to guide the search 

process.

For any new optimization algorithm, it is essential to compare it with 

other existing algorithms using a wide range of test functions to validate 

its performance. If the problems are overly simplified and lack diversity, 

the effectiveness of the algorithm in comparison to other methods may not 

be accurately evaluated. Therefore, to assess the quality of an algorithm, 

it is necessary to identify the specific problems on which it performs bet-

ter. This helps describe the types of problems the algorithm is suited for. 

The results can be considered reliable only when the number of bench-

mark functions is sufficiently large and the types of problems covered are 

diverse, such as unimodal, multimodal, discrete, and high-dimensional 

problems. Without loss of generality, this book focuses on minimization 

problems, as maximization problems can be transformed into minimiza-

tion problems by changing the sign of the objective function. The math-

ematical definitions of the test functions used in this book are provided 

below.

3.2 UNCONSTRAINED OPTIMIZATION PROBLEMS
3.2.1 Unconstrained Low-Dimensional Problems

3.2.1.1 Generalized Polynomial Function

The generalized polynomial function, as shown in Figure 3.1, is defined by 

the following mathematical expression:
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(3.1)

Design objective: Single objective

Function characteristics: Continuous, unimodal
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Dimensions: 2-Dimensional

Optimal value: 0.523

3.2.1.2 Zakharov Function

The Zakharov function is shown in Figure  3.2, and its mathematical 

expression is given by Eq. (3.2).
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Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.3 Beale Function

The Beale function is shown in Figure 3.3, and its mathematical expression 

is given by Eq. (3.3).

FIGURE 3.1 Generalized polynomial function.
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FIGURE 3.3 Beale function.

FIGURE 3.2 Zakharov function.
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.4 Six-Hump Camel-Back Function

The six-hump camel-back function is shown in Figure 3.4, and its math-

ematical expression is given by Eq. (3.4).
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Design objective: Single objective

Function characteristics: Continuous

FIGURE 3.4 Six-hump camel-back function.
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Dimensions: 2-Dimensional

Optimal value: −1.0320

3.2.1.5 Branin Function

The mathematical expression of the Branin function is given as follows:
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 (3.5)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: 0.397

3.2.1.6 Leon Function

The Leon function is shown in Figure 3.5, and its mathematical expression 

is given by Eq. (3.6).

FIGURE 3.5 Leon function.
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Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.7 Griewank Function

The mathematical expression is given as follows:
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.8 Ackley Function

The Ackley function is shown in Figure 3.6, and its mathematical expres-

sion is given by Eq. (3.8).
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 0

Description: The Ackley function features an almost flat outer region 

with a large hole at its center. This function possesses numerous local 

minima.
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3.2.1.9 Griewank Function

The Griewank function (GW/GW2/GW10) is shown in Figure 3.7, and its 

mathematical expression is given by Eq. (3.9).
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional 

version, and this book uses both two-dimensional and ten-dimen-

sional versions)

Optimal value: 0

Description: The GW function possesses several local minima. 

Although there is only one global optimum, the nearby peaks are 

extremely close, posing a significant challenge to the algorithm’s 

ability to escape from local minima.

FIGURE 3.6 Ackley function.
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3.2.1.10 Peaks Function

The Peaks function is shown in Figure 3.8, and its mathematical expres-

sion is given by Eq. (3.10).

 
( ) 3(1 ) 10

5

1

3

2 3 3, 4 4

1
2 ( 1) 1

1
3

2
5 ( 1)

1 2

1
2

2
2

1
2

2
2

1
2

2
2

x = − − − −



 −

= − ≤ ≤ − ≤ ≤

− − + − − − + −f x e
x

x x e e

n x x

x x x x x x

 

 (3.10)

Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: −6.551

3.2.1.11 Styblinski–Tang Function

The graph of the Styblinski–Tang function (ST/ST5) is shown in Figure 3.9, 

and its mathematical expression is given in Eq. (3.11).

FIGURE 3.7 Griewank function.
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FIGURE 3.8 Peaks function.

FIGURE 3.9 Styblinski–Tang function.
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional 

version, and this book uses both two-dimensional and five-dimen-

sional versions)

Optimal value: −78.332 (two-dimensional); −195.831 (five-dimensional)

3.2.1.12 Alpine Function

The graph of the Alpine function is shown in Figure 3.10, and its math-

ematical expression is given in Eq. (3.12).
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 (3.12)

Design objective: Single objective

Function characteristics: Continuous, multimodal

FIGURE 3.10 Alpine function.



50   ◾   Data-Driven Global Optimization Methods and Applications

Dimensions: 2-Dimensional

Optimal value: −6.130

3.2.1.13 F1 Function

The graph of the F1 function is shown in Figure 3.11, and its mathematical 

expression is given in Eq. (3.13).
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: −2

FIGURE 3.11 F1 function.
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3.2.1.14 Himmelblau Function

The graph of the Himmelblau function is shown in Figure 3.12, and its 

mathematical expression is given in Eq. (3.14).
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 0

Description: The function has four extrema, all of which are global 

optimal points.

FIGURE 3.12 Himmelblau function.
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3.2.1.15 Shubert Function

The graph of the Shubert function is shown in Figure 3.13, and its math-

ematical expression is given in Eq. (3.15).
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: −186.7309

3.2.1.16 Banana Function

The graph of the Banana function (BA/Rosenbrock) is shown in Figure 3.14, 

and its mathematical expression is given in Eq. (3.16).
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FIGURE 3.13 Shubert function.
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional 

version, and this book uses its two-dimensional version)

Optimal value: 0

3.2.1.17 Sasena Function

The graph of the Sasena function is shown in Figure 3.15, and its math-

ematical expression is given in Eq. (3.17).
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: −1.457

FIGURE 3.14 Banana function.
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3.2.1.18 Goldstein–Price Function

The Goldstein–Price function is shown in Figure 3.16, and its mathemati-

cal expression is given in Eq. (3.18).
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 3

3.2.1.19 Rastrigin Function

The Rastrigin function is shown in Figure  3.17, and its mathematical 

expression is given in Eq. (3.19).

FIGURE 3.15 Sasena function.
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FIGURE 3.16 Goldstein–Price function.

FIGURE 3.17 Rastrigin function.
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.20 Alpine1 Function

The Alpine1 function is shown in Figure 3.18, and its mathematical expres-

sion is given in Eq. (3.20).
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FIGURE 3.18 Alpine1 function.
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 0

3.2.1.21 Alpine2 Function

The Alpine2 function is shown in Figure 3.19, and its mathematical expres-

sion is given in Eq. (3.21).
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: −6.13

FIGURE 3.19 Alpine2 function.
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3.2.1.22 Bird Function

The Bird function is shown in Figure 3.20, and its mathematical expres-

sion is given in Eq. (3.22).
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: −106.76

3.2.1.23 Easom Function

The Easom function is shown in Figure 3.21, and its mathematical expres-

sion is given in Eq. (3.23).
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FIGURE 3.20 Bird function.



Benchmark Functions for Data-Driven Optimization Methods   ◾   59

Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: 2-Dimensional

Optimal value: −1

3.2.1.24 Schaffer2 Function

The Schaffer2 function is shown in Figure  3.22, and its mathematical 

expression is given in Eq. (3.24).
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: 0

FIGURE 3.21 Easom function.
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3.2.1.25 Levy Function

The Levy function is shown in Figure 3.23, and its mathematical expres-

sion is given in Eq. (3.25).
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional 

version, and this book uses its four-dimensional version)

Optimal value: 0

FIGURE 3.22 Schaffer2 function.
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3.2.1.26 Dixon–Price Function

The Dixon–Price function is shown in Figure 3.24, and its mathematical 

expression is given in Eq. (3.26).
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Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional 

version, and this book uses its four-dimensional version)

Optimal value: 0

3.2.1.27 Shekel Function

The mathematical expression is given in Eq. (3.27).

FIGURE 3.23 Levy function.
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Design objective: Single objective

Function characteristics: Continuous, multimodal

Dimensions: 4-Dimensional

Optimal value: −10.1532

FIGURE 3.24 Dixon–Price function.
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3.2.1.28 Hartman6 Function

The mathematical expression is given in Eq. (3.28).
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 6-Dimensional

Optimal value: −3.322

3.2.2 Unconstrained High-Dimensional Problems

3.2.2.1 Schwefel3 Function

The Schwefel3 function is shown in Figure  3.25, and its mathematical 

expression is given in Eq. (3.29).
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Design objective: Single objective
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Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (this book uses its eight-dimensional version)

Optimal value: 0

3.2.2.2 Convex Function

The mathematical expression is given in Eq. (3.30).
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Design objective: Single objective

Function characteristics: Discrete

Dimensions: 8-Dimensional

3.2.2.3 Nvs09 Function

The mathematical expression is given in Eq. (3.31).

 
min ( ) 3.1 +7.6 +6.9 +0.004 +19 +3 + + 4

. . 10,9, ,9,10 , 1, ,8

1
2

2
2

3
2

4
2

5
2

6
2

7
2

8
2x

 { }

=

∈ − =

f x x x x x x x x

s t x ii

(3.31)

FIGURE 3.25 Schwefel3 function.
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Design objective: Single objective

Function characteristics: Discrete

Dimensions: 10-Dimensional

3.2.2.4 AlteredNvs09 Function

The mathematical expression is given in Eq. (3.32).
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Design objective: Single objective

Function characteristics: Discrete

Dimensions: 10-Dimensional

3.2.2.5 Paviani Function

The mathematical expression is given in Eq. (3.33).
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Design objective: Single objective

Function characteristics: Discrete

Dimensions: 10-Dimensional

Optimal value: −45.8

3.2.2.6 Trid Function

The Trid function (Trid/Trid6/Trid10) is shown in Figure  3.26, and its 

mathematical expression is given in Eq. (3.34).
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Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (this book uses its six- and ten- dimensional 

versions)

Optimal value: −50 (six-dimensional); −210 (ten-dimensional)

3.2.2.7 Rastrigin01 Function

The mathematical expression is given in Eq. (3.35).
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FIGURE 3.26 Trid function.
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Design objective: Single objective

Function characteristics: Discrete

Dimensions: 12-Dimensional

3.2.2.8 Rastrigin02 Function

The mathematical expression is given in Eq. (3.36).
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Design objective: Single objective

Function characteristics: Discrete

Dimensions: 12-Dimensional

3.2.2.9 Sum Squares Function

The sum squares function is shown in Figure 3.27, and its mathematical 

expression is given in Eq. (3.37).

FIGURE 3.27 Sum squares function.
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Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (this book uses its 15- and 20-dimensional 

versions)

Optimal value: 0

3.2.2.10 Sphere Function

The sphere function is shown in Figure 3.28, and its mathematical expres-

sion is given in Eq. (3.38).

FIGURE 3.28 Sphere function.
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Design objective: Single objective

Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (this book uses its 10-, 15- and 20- 

dimensional versions)

Optimal value: 0

3.2.2.11 F16 Function

The mathematical expression is given in Eq. (3.39).
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Design objective: Single objective

Function characteristics: Continuous



70   ◾   Data-Driven Global Optimization Methods and Applications

Dimensions: 16-Dimensional

Optimal value: 25.875

3.3 CONSTRAINED OPTIMIZATION PROBLEMS
3.3.1 Constrained Low-Dimensional Problems

3.3.1.1 g06

The mathematical expression of g06 is given in Eq. (3.40).
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 (3.40)

Design objective: Single objective

Function characteristics: Continuous or discrete

Dimensions: 2-Dimensional

Optimal value: −6,961.8138 (when the functions are continuous)

Active constraints: g1, g2

Description: In the discrete case, the range of values for design vari-

ables is x1 ∈ {13, 14, …, 100}, x2 ∈ {0, 1, 2, …, 100}.

3.3.1.2 g08

The mathematical expression of g08 (G8) is given in Eq. (3.41).
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: −0.0958

3.3.1.3 g24

The mathematical expression of g24 is given in Eq. (3.42).
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 (3.42)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: −5.5080

3.3.1.4 Gomez

The mathematical expression of Gomez is given in Eq. (3.43).
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Design objective: Single objective

Function characteristics: Continuous
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Dimensions: 2-Dimensional

Optimal value: −0.9711

3.3.1.5 Sasena

The mathematical expression of Sasena is given in Eq. (3.44).
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: −1.1743

3.3.1.6 Brianin

The mathematical expression of Brianin is given in Eq. (3.45).
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: 0.3979
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3.3.1.7 g12

The mathematical expression of g12 is given in Eq. (3.46).
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 3-Dimensional

Optimal value: −1

3.3.1.8 g04

The mathematical expression of g04 (g04/G4/Him) is given in Eq. (3.47).
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Design objective: Single objective

Function characteristics: Continuous or discrete
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Dimensions: 5-Dimensional

Optimal value: −30,665.5386 (when the functions are continuous)

Active constraints: g1, g6

3.3.1.9 Ex1221

The mathematical expression of Ex1221 is given in Eq. (3.48).
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 (3.48)

Design objective: Single objective

Function characteristics: Discrete

Dimensions: 5-Dimensional

3.3.1.10 Altered ex1221

The mathematical expression of Altered ex1221 is given in Eq. (3.49).
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 (3.49)

Design objective: Single objective

Function characteristics: Discrete

Dimensions: 5-Dimensional

3.3.1.11 g16

The mathematical expression of g16 is given in Eq. (3.50).
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 (3.50)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 5-Dimensional

Optimal value: −1.9051
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3.3.1.12 g09

The mathematical expression of g09 (G9) is given in Eq. (3.51).
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 (3.51)

Design objective: Single objective

Function characteristics: Continuous or discrete

Dimensions: 7-Dimensional

Optimal value: 680.6300 (when the functions are continuous)

Description: In the discrete case, the range of values for design vari-

ables is xi ∈ {−10, −9, …, 9, 10}, i = 1, …, 7.

3.3.2 Constrained High-Dimensional Problems

3.3.2.1 g10

The mathematical expression of g10 is given in Eq. (3.52).
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 8-Dimensional

Optimal value: 7,049.248

3.3.2.2 g18

The mathematical expression of g18 is given in Eq. (3.53).

( ) = − − + − + −0.5( )1 4 2 3 3 9 5 9 5 8 6 7f x x x x x x x x x x x xx
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 9-Dimensional

Optimal value: −0.866

3.3.2.3 g07

The mathematical expression of g07 is given in Eq. (3.54).
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 10-Dimensional

Optimal value: 24.3062

3.3.2.4 g01

The mathematical expression of g01 (G1/G1m) is given in Eq. (3.55).
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Design objective: Single objective

Function characteristics: Continuous or discrete

Dimensions: 13-Dimensional

Optimal value: −15 (when the functions are continuous)

Description: In the discrete case, the range of values for design variables is 

xi ∈ {0, 1}, i = 1, …, 9, 13, and xi ∈ {0, 1, …, 100}, i = 10, 11, 12. When xi ∈ {0, 

1, …, 100}, i = 1, …, 10, 13, the corresponding problem is denoted as G1m.

3.3.2.5 g19

The mathematical expression of g19 is given in Eq. (3.56), and the param-

eters of g19 are given in Table 3.1.
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TABLE 3.1 Parameters for g19

j 1 2 3 4 5

ej −15 −27 −36 −18 −12

c1j 30 −20 −10 32 −10

c2j −20 39 −6 −31 32

c3j −10 −6 10 −6 −10

c4j 32 −31 −6 39 −20

c5j −10 32 −10 −20 30

dj 4 8 10 6 2

a1j −16 2 0 1 0

a2j 0 −2 0 0.4 2

a3j −3.5 0 2 0 0

a4j 0 −2 0 −4 −1

a5j 0 −9 −2 1 −2.8

a6j 2 0 −4 0 0

a7j −1 −1 −1 −1 −1

a8j −1 −2 −3 −2 −1

a9j 1 2 3 4 5

a10j 1 2 1 1 1
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 15-Dimensional

Optimal value: 32.6555

3.3.2.6 Hmittelman

The mathematical expression of Hmittelman is given in Eq. (3.57).
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Design objective: Single objective

Function characteristics: Discrete

Dimensions: 16-Dimensional

3.3.2.7 g02

The mathematical expression of g02 is given in Eq. (3.58).
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 20-Dimensional

Optimal value: −0.8036

3.4 ENGINEERING APPLICATION CASES
3.4.1 Tension/Compression Spring Design (TSD)

The design of tension/compression springs (TSD), as shown in Figure 3.29, 

aims to minimize the spring’s weight while being constrained by minimum 

deflection, shear force, frequency, outer diameter, and lateral constraints.
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FIGURE 3.29 TSD.
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 3-Dimensional

Optimal value: 0.01267

3.4.2 Welded Beam Design (WBD)

The welded beam design (WBD/WB4), as shown in Figure 3.30, aims to 

minimize design cost while being constrained by shear force, bending 

stress within the beam, buckling load on the bar, lateral constraints, and 

deflection at the end of the beam.
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 (3.60)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 4-Dimensional

Optimal value: 1.7249

3.4.3 Pressure Vessel Design (PVD)

The pressure vessel design (PVD), as shown in Figure 3.31, aims to mini-

mize the design cost of a cylindrical vessel, including material cost, 

FIGURE 3.31 PVD.
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forming cost, and welding cost. The four design variables are the thickness 

of the pressure vessel, the thickness of the head, the internal radius of the 

vessel, and the length of the vessel.
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 4-Dimensional

Optimal value: 5,885.33

3.4.4 Speed Reducer Design (SRD/SR7)

The speed reducer design (SRD/SR7) aims to minimize the total weight 

of the reducer while being subject to 11 constraints, including limits on 

the bending stress of gear teeth, surface stress, and the lateral deflection 

of the shaft.
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Design objective: Single objective

Function characteristics: Continuous

Dimensions: 7-Dimensional

Optimal value: 2,994.4711

3.4.5 Stepped Cantilever Beam Design (SCBD)

The stepped cantilever beam design (SCBD), as shown in Figure 3.32, aims 

to minimize the volume of a five-step cantilever beam with a total length 

of L = 500 cm. The material has an elastic modulus E of 200 GPa, and a con-

centrated load of 50,000 N is applied at the free end of the beam. There are 

11 constraints in total, including 5 bending stress constraints, 1 displace-

ment constraint, and 5 length-to-width ratio constraints.
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FIGURE 3.32 SCBD.
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 (3.63)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 10-Dimensional

Optimal value: 62,791

3.5 CHAPTER SUMMARY

This chapter provides an overview of benchmark test functions for 

data-driven optimization methods, covering unconstrained  low-  

dimensional cases, unconstrained high-dimensional cases, constrained 

low- dimensional  cases, constrained high-dimensional cases, and engi-

neering application cases. These benchmark test functions are suitable for 

testing algorithms that solve constrained and unconstrained problems, as 

well as discrete and high-dimensional problems. They can effectively help 

researchers verify the efficiency and robustness of their algorithms.
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C H A P T E R  4

MSSR

Multi-Start Space Reduction 
Surrogate-Based Global 
Optimization Method1

4.1 INTRODUCTION

Surrogate-based optimization (SBO) is a technique that leverages surro-

gate models to predict objective and constraint functions, significantly 

reducing the need for direct evaluations (Edke & Chang, 2011; Queipo 

et  al., 2005). This chapter focuses on applying SBO methods to address 

black-box optimization problems effectively.

Since surrogate models are typically smooth and continuous functions, 

directly optimizing them can yield locally optimal solutions. However, these 

solutions are based on predictions and may significantly deviate from the 

true solutions. A critical research focus in recent years has been on select-

ing informative samples to enhance surrogate models and accurately iden-

tifying the global optimal region. Numerous scholars have advanced this 

field, contributing to the ongoing development of surrogate-based global 

optimization algorithms. Jones et al. (1998) presented a widely cited global 

optimization algorithm for expensive black-box problems, which is known 

as EGO. EGO constructs the surrogate model by Kriging and updates the 

surrogate model by maximizing an expected improvement function. Gary 

Wang et al. (2001) provided an adaptive response surface method (ARSM), 
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which creates a quadratic approximation model for the expensive objec-

tive function in a reduced space. Gutmann (2001) introduced a global 

optimization method based on RBF to solve problems with expensive 

function evaluations. Jin et al. (2001) explored the accuracy of surrogate 

models and how they affect the sampling strategies. Wang and Simpson 

(2004) utilized a fuzzy clustering method to get a reduced search space, 

which can efficiently find the global optimum on nonlinear constrained 

optimization problems. A stochastic RBF method for the global optimiza-

tion of expensive functions was proposed by Regis and Shoemaker (2007), 

who also improved the Gutmann-RBF method by varying the size of the 

subdomain in different iterations. Younis and Dong (2010) developed a 

kind of space reduction method called space exploration and unimodal 

region elimination (SEUMRE), which establishes a unimodal region to 

speed up the search. SEUMRE has successfully been used for black-box 

engineering applications. Gu et al. (2012) invented the hybrid and adaptive 

meta-model-based (HAM) method to divide the design space into sev-

eral subdomains with different weights. In every iteration, sample points 

are obtained from these regions based on the size of the weights. At last, 

HAM performed well on a crash simulation of vehicles. Long et al. (2015) 

combined a kind of intelligent space exploration strategy with ARSM to 

provide reduced regions for global optimization. As we can see, the space 

reduction method is a high-efficiency way to realize global optimization of 

computationally expensive problems.

In this chapter, a new multi-start space reduction (MSSR) surrogate- 

based search algorithm is introduced for global optimization problems 

with computationally expensive black-box objective functions and con-

straints. The algorithm divides the design space into three regions: global 

space (GS), medium space (MS) and local space (LS). GS represents the 

original design region, MS narrows the focus to a promising subset and LS 

concentrates on the vicinity of the current best solution. The search pro-

cess employs a Kriging-based multi-start optimization method for local 

optimization, sample selection and exploration. Latin hypercube sampling 

is used to generate starting points, while sequential quadratic program-

ming (SQP) refines local solutions. A newly introduced selection strategy 

identifies high-quality sample points to enhance the Kriging model, and 

the estimated mean square error guides the exploration of unexplored 

regions in the design space. The search alternates among GS, MS and LS 

until the global optimum is located.
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4.2 KRIGING-BASED MODEL

To validate the accuracy of the surrogate model, this chapter uses the 

Banana function as an example. Fifteen experimental design points are 

generated using optimal Latin hypercube sampling (OLHS), and a Kriging 

surrogate model is constructed. The detailed formulas of Kriging are pro-

vided in Section 2.2. As shown in Figures 4.1 and 4.2, the 15 triangular 

markers represent the experimental design points. Overall, the Kriging 

model closely aligns with the original function, though minor deviations 

are observed in some regions.

4.3 THE PROPOSED MULTI-START OPTIMIZATION PROCESS

The proposed multi-start optimization process for the Kriging-based 

model comprises three key components: local optimization using the sur-

rogate model, selection of high-potential sample points and exploration of 

uncharted areas within the design space.

To ensure randomly selected starting points that adequately cover the 

search space, Latin hypercube sampling (LHS) is employed. These selected 

starting points are used iteratively during the search process. Sequential 

quadratic programming (SQP) is applied to the Kriging surrogate model 

to identify local optimal solutions, which are stored in a database of 

FIGURE 4.1 Original Banana function.
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“Potential Sample Points.” However, SQP may converge to the same local 

optimum from different starting points, resulting in duplicates in the 

database. Additionally, local optima may coincide with existing sample 

points. To mitigate these issues, new sample points are required to main-

tain a defined distance from previously obtained points. Furthermore, in 

cases where no suitable local optima exist within the defined space, the 

multi-start optimization process maximizes the Kriging model’s esti-

mated mean squared error (MSE) to explore uncharted areas. A special 

selection strategy is employed to extract the most promising results from 

the “Potential Sample Points.” The pseudo-codes summarizing the pro-

cesses of optimization, selection and exploration of unknown areas are 

presented as follows.

4.1 Optimization:

(01) Begin

(02) Initialize Dimension n, Database “Potential Samples,” Design 

Space, Kriging Predictor, MSE;

(03) Acquire m starting points by LHS; (Here, it is suggested that m can 

be defined in the range [20, 40] on two-dimensional problems, [6n, 

8n] when the dimension of the problem is 2<n<10 and [50, 70] on 

high-dimensional problems.)

FIGURE 4.2 Kriging prediction with 15 samples.
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(04) for i=1: m

(05) Employ SQP algorithm;

(06) Optimize the Kriging Predictor from the ith starting point;

(07)  Store the local optimal solutions and their predicted values in the 

database “Potential Samples;”

(08) end

(09) “Potential Samples” is a matrix with ( 1)× +m n  elements;

(10) end

/* The design space is selected among GS, MS and LS, which will change 

with the iteration going on. The Kriging predictor and its estimated MSE 

can be obtained by the DACE toolbox (Lophaven et al. 2002). The “fmin-

con” function of MATLABÒ can be employed to realize the SQP algorithm 

(The Mathworks 2015). */

4.2 Selection:

(01) Begin

(02) Sort the predicted values in “Potential Samples” and get the maxi-

mum (Xpsmax Ypsmax) and minimum (Xpsmin, Ypsmin); (The 

sample and the predicted value in “Potential Samples” are expressed 

as (Xps, Yps))

(03) Initialize parameters k = 1, flag_repeat = 0, flag_stop = 0, e_

error = 0.00001 ( If n>= 10, e_error = 0.0001), MAXK; /*MAXK is a 

parameter that decides how many points can be sampled at most in 

one iteration. Here, MAXK equals to 3 on two-dimensional prob-

lems and equals to 4 on higher-dimensional problems. For nonlin-

ear constrained optimization problems, MAXK equals to 3. */

(04) Acquire the size of the expensive samples set S as m_size;

(05) While _<k MAXK flag stopand  == 0

(06) for i=1: m_size

(07)   if square of the distance between Xpsmin and the sample S(i) 

<= e_error

(08)  flag_ repeat =1;

(09)  end

(10) end

/* Here, the new promising samples that go much close to the existing 

points will be flagged. */
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(11) if flag_ repeat ==0

(12)  record the current sample Xpsmin; k=k+1;

(13) end

(14) for i=1: m

(15)  if |Yps (i) –Ypsmin | <=0.0001

(16)  Yps (i) = Ypsmax+10;

(17)  end

(18) end

/* At each iteration, just one local optimal solution from the Kriging model 

is selected and the same results are covered by a big value “Ypsmax+10.” 

When the next iteration comes, the bigger values are ignored. */

(19)  Sort the predicted values Yps in “Potential Samples” again and 

update (Xpsmin, Ypsmin);

(20) If Ypsmin == Ypsmax+10

(21)  flag_stop = 1

(22) end

(23) flag_ repeat =0;

(24) end

(25) if k>1

(26) Store the selected samples and evaluate the true function values.

(27) end

(28)end

4.3 Explore Unknown Area:

(01) Begin

(02) if k ==1

(03)  Implement the above-mentioned Optimization method to get 

the local maximums of the MSE function.

(04) Get two new samples and evaluate the true function values.

(05) end

(06) end

/* If the algorithm cannot find a satisfactory solution by the above- 

mentioned selection process, the estimated MSE can be maximized to 

acquire new samples which must be located in an unexplored area. */
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FIGURE 4.3 Estimated MSE of Kriging.

The estimated MSE function of the Kriging model is illustrated in 

Figure 4.3, where local maxima of the MSE consistently appear in unex-

plored areas. The MSE value increases with distance from known sample 

points and approaches zero at the locations of these points. Selecting one of 

the locally maximal MSE solutions for sample updates typically enhances 

space-filling. An optimization process that effectively leverages these 

properties of the Kriging model can fully exploit its potential. Figure 4.4 

demonstrates the multi-start optimization process on a Kriging model, 

starting with 30 initial points. Eventually, two local optimal solutions are 

selected, both situated in the valley of the Banana function—a region asso-

ciated with better solutions.

4.4 SPACE REDUCTION APPROACH

A sample set obtained using the design of experiments (DOE) method 

is used to store the data from expensive evaluations. Based on the val-

ues of these samples, three spaces—GS, MS and LS—are defined for 

the multi-start optimization process. GS represents the entire region 

of the original design space. MS is based on the portion of design space 

of the current better samples. LS is the neighborhood area of the best 

current sample point. During the iterative search process, the sample set 



96   ◾   Data-Driven Global Optimization Methods and Applications

FIGURE 4.4 Multi-start process on Kriging.

is continuously updated with new samples, and the better-performing 

samples are refined. MS and LS dynamically adjust as iterations progress 

until the optimization process concludes. The detailed definitions of MS 

and LS are provided below.

 

max 1: min 1: , 1,2, ,

, min

min , min

, max

max , max

_ ,

( ) ( )

( )

( ) ( )

( )

( ) ( )

[ ]

( ) ( )= − =

=
− − ≥

− ≤







=
+ + ≤

+ ≥







=

S Sdis k k i n

Lob
S dis S dis range

range S dis range

Ub
S dis S dis range

range S dis range

range local Lob Ub

i i i

i

i
best

i i
best

i i

i i
best

i i

i

i
best

i i
best

i i

i i
best

i i

i i i

 (4.1)

 

min 1:

max 1:

_ , , 1,2, ,

SS

SS



( )

( )

( )

( )

[ ]

=

=

= =

Lob p

Ub p

range medium Lob Ub i n

i i

i i

i i i

 (4.2)



MSSR   ◾   97

where n is the dimension of a problem. S(1:k)i is the i-th dimension of the 

top k samples selected from the ranked sample set. rangei is the i-th dimen-

sion of the original design range. Si
best is the i-th dimension of the current 

best sample. Equations (4.3) and (4.4) define the LS and MS, respectively. 

If the distance of Lobi and Ubi in Eq. (4.3) or (4.4) is smaller than 1e-5, it is 

suggested that setting a smaller space to search:
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Meanwhile, the new range should also be the subset of the original design 

range. Both of the two spaces change their scopes based on the better sam-

ples acquired from the design space. Here, k and p are two user-defined 

parameters, which represent the number of the better samples. In MSSR, 

we define k and p as follows:
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where CS is the number of current sample points. k will be smaller than p 

with continuous iterations. According to Eq. (4.1) to (4.5), MS can give a 

reduced region that may include several promising solutions and LS can 

make the search focus on one of them quickly. In some cases, when LS 

turns into a tiny space or the search in LS, MS or GS repeats around a local 

optimal solution, there are no appropriate locations that can be selected 

as new samples. Or if new samples cannot be found after optimization 

and selection, the estimated MSE of Kriging can be used to explore the 

unknown area. The ranges for getting the local maximums of MSE in 

local, medium and global searches are defined as follows:
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The parameters in Eq. (4.6) share the same definitions as those in 

Eqs. (4.1) and (4.2). Intuitively, the defined ranges enclose the current 

best solution and dynamically adjust as iterations progress. The algo-

rithm effectively combines GS, MS and LS to fully leverage the Kriging 

predictor, accelerating convergence toward the global optimum. 

Simultaneously, it explores unknown areas, enabling the current best 

solution to escape potential local optima and improve the overall search 

performance.

4.5 THE ENTIRE OPTIMIZATION PROCESS

The complete MSSR global optimization process is illustrated by the flow-

chart in Figure 4.5. The key steps in this process are summarized as follows:

/* The initial process */

 1. Apply OLHS to generate DOE sample points over the entire design 

space.

 2. Evaluate the expensive function using the DOE sample points and 

store the results in the sample set. (For nonlinear constrained prob-

lems, expensive functions include objective and constraint functions.)

 3. Rank all expensive samples based on their function values. (Here, if a 

sample point does not satisfy the true constraints, the sample values 

should add a large penalty factor of 1e6.)
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/* The search loop */

 4. Construct the Kriging-based surrogate model. (For nonlinear con-

strained problems, surrogate models of objective and constraint 

functions are built, respectively. Here, sample values use the true 

objective values without the additional penalty factor.)

 5. Determine which space should be explored based on the present 

number of iterations. The global search, medium-sized search and 

local search will be implemented alternatively in the process.

FIGURE 4.5 Flowchart of the MSSR optimization process.
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 6. Define the size of the search space, according to the expensive sample 

set.

 7. Use the chosen multi-start optimization approach, SQP, to optimize 

the Kriging-based surrogate model in the defined space.

 8. Store the local optimal solutions in the database “Potential Sample 

Points” and select the better samples. If there is not a better sample, 

select two new samples from the unknown area.

 9. Evaluate the expensive function value of the selected samples and 

update the order of the expensive samples like step (3).

 10. If the current best sample value satisfies the stopping criteria, termi-

nate the loop. Otherwise, update the surrogate model and repeat the 

steps (4) to (9) until the global stopping criteria are satisfied.

The commonly used global stopping criteria are:
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Figure 4.5 illustrates the overall design optimization process for MSSR:

To better demonstrate the MSSR search process, generations and 

updates of the sample points during the global optimization on a Banana 

function are graphically illustrated using Figure 4.6a–e. Each figure con-

tains three iterations which involve the GS, MS and LS. At the start, the 

region of LS is larger than that of MS. As the iteration goes on and the 

expensive sample points increase, LS quickly shrinks to focus on the region 

around the global optimum. MS always provides a medium-sized region 

that includes the current best solution. The MS and LS are getting smaller 

and smaller when more and more points are supplemented. Intuitively, LS 

can make the search concentrate on the current most promising region 

and accelerate the convergence. MS can provide a promising region that 

may include several true local optimal solutions. And GS can guarantee 

that the multi-start optimization process will explore the entire design 

space. As Figure 4.6a, c shows, sometimes, LS may not include the true 

global optimal position, but LS will eventually get close to it with the cur-

rent best sample point moving. Ultimately, 15 iterations and 37 expensive 
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FIGURE 4.6 (a–e) MSSR optimization process on benchmark Banana function.

sample points are used to find a satisfactory global solution. Initially, with 

only eight DOE samples, the basic shape of the surrogate model was quite 

different from the real situation, but with the addition of new samples, the 

surrogate model gradually approached the real function, especially near 

the global optimum region.
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TABLE 4.1 Bound-Constrained Benchmark Problems for Global Optimization

Category Func. Number of Dims. Design Space

Analytic Global 

Minimum

Low-dimensional 
problems (n = 2–6)

Banana 2 [−2, 2]2 0.0000

Peaks 2 [−3 3]×[−4 4] −6.5511

GP 2 [−2, 2]2 3.0000

SC 2 [−2, 2]2 −1.0320

Shub 2 [−10, 10]2 −186.7309

GF 2 [−2, 2]2 0.5233

HM 2 [−6, 6]2 0.0000

Leon 2 [−10, 10]2 0.0000

Shekel 4 [0, 10]4 −10.1532

Levy 4 [−10, 10]4 0.0000

HN6 6 [0, 1]6 −3.3220

Trid6 6 [−36, 36]6 −50.0000

High-dimensional 
problems (n >= 10)

Sphere 10 [−5.12, 5.12]10 0.0000

Trid10 10 [−100, 100]10 −210.0000

F16 16 [−1, 1]16 25.8750

4.6 TEST CASES AND RESULTS

To verify the capabilities and demonstrate the advantages of the new MSSR 

algorithm, various commonly used global optimization benchmarks 

which encompass bound and nonlinear constrained problems were used 

during the tests. The dimensions of these problems range from 2 to 16. 

For bound-constrained problems, there are eight two-dimensional cases 

(Banana, Peaks, GP, SC, Shub, GF, HM, Leon), two four-dimensional 

cases (Shekel and Levy), two six-dimensional cases (HN6 and Trid6), two 

ten-dimensional cases (Sphere and Trid10) and one 16-dimensional case 

F16 (Wang & Simpson, 2004; Younis & Dong, 2010). All of these prob-

lems have their own structures and characteristics, and in combination 

they can better represent many situations in engineering optimization. 

The detailed forms of these functions are given in Table  4.1. For non-

linear constrained problems, two representative mathematical cases and 

four commonly used benchmark engineering cases were employed. Ten 

runs on each of these benchmark problems have been made using the 

new MSSR search program. The obtained statistical results were com-

pared with the results from the other recently introduced space reduction 

search methods for global optimization to judge their relative efficiency 

and robustness.
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TABLE 4.2 Preliminary Comparison Results on Seven Representative Benchmark 
Functions

Algorithms Banana GP SC Shub Shekel HN6 F16

HS NFE 9,122 512 310 450 10,000 698 915

Min 8.84e-4 3.0164 −1.0276 −185.6736 −2.6829 −3.3033 26.1207

DE NFE 1,390 830 450 3,070 3,730 3,660 3,690

Min 4.05e-4 3.0075 −1.0299 −185.3988 −10.0930 −3.3085 26.1022

DIRECT NFE 603 101 117 2,883 103 213 6,439

Min 3.01e-4 3.0073 −1.0248 −185.5823 −10.0934 −3.2975 26.0884

MPS NFE 145 134 35 545 680 783 3,319

Min 0.0358 3.0014 −1.0311 −186.7119 −5.0473 −3.3205 29.7177

EGO NFE 216 167 35 227 250 54 200

Min 9.67e-4 3.0323 −1.0297 −181.0324 −7.5345 −3.3152 27.4815

MS NFE 61 124 25 117 289 121 161

Min 2.51e-4 3.0065 −1.0299 −186.4286 −10.0863 −3.2973 26.1116

MSSR NFE 41 82 22 115 197 83 138

Min 3.45e-4 3.0049 −1.0303 −186.4203 −10.0829 −3.2967 26.1257

4.6.1 The Algorithmic Test

At first, Harmony Search (Yang, 2010) and Differential Evolution (Storn &  

Price, 1997) algorithms were selected as reference cases to demonstrate 

that nature-inspired global optimization methods commonly have larger 

computation costs on expensive black-box problems. An effective space 

reduction algorithm DIRECT (Björkman & Holmström, 1999), and a 

widely cited surrogate-based space exploration method MPS (Wang et al., 

2004) were also employed for comparison. Meanwhile, EGO that uses the 

Kriging model for expensive functions was compared to prove the advan-

tage of the proposed algorithm. Here, Mueller’s surrogate model toolbox 

(Mueller, 2012) was used to realize the “Expected Improvement” strategy 

in the EGO algorithm. Finally, a comparison with a multi-start optimiza-

tion algorithm that does not use a spatial reduction strategy is made to 

demonstrate the importance of spatial reduction.

For MSSR, 3n + 2 DOE sample points have been generated to construct 

the initial surrogate model. Seven representative functions from Table 4.1 

were used as test cases, and the seven algorithms have been used to run the 

tests for ten times. Table 4.2 shows the collected median values of the num-

ber of function evaluations (NFE) and obtained minimum values (Min). 

The seven algorithms tried to get the values that satisfy the condition of 

Eq. (4.8). It is worth mentioning that EGO has much higher CPU time 

than other algorithms when the samples and dimensions increase. Hence, 
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a maximum allowable NFE (250 for low-dimensional problems. 200 for 

high-dimensional problems) was given when EGO was tested. As shown 

by the results listed in Table 4.2, HS and DE consistently had larger NFE 

than the other algorithms. DIRECT performed well on most cases except 

for the Banana, Shub and F16 functions. Basically, EGO and MPS could 

easily get the approximate global optimal values on simpler cases like GP 

and SC, but most of the time they needed larger NFE on complex cases like 

Shub, Shekel and F16. From Table 4.2, it can be found that the proposed MS 

and MSSR algorithms had better performance in all these cases. Moreover, 

MSSR used fewer NFE than MS and has shown its advantage. Obviously, 

the “Space Reduction” strategy improves the presented multi-start opti-

mization algorithm. In summary, nonsurrogate-based methods generally 

have larger NFE, since they directly call the exact function when searching 

the optimal solutions. Surrogate-based methods are guided by predictive 

models to explore the design space, which effectively decrease NFE.

In summary, nonsurrogate-based methods generally have larger NFE, 

since they directly call the exact function when searching the optimal 

solutions. Surrogate-based methods are guided by predictive models to 

explore the design space, which effectively decrease NFE. Upon compari-

son with nature-inspired global optimization methods as well as existing 

optimization methods for classical agent models, it can be initially seen 

that the MSSR algorithm proposed in this chapter has some superiority.

However, once these surrogate models focus on the same region, the 

algorithm will converge to a local optimal location and can hardly explore 

other promising areas. In this chapter, SEUMRE and HAM used Eq. 

(4.8) as the termination criteria, and all the user-defined parameters were 

assigned based on the two original papers (Gu et al., 2012; Younis & Dong, 

2010). Since grid sampling can find the global optimal positions of GP and 

Banana by luck before the iteration process of SEUMRE begins, the DOE 

ranges of SEUMRE were changed as 95% of the original ranges on the 

two problems. To deal with the randomness of these methods, each of the 

experiment tests was done ten times.

Table 4.3 provides the mean values of NFE and the range of the obtained 

best values. Table 4.4 shows the statistical results of NFE, which involve the 

minimum NFE, maximum NFE and the median. The NFE values with the 

“>” sign indicate that at least one of the tests could not satisfy the stopping 

criteria within 500 function evaluations, and the numbers in the brackets 

represent how many failures it had. As indicated by Tables  4.3 and 4.4, 

the MSSR method has successfully found the global optimum in all cases 
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within 500 function evaluations and used the least NFE. SEUMRE could 

perform well on Banana, Peaks, GP and SC, but it had difficulties in solv-

ing the multimodal and high-dimensional problems. As Table 4.4 shows, 

SEUMRE just succeeded one time on Shekel, four times on Levy and six 

times on HN6, but it failed all the ten runs on Trid6, Sphere, Trid10 and 

F16. The best value SEUMRE obtained on F16 is 27.5243 with 500 function 

evaluations, which is much larger than the results from MSSR and HAM. 

HAM is an effective method that could perform better on Banana, GP, SC, 

TABLE 4.3 Mean Values of NFE and Ranges of Optimal Values Obtained by the Three 
Algorithms

Func.

MSSR SEUMRE HAM

NFE Obtained Value NFE Obtained Value NFE Obtained Value

Banana 42.8 [1.91e-5, 
7.32e-4]

90.9 [4.75e-5, 
6.37e-4]

68.3 [1.27e-5, 
6.34e-4]

Peaks 28.1 [−6.5477, 
−6.5007]

42.7 [−6.5509, 
−6.4868]

>228.5 [−6.5510, 
−3.0498]

GP 87.1 [3.0001, 
3.0273]

133.6 [3.0002, 
3.0191]

122 [3.0001, 
3.0227]

SC 22.5 [−1.0316, 
−1.0274]

48.8 [−1.0307, 
−1.0241]

33.9 [−1.0316, 
−1.0259]

Shub 122.9 [−186.7259, 
−184.9656]

>329.5 [−186.4404, 
−117.0721]

168.4 [−186.7209, 
−185.9839]

GF 34.2 [0.5233, 
0.5277]

>208.4 [0.5259, 
0.5350]

94.1 [0.5238, 
0.5283]

HM 40.3 [7.79e-5, 
7.56e-4]

>266.8 [1.04e-5, 
0.0028]

120 [1.01e-4, 
9.08e-4]

Leon 181.7 [8.88e-5, 
9.68e-4]

>253.9 [1.12e-4, 
0.3207]

239.4 [1.21e-4, 
9.58e-4]

Shekel 207.1 [−10.1486, 
−10.0716]

>471.7 [−10.0546, 
−2.6303]

>458.1 [−10.1472, 
−2.6166]

Levy 218.5 [3.96e-4, 
8.04e-4]

>358.1 [6.63e-4, 
0.1103]

>341.7 [2.96e-5, 
2.26e-2]

HN6 84.8 [−3.3119, 
−3.2890]

>282.5 [−3.3009, 
−3.1046]

93.5 [−3.3194, 
−3.2967]

Trid6 92.1 [−49.9021, 
−49.5544]

>500 [−47.5255, 
−7.9626]

127.5 [−49.9614, 
−49.6379]

Sphere 115.4 [4.57e-4, 
9.98e-4]

>500 [1.8147, 
17.2568]

>288.3 [4.20e-4, 
0.1847]

Trid10 142.4 [−208.9614, 
−208.0416]

>500 [−83.0087, 
990.0295]

>500 [−166.6914, 
−48.9592]

F16 137.7 [26.1053, 
26.1307]

>500 [27.5243, 
29.5178]

>249.8 [26.0410, 
26.6333]
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TABLE 4.4 Specific Statistical Results of NFE Obtained by MSSR, SEUMRE and HAM

Func.

MSSR SEUMRE HAM

Min Max Median Min Max Median Min Max Median

Banana 24 66 41 72 114 86 45 104 62

Peaks 18 50 24 37 44 44 34 >500(4) 73

GP 51 141 82 79 359 93 82 195 117

SC 18 27 22 44 58 49 26 52 29

Shub 24 215 115 68 >500(3) 377 86 315 160

GF 15 64 29 65 >500(2) 100 46 281 76

HM 22 95 32 65 >500(4) 157 46 288 66

Leon 67 408 146 142 >500(2) 194 102 433 233

Shekel 68 415 197 217 >500(9) >500 269 >500(8) >500

Levy 89 376 181 119 >500(6) >500 104 >500(5) >370

HN6 52 117 83 125 >500(4) 149 87 108 91

Trid6 63 146 85 >500 >500(10) >500 106 144 130

Sphere 94 145 117 >500 >500(10) >500 180 >500(3) 198

Trid10 125 162 139 >500 >500(10) >500 >500 >500(10) >500

F16 103 168 138 >500 >500(10) >500 136 >500(2) 201

Shub, GF, HM, Leon, HN6 and Trid6, but it had a poor performance on 

Shekel and Trid10. For high-dimensional problems Sphere and F16, HAM 

could get satisfactory solutions most of the time.

Figure  4.7a–f provide the main iterative results of the three methods 

on the high-dimensional problems with the obtained best objective func-

tion value and increasing NFE. To improve the readability, two adjacent 

iterative results have a small interval that is basically more than two units 

of NFE. Figure 4.7a, c, e shows the entire search process within the 200 

function evaluations, and Figure 4.7b, d, f gives a clearer comparison on 

the results of HAM and MSSR from the NFE values of 100–200. It can be 

found that MSSR got closer to the true global optimal solutions quicker 

than HAM and SEUMRE. In addition, only MSSR could satisfy the stop-

ping criteria of Eq. (4.8) within 200 function evaluations. All these meth-

ods were run on a computer with a Core i7–4720HQ CPU (2.60 GHZ) and 

16 GB memory. The execution time the three algorithms averagely spent 

on these test functions has also been recorded. Figure 4.8 shows that MSSR 

and HAM spent more time than SEUMRE on two-dimensional problems. 

This is due to the fact that MSSR needs to call the SQP solver many times 

in one loop and HAM needs to construct three surrogate models in each 

iteration. Furthermore, the three methods have the common feature that 
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they will be more time-consuming on higher-dimensional and multi-

modal problems.

In summary, NFE is always the most important evaluation indicator 

for the algorithm’s performance on expensive black-box problems. HAM 

presents a good performance most of the time, but it may be trapped 

around some local optima sometimes. SEUMRE can perform better on 

low-dimensional problems, but it cannot work well on multimodal and 

FIGURE 4.7 (a–f) Iterative results on high-dimensional problems.
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FIGURE  4.8 Execution time of MSSR, SEUMRE and HAM on benchmark 

functions.

high-dimensional problems. The new MSSR method satisfies the given 

stopping criteria with the least NFE and has the highest robustness, pre-

senting to be the most promising black-box global optimization technique.

4.6.2 Engineering Case Testing

In this chapter, six classical nonlinear constrained problems were used 

to test the MSSR method. One of the test problems (G6) comes from 

the well-known constrained optimization problems that were used by 

Coello Coello (2002), Abdel-Rahman (2004) and Egea (2008). Another 

one comes from the widely used Himmelblau’s nonlinear problems (Gen 

& Cheng, 1999; Himmelblau, 1972). Four structural engineering appli-

cations are Tension/Compression Spring Design (TSD), Welded Beam 

Design (WBD), Pressure Vessel Design (PVD) and Speed Reducer Design 

(SRD), respectively (Coello Coello, 2002; Gen & Cheng, 1999). All of these 

six test problems’ objectives and constraints were regarded as expensive 

black-box functions. The dimensions of these test cases (G6, TSD, WBD, 

PVD, Him, SRD) range from 2 to 7, and their numbers of constraints are 

2, 4, 7, 4, 6 and 11.

Figure 4.9a, b, d, f shows that MSSR usually could not find the feasible 

solutions at the beginning, but it would eventually acquire the global opti-

mum. According to the references in these test cases, the obtained values 

in Table 4.5 and Figure 4.9 are sufficiently accurate and the corresponding 

NFEs are much smaller.

To verify the robustness of MSSR in dealing with nonlinearly con-

strained optimization problems, the results of ten independent runs of the 
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TABLE 4.5 Global Optimal Results Obtained by MSSR on Nonlinear Constrained Problems

Problems

Design Variables

f(x)x1 x2 x3 x4 x5 x6 x7

G6 14.097149 0.847352 −6,956.8719

TSD 0.0516827 0.3565636 11.2980133 0.0126652

WBD 0.2056902 3.4683028 9.0445203 0.2056904 1.7256

PVD 0.778187 0.384658 40.320586 199.986548 5,885.3653

Him 78.000000 33.000000 27.072136 45.000000 44.967954 −31,025.3139

SRD 3.500177 0.700000 17.000000 7.332558 7.715387 3.350284 5.286657 2,994.8487
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computation are given in this chapter, and it is clear from Tables 4.6 and 

4.7 that each time the results are very close to the true optimal solution 

and the number of NFEs is sufficiently small.

Overall, MSSR can not only perform well on bound-constrained expen-

sive black-box optimization problems but also efficiently and robustly 

obtain global optimal solutions on nonlinearly constrained problems.

FIGURE 4.9 (a–f) Iterative results obtained by MSSR on constrained optimiza-

tion problems.
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4.7 CHAPTER SUMMARY

In this work, a new multi-start optimization strategy is introduced to 

search the three spaces. This strategy applies OLHS to provide multiple 

starting points and then employs an SQP solver to explore the surrogate 

model using these starting points in the defined space. The other two vary-

ing spaces, namely, MS and LS, are two reduced regions that include the 

promising solutions and adjust their positions and boundaries automati-

cally during the search. Each of the three spaces has its own functions. 

GS ensures that the true global solution will not be missed. MS plays an 

important role in providing a promising region that involves several cur-

rent best solutions. And LS is an accelerator to finish the search around 

TABLE 4.6 Summary of Results Obtained by MSSR on G6, TSD and Him

Exp.

G6 TSD Him

NFE Opt. Value NFE Opt. Value NFE Opt. Value

No.1 62 −6,957.3896 81 0.0126664 60 −31,025.5575

No.2 79 −6,958.4628 213 0.0126817 61 −31,025.2482

No.3 19 −6,955.8152 139 0.0126817 48 −31,025.5270

No.4 44 −6,958.2769 97 0.0126654 93 −31,025.0141

No.5 20 −6,958.2769 97 0.0126653 100 −31,021.3633

No.6 53 −6,957.8394 140 0.0126655 69 −31,023.6350

No.7 39 −6,958.0899 114 0.0126670 57 −31,023.9933

No.8 40 −6,961.2597 66 0.0126698 63 −31,025.5595

No.9 29 −6,955.2008 109 0.0126654 51 −31,025.5557

No.10 63 −6,955.2106 108 0.0126652 51 −31,023.2053

TABLE 4.7 Summary of Results Obtained by MSSR on WBD, PVD and SRD

Exp.

WBD PVD SRD

NFE Opt. Value NFE Opt. Value NFE Opt. Value

No.1 110 1.7253 88 5,885.4051 131 2,994.8493

No.2 133 1.7253 87 5,885.3782 164 2,996.4051

No.3 99 1.7249 75 5,885.3427 189 2,995.5840

No.4 162 1.7253 125 5,885.3979 134 2,994.4745

No.5 167 1.7560 107 5,885.3576 102 2,997.4988

No.6 201 1.7535 97 5,885.3658 102 2,997.4988

No.7 113 1.7256 91 5,885.3778 111 2,994.6535

No.8 100 1.7256 112 5,885.4247 96 2,997.0597

No.9 153 1.7256 98 5,885.3408 69 2,995.4729

No.10 105 1.7254 73 5,885.3993 71 2,997.3088
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a true local optimum quickly. In this work, a new multi-start optimiza-

tion strategy is introduced to search the three spaces. This strategy applies 

LHS to provide multiple starting points and then employs an SQP solver 

to explore the surrogate model using these starting points in the defined 

space. In each of the iterative search loops, a new selection scheme is 

used to obtain several promising samples. This selection scheme ensures 

that the Kriging-based surrogate model is sufficiently exploited, and the 

unknown area of the surrogate model can be gradually explored. The esti-

mated MSE of the Kriging-based surrogate model is used as an important 

tool to explore the unknown area of the design space.

The new algorithm has been applied to 15 benchmark bound- constrained 

optimization examples, two nonlinear constrained optimization prob-

lems and four structural engineering applications. All the benchmark test 

results showed MSSR’s superior performance and robustness in dealing 

with expensive black-box optimization problems.

NOTE
 1 Based on “Multi-start Space Reduction (MSSR) Surrogate-based Global 

Optimization Method,” published in [Structural and Multidisciplinary 
Optimization], [2016]. Permission obtained from [Springer].
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C H A P T E R  5

SOCE

Surrogate-Based Optimization with 
Clustering-Based Space Exploration 
for Expensive Multimodal Problems1

5.1 INTRODUCTION

In complex multidisciplinary designs, there exist a large number of com-

putationally intensive black-box problems involving expensive hardware or 

software resources (Zeng et al., 2016). Commonly, response outputs from 

an expensive analyzer form the objective and/or constraint functions of an 

EBOP. Intuitively, the total number of objective or constraint function eval-

uations (NFE) reflects the computation load in an EBOP. Especially, when 

the EBOP is nonconvex (Deshmukh & Allison, 2016; Yin et al., 2016), that 

is, the expensive black-box problem has multiple locally optimal solutions, 

the NFE will become larger (Alexandrov et al., 1998; Leifsson & Koziel, 2016; 

Toropov et al., 1993). Traditional global optimization algorithms, such as 

nature-inspired methods (Sadollah et al., 2015; Wang, 2010; Yang, 2009), 

need to create a diverse population and meanwhile update generations to 

explore the design space. In genetic algorithms (GA), the “promising par-

ents” have a bigger opportunity to pass their genetic information to the 

children, which is inspired by evolutionary concepts. GA can find the opti-

mal fitness function value generation by generation with four main steps, 

which are reproduction, crossover, mutation and selection (Al-Sultan &  

Nizami, 1996). The particle swarm optimization (PSO) algorithm uses 

DOI: 10.1201/9781003636267-5

https://doi.org/10.1201/9781003636267‑5
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simple formulas to imitate the social behavior patterns of organisms like 

swarms, bats, bees and ants that can work in a team (Shi & Eberhart, 1998). 

Recently, a remarkable algorithm called GWO was presented by Mirjalili 

et al. (2014), which was inspired by gray wolves’ leadership hierarchy and 

hunting strategies. Due to its efficiency and robustness, GWO has been 

widely used in engineering applications. These nature-inspired algorithms 

can effectively solve highly nonlinear, discrete, nonconvex optimization 

problems; therefore, considerable contributions have been made in this 

field. However, all the above-mentioned algorithms have difficulties in 

dealing with EBOPs, because stochastic search produces substantial func-

tion evaluation (Weise et al., 2016).

To control the NFE in an expensive black-box optimization process, 

surrogate-assisted global optimization algorithms have been developed 

(Haftka et al., 2016; Zadeh et al., 2009). Jones et al. (1998) introduced an 

efficient global optimization algorithm called EGO, which has shown its 

excellent performance in comparison with other classical algorithms. 

EGO combines the prediction uncertainty of Kriging and the current 

best value to create an “expected improvement (EI) function,” and 

updates the sample set by maximizing the EI function. Gutmann (2001) 

utilized the radial basis function (RBF) to construct a surrogate model 

and measured the bumpiness of the surrogate model. This algorithm 

updates the sample set by selecting a new position with a hypothetical 

value that yields the “least bumpiness” of these surrogate models. Regis 

and Shoemaker (2013) provided a quasi-multi-start response surface 

framework (AQUARS) for global optimization of EBOPs. This proposed 

framework not only focuses on the current best local optimal region of 

the surrogate model but also explores the neighborhoods of the least 

explored local optimum. Finally, AQUARS was employed to solve a 

watershed calibration problem and had a remarkable performance. Jie 

et al. (2015) provided an adaptive meta-model-based global optimiza-

tion algorithm (AMGO) for unconstrained EBOPs. AMGO employs 

Kriging and augmented RBF for modeling, and their weight factors are 

dynamically selected with iterations increasing. With tests on differ-

ent benchmark examples, AMGO showed satisfactory precision and low 

computation cost.

When it comes to constrained EBOPs, the state of the art is rela-

tively weak (Zhou et  al., 2016). A lot of work has been done for con-

strained evolutionary optimization algorithms (Coello Coello, 2002), 

but the huge NFE makes them hard to deal with constrained EBOPs. 
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The previously introduced surrogate-based algorithms had better per-

formances on unconstrained EBOPs, but they were not tested on bench-

mark constrained problems. Regis (2014) developed two algorithms 

(COBRA and Extended ConstrLMSRBF) for constrained EBOPs. The 

two algorithms follow a two-phase approach, in which the first one 

guarantees the algorithm to find feasible solutions quickly and the sec-

ond one makes the feasible solution go close to the true global optimal 

location. Cutbill and Wang (2016) introduced a probabilistic method 

to reduce the redundant constraints for black-box optimization prob-

lems. They defined a series of rules to express the relationships among 

constraints, but the accuracy of these rules depended on the number of 

samples in a particular region.

In this chapter, a new surrogate-based global optimization algorithm 

with clustering-based space exploration (SOCE) for multimodal and/or 

constrained EBOPs is presented. This proposed algorithm uses QRS and 

Kriging to construct two surrogate models. Based on the characteristics 

of QRS and Kriging, two different optimizers (a multi-start local opti-

mizer and the GWO global optimizer) are connected to the two models, 

respectively. In the employed multi-start local search, collected samples 

need to keep a defined distance from each other to satisfy the diversity of 

predicted local optima. Besides, SOCE suggests a local convergence cri-

terion to judge when to carry out space exploration. The presented space 

exploration approach employs the k-means clustering algorithm to create 

multiple subspaces and defines an iterative process to select the promis-

ing samples that are far away from the clustering centers. In addition, two 

penalty function methods are proposed to make the algorithm applicable 

to constrained optimization.

5.2 SOCE ALGORITHM
5.2.1 Surrogate Modeling and Optimization

In SOCE, Kriging and QRS models are constructed separately to approxi-

mate the true model. Each has distinct predictive characteristics. Kriging 

is an interpolation method that commonly generates an approximation 

model with multiple local optima. Owing to its remarkable capacity in 

predicting nonconvex problems, Kriging has been widely used for com-

plex engineering applications. QRS belongs to one of the regression meth-

ods that generally can reflect the overall trend of a true model. Especially, 

if it is a convex problem, QRS can accurately predict the global optimum. 

However, it has difficulties in dealing with multimodal problems.
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Sequential quadratic programming (SQP) is a well-known local optimi-

zation algorithm that can search for the optimal solution from one given 

starting point. The success rate that SQP finds the global optimum depends 

on positions of starting points and the complexity of this problem. For a 

multimodal function, it is hard for SQP to directly find the global opti-

mal solution. Hence, we utilized a multi-start SQP (MSSQP) algorithm to 

realize the global optimization process. The MSSQP algorithm includes 

two parts: the pre- and post-treatment parts. In the pre-treatment process, 

Symmetric Latin Hypercube Sampling (SLHS) is employed to capture the 

initial starting points. SLHS can make starting points have a random and 

centro-symmetric distribution in a design space. On one hand, the random 

nature increases the success rate of MSSQP to find the global optimum 

when the main loop keeps running. On the other hand, a better coverage 

rate can improve the probability of obtaining the global optimum in one 

iteration. In the post-treatment process, the key point is how to get new 

samples with diversity, which can avoid supplementing samples around 

the same local optima. Here, we define an allowable minimum distance 

between these promising local optimal locations as follows.

 max minRange Range( ) ( )= −Dis w  (5.1)

In Eq. (5.1), Range is a vector representing the range of a design space. The 

default value of the coefficient w is 0.005 in SOCE and it affects the length of Dis.

GWO is a recently presented nature-inspired global optimizer, which 

has been widely used. GWO divides the gray wolves into four types (alpha, 

beta, delta and omega) based on their leadership hierarchy. The four types 

correspond to different fitness values. Additionally, GWO simulates the 

gray wolves’ hunting mechanism that includes encircling prey, hunting and 

attacking, to get new samples. In summary, GWO is appropriate for mul-

timodal problems and can explore the QRS model efficiently. It is worth 

noting that global optimization on QRS sometimes may produce repeated 

samples in multiple iterations, thus the algorithm needs to delete redun-

dant samples in time. Besides, QRS needs at least 0.5n2 + 1.5n + 1 samples 

to guarantee the predictive accuracy. Here, n represents the design dimen-

sion. Equation (5.2) describes the optimization on surrogate models.

 
min ˆ

min ˆ

x lb x ub

x lb x ub

( )

( )

→ ≤ ≤

→ ≤ ≤

MSSQP f

GWO f

Krg

QRS

 (5.2)
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where ˆ x( )fKrg  and ˆ x( )fQRS  represent the Kriging and QRS models of an 

objective function, respectively.

5.2.2 Initialization and Loop of SOCE

The optimization flow of SOCE includes initialization and loop. In SOCE, 

the initialization process mainly defines some basic parameters and car-

ries out the design of experiments (DOEs). After the expensive sample 

values are evaluated at these DOE sample points, two initial surrogate 

models (Kriging and QRS) are constructed, respectively. Furthermore, 

the initial expensive samples are sorted to get the current best value 

for the following loop. Algorithms 5.1(a) and (b) show the main details 

of this process.

In the loop process, the Kriging and QRS models are optimized by the 

MSSQP and GWO algorithms, respectively. After a series of detections and 

selections, the new samples are added into the sample set. At this moment, 

if the algorithm satisfies a local convergence criterion, it will go on explor-

ing the unknown space. Finally, sample ranks, two surrogate models and 

the design range will be updated for the next iteration.

Algorithm 5.1(a) is shown below.

Algorithm 5.1(a) The Proposed Optimization Flow—Initialization

(01)  Begin

(02)   Initialize Kriging and quadratic polynomial parameters, and set 

the population size and max iterations of the gray wolf optimizer.

(03)   Carry on the initial DOE process, evaluate the expensive function 

values and construct the initial surrogate models.

(04)   Set the structure variables of the Kriging and QRS predictors as 

global variables for the subsequent optimization.

(05)  n ← Get the dimension of design variables

(06)  Iteration ← Count the iteration number

(07)  Current_NFE ← Count the number of function evaluations

(08)  Y_best ← Sort the initial sample values

(09)  Range_new ← Set the new range as the initial space.

(10) End
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Algorithm 5.1(b) is shown below.

Algorithm 5.1(b) The Proposed Optimization Flow—Loop

(01)  Begin

(02)  while Y_best does not reach the target value and Current_NFE<300

(03)   M ← Carry on SLHS to obtain multiple starting points.

(04)    A ← Call SQP optimizer at M to obtain multiple locally opti-

mal solutions from the Kriging model.

(05)    S_Kriging ← Find two promising locations from A that keep 

a defined distance with each other and meanwhile cannot go 

close to existing samples. The distance is w|| Max (Range_

new) – Min (Range_new) ||.

(06)   if Current_NFE > 0.5n2 + 1.5n + 1

(07)    S_QRS ← Call GWO optimizer to obtain the global optimal 

location from the QRS model.

(08)   end if

(09)    S ← Promise that S_Kriging and S_QRS are not repeated sam-

ples and store them into the sample set.

(10)   Y ← Evaluate the expensive objective function values.

(11)    Local_error ← Sort the current sample values Y and obtain the 

local convergence error.

(12)   if Local_error satisfies the local convergence criteria

(13)     S_explore ← Call Algorithm 5.2 to get several samples 

from the unknown design space.

(14)    Y_explore ← Evaluate the expensive function values.

(15)   end if

(16)   if Iteration>3

(17)    if REM (Iteration, 2) == 0

(18)      Range_new ← Keep the new range for Kriging as the 

original design range.

(19)    else

(20)      Range_new ← The new range for Kriging is reduced to a 

region that encloses the top 50% of samples. The minimum 

and maximum X coordinates in each dimension are selected 

to create this region. If this region focuses on a point or a 

line, the new range is defined as the original design range.

(21)    end if

(22)   end if

(23)    Update and obtain the algorithm parameters, Kriging and 

QRS models.
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(24)   Y_best ← Get the current best function value

(25)  end while

(26)  End

5.2.3 Clustering-Based Space Exploration

As previously discussed, if the search falls into a local optimal region 

for multiple iterations, the algorithm needs to jump out and explore the 

sparsely sampled region. In the current work, the sparsely sampled regions 

are defined based on the k-means clustering algorithm.

First, a local convergence criterion is proposed. In each iteration, the 

mean value of the current top m samples is stored. When the iteration 

number is more than 3, a local error is obtained by the difference of the 

present and last mean values. If the error equals to zero, it means that 

no better samples are added into the top m samples in this iteration. The 

algorithm allows this case but it cannot continue for too many consec-

utive times. If this situation continues for the maximal times (here, the 

threshold value is defined as 10), the algorithm will use Latin hypercube 

sampling (LHS) to get new samples in a promising region. When the local 

error drops below a user-defined small value, the clustering-based space 

exploration is activated. In this work, a small value of 0.001 is defined as 

the maximum error. The main steps are summarized below.

• Utilize the k-means clustering algorithm (Hartigan & Wong, 1979) 

to produce multiple clustering centers.

• Evaluate the total length of the design range in each dimension and 

set a small percentage. Create multiple small regions around these 

clustering centers. The specific expressions can be found in Lines (14) 

and (15) of Algorithm 5.2(a).

• Count the number of the samples being located in these created small 

regions. If the proportion of the counted samples in the total samples 

exceeds a user-defined value Ratio, the loop ends. Otherwise, the 

percentage w gets increased and the loop continues.

• Generate new samples by LHS in the whole design range and delete 

those samples located in the clustering-based regions.

• Finally, evaluate the expensive sample values and update the sample set.
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Algorithms 5.2(a) and (b) show the details of the clustering-based space 

exploration.

Algorithm 5.2(a) Clustering-based Space Exploration—Search Strategy

(01)  Begin

(02)  if 0 < Local_error < 0.001

(03)    S_explore_number ← Define the number of initial samples for 

exploration.

(04)    S_explore ← Call LHS to obtain the initial samples for 

exploration.

(05)    S_ number ← Count the number of the current samples.

(06)    w ← Set the initial parameters for the size of clustering regions.

(07)    Center_number ← Define the number of clustering centers.

(08)    Center ← Employ the K-means algorithm to obtain clustering 

centers.

(09)    Ratio ← The defined percentage of S_ number.

(10)    Sum_ratio ← 0

(11)    dis_range ← Get the distance between low and up bounds in 

the design range.

(12)    while Sum_ratio < Ratio

(13)     for each clustering center i

(14)     Range_clusters (i) ← [Center (i)-w*dis_range; Center 

(i) + w*dis_range]

(15)     Keep the Range_clusters enclosed by the original design space.

(16)    end for

(17)    Call Algorithm 5.2(b) to sign the Samples of S located in 

Range_clusters.

(18)    Sum_in ← Count the number of the samples of S in these 

Range_clusters.

(19)    Sum_ratio ← Sum_in/ S_ number.

(20)    w ← w + 0.025.

(21)   end while

(22)   Call Algorithm 5.2(b) to sign the Samples of S _explore located 

in Range_clusters

(23)   S_explore_save ← Save the S_explore samples outside the 

Range_clusters.

(24)   Make sure that S_explore_save keeps a small distance with exist-

ing samples S.
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(25)   Y_explore_save ← Evaluate the function values at samples S 

_explore_save.

(26)   [S, Y] ← Update the expensive samples set.

(27)  else if Local_error == −1

(28)   Range_promising ← Utilize the top 50% of samples to create a 

promising range.

(29)   S_explore ← Call LHS to obtain 3n+2 samples that cannot go 

close to existing samples.

(30)   Y_explore ← Evaluate the function values at samples S _explore.

(31)   [S, Y] ← Update the expensive samples set.

(32)   end if

(33) end if

(34)  End

Algorithm 5.2(b) is a function of Algorithm 5.2(a). It describes how to 

sign the samples in a particular region. Algorithm 5.2(b) will return a vec-

tor with logical values to identify whether the samples are in a particular 

region. The details are as follows:

Algorithm 5.2(b) Check Samples in the Clustering Ranges or Not

(01)  Begin

(02)   S_Number ← Input the number of samples.

(03)   Range_clusters ← Input the defined range.

(04)   S _test ← Create a zero vector with the length of S_ Number.

(05)   for each clustering range k

(06)    for each existing expensive samples i

(07)    if S_test (i)== 0

(08)     IN ← Check the S (i) in the Range_clusters (k) or not.

(09)     if IN == 1

(10)      S_test (i) ← 1

(11)     end if

(12)    end if

(13)   end for

(14)  end for

(15)  return S_test

(16)  End
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To demonstrate it clearly, several graphic examples are provided. Figure 5.1 

shows six groups of results with different parameters. The dots in Figure 5.1 

are generated by LHS, among which light ones are located in these 

FIGURE 5.1 (a–f) Clustering-based exploration on sparsely sampled regions.
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clustering regions and black ones are outside of these regions. There are 

20 dots in each following figure. Besides, the dashed rectangles describe 

the dynamic updates of these regions, and the solid-line rectangles are the 

final boundaries of the clustering regions. According to the previous dis-

cussion, the number of dashed rectangles reflects the number of iterations 

in Algorithm 5.2a. Figures 5.1a and b just have one clustering center and 

their parameters Ratio are 0.7 and 0.9, respectively. It is clear that the final 

region will get bigger and the number of iterations will increase if Ratio is 

larger. What is more, one clustering center cannot describe the distribution 

of samples well. Figures 5.1c and d show the results when there are five cen-

ters. Compared with Figures 5.1a and b, the clustering regions in Figures 

5.1c and d can better cover the clustering samples and the new samples can 

also fill the sparsely sampled space well. Figures 5.1e and f show a similar 

phenomenon. As observed in Figure 5.1, the number of clustering centers 

and Ratio affect the exploration process. Intuitively, more clustering cen-

ters can make this strategy more accurate. In summary, if the number of 

clustering centers is too small, this strategy cannot explore the sparsely 

sampled space accurately. On the contrary, too many clustering centers will 

increase the number of loops in Algorithm 5.2(a) and the computational 

cost will get larger.

5.3 OVERALL OPTIMIZATION FRAMEWORK OF SOCE
5.3.1 Overall Optimization Process

The previous section described the specific process of the algorithm, and 

this section describes the optimization process of the SOCE algorithm as 

a whole, as shown in Figure 5.2.

As Figure 5.2 shows, SOCE is mainly composed of two parts: one is the 

exploitation on surrogates; the other one is an exploration in the sparsely 

sampled area. On one hand, SOCE can quickly identify a local optimum 

with the help of surrogate models. On the other hand, the clustering-based 

space exploration can make SOCE jump out of a local optimal region and 

begin a new optimization search in the unexplored area.

The termination criterion of SOCE is suggested as Eq. (5.3).
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Here, yoptimal is the analytical global optimum, ybest is the present best value 

and NFE is the number of objective function evaluations.

To make SOCE easy to understand, a graphic example is shown to 

demonstrate the capacity of the proposed algorithm. Figures 5.3 and 5.4 

illustrate the search process of SOCE on a variety of nonlinear multi-peak 

problems.

To increase difficulty, a group of DOE samples [−2, −0.857], [2, −0.286], 

[0.286, 0.286], [0.857, −1.429], [1.429, 1.429], [−0.857, −2], [−1.429, 0.857], 

FIGURE 5.2 Flowchart of SOCE.
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[−0.286, 2] that do not locate in the neighborhoods of the global optimum 

are selected. Figure 5.3a shows the true surface of Shubert and Figure 5.3b 

presents the initial DOE samples on its contour plot. Figure 5.3c–f describes 

the dynamic process of sample updating. Since the initial samples cannot 

FIGURE 5.3 Optimization process of SOCE on Shubert.
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provide an accurate surrogate model, the first search focuses on the regions 

far away from the true global optimum. From Figure 5.3e, it can be found 

that new samples are filled in unexplored regions by the clustering-based 

strategy when the algorithm gets trapped in local minima. Owing to the 

newly supplemented samples in Figure 5.3e, the accuracy of local regions 

around the global optimum gets improved. Finally, 89 samples are used in 

total to find the global optimum.

FIGURE 5.4 Optimization process in other multimodal arithmetic cases. 
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In addition, the optimization search process of SOCE on some classical 

nonlinear multi-peak problems is given in Figure 5.4, which shows that 

SOCE has a strong global search capability.

5.3.2 Parameters Analysis of SOCE

Section 5.1 has mentioned some algorithm parameters, among which the 

number of clustering centers (NCC), the percentage Ratio, the number of 

starting points (NSP) and the max allowable number of supplementary 

samples obtained from multi-start optimization (MANS) may have sig-

nificant effects on the whole algorithm. Therefore, the sensitivity of these 

parameters will be analyzed in this section.

This chapter utilizes a representative multimodal function, Shubert, 

which has a global optimum of −186.7309. To avoid the randomness asso-

ciated with DOEs, a DOE sample such as the one in Figure 5.3 is used as 

the initial sample point. Since the initial surrogate models constructed by 

the eight samples have poor approximation accuracy, SOCE is easy to get 

trapped in the neighborhood of the local optimum −10.9786, which can 

activate the clustering-based strategy and make all the parameters work 

adequately. Considering the stochastic behavior of SOCE, each case needs 

to be tested for ten times. For NCC and Ratio, 12 cases are given and the 

statistical results are shown in Table 5.1, where the results with the symbol 

“>” indicate that at least one test cannot find target values within 300 NFE. 

In addition, the numbers in brackets reflect the failure times. In Table 5.1, 

Cases 4, 8 and 12 show that the bigger Ratio always brings the worse result. 

TABLE 5.1 Parametric Analysis of NCC and Ratio on Shubert

Cases

Parameters Test Results

NCC Ratio Min NFE Mean NFE Max NFE Obtained Values

Case 1 1 0.6 74 >159.9 >300 (1) [−186.710, −123.580]

Case 2 1 0.7 50 >117.9 >300(1) [−186.730, −123.580]

Case 3 1 0.8 50 124.9 274 [−186.730, −185.610]

Case 4 1 0.9 82 >176.1 >300(2) [−186.720, −79.330]

Case 5 5 0.6 100 143.2 217 [−186.640, −185.100]

Case 6 5 0.7 87 146.5 214 [−186.720, −185.070]

Case 7 5 0.8 94 146.4 263 [−186.730, −185.030]

Case 8 5 0.9 109 >184.4 >300(1) [−186.730, −79.330]

Case 9 10 0.6 54 121.7 197 [−186.720, −185.080]

Case 10 10 0.7 75 140.8 219 [−186.720, −185.480]

Case 11 10 0.8 77 127.6 171 [−186.720, −185.450]

Case 12 10 0.9 80 148 275 [−186.660, −185.120]
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It is clear that Case 4 fails to find satisfactory results within 300 NFE for 

two times. Cases 9–12 where NCC equals to 10 have relatively smaller NFE 

values in all the 12 cases. Furthermore, with NCC increasing, the failure 

times decrease significantly. In conclusion, a Ratio with a value between 

0.6 and 0.8 can make SOCE more efficient. Additionally, a bigger NCC 

can make the exploration strategy more accurate, but the number of loops 

in Algorithm 5.2(a) will increase. Therefore, the recommended parameter 

ranges for NCC and Ratio are [5, 10] and [0.6, 0.8], respectively.

For the parameter NSP, seven cases are provided and the statistical 

results are listed in Table 5.2. In this test, NCC is defined as 10 and Ratio 

is 0.6. It is easy to find that all the cases can find satisfactory solutions 

within 300 NFE. Mean NFE does not change too much but it gets smaller 

gradually when NSP increases. It is worth noting that the CPU time is 

significantly affected by NSP. This is because a bigger NSP can increase the 

number of running the SQP optimizer. Eventually, we suggest the param-

eter range [30, 50] for NSP.

MANS is a main factor to affect the parallelism of SOCE. If MANS 

gets bigger, the number of supplementary samples in each iteration may 

increase. Analysis results of MANS are shown in Table 5.3. In this test, 

TABLE 5.2 Parametric Analysis of NSP on Shubert

Cases NSP

Test Results

Min NFE Mean NFE Max NFE Obtained Values CPUt

Case 1 5 67 149.2 227 [−186.73, −185.03] 23.11s

Case 2 10 78 138.4 192 [−186.72, −185.00] 20.33s

Case 3 20 81 140.2 199 [−186.69, −185.34] 25.77s

Case 4 30 63 125.2 174 [−186.67, −185.53] 27.83s

Case 5 40 58 135.7 213 [−186.69, −184.96] 36.07s

Case 6 50 67 130.4 244 [−186.73, −184.87] 41.57s

Case 7 60 48 128.3 243 [−186.71, −185.12] 49.94s

TABLE 5.3 Parametric Analysis of MANS on Shubert

Cases MANS

Test Results

Min NFE Mean NFE Max NFE Obtained Values Iteration

Case 1 2 64 130.2 183 [−186.72, −184.88] 36.9

Case 2 3 85 144.8 248 [−186.73, −185.31] 31.9

Case 3 4 88 149.8 309 [−186.67, −185.47] 28.5

Case 4 5 121 185.7 323 [−186.72, −185.39] 31.4

Case 5 6 106 184 319 [−186.62, −185.08] 27.6

Case 6 7 121 183.8 248 [−186.67, −185.13] 27.3



130   ◾   Data-Driven Global Optimization Methods and Applications

NCC, Ratio and NSP are defined as 10, 0.6 and 30, respectively. As Table 5.3 

shows, Mean NFE increases remarkably when MANS changes from 2 to 7. 

Meanwhile, it can be found that the mean number of iterations has a nega-

tive correlation with MANS. In a parallel computing environment, users 

can increase MANS properly to improve the parallelism of SOCE. To sum 

up, in this work, the recommended parameter range for MANS is [2, 4].

To verify the recommended parameters, tests are carried out on a more 

challenging problem (two-dimensional Griewank function with the range 

X1 ∈ [−5, 15] and X2 ∈ [−15, 5]). Similarly, eight samples [15, −6.429], 

[3.571, 5], [9.286, −12.143], [0.714, −15], [−5, −9.286], [12.143, 2.143], [−2.143, 

−0.714], [6.429, −3.571] are given to construct the initial surrogate models 

that make SOCE easily get trapped around a local optimal value 7.40e-3 

at the beginning. The same cases in Tables 5.1–5.3 are tested on Griewank 

and the specific results are shown in Tables 5.4–5.6. From Table 5.4, it can 

be seen that Cases 1–4 have the worst performance and Cases 10, 9 and 

5 can go close to the global optimum with fewer function evaluations. 

Additionally, all the better parameter groups in Table 5.4 are located in the 

recommended parameter ranges.

In Table 5.5, Case 3 has the smallest NFE value and the CPU time grad-

ually gets longer from Case 1 to Case 7. Besides, the results in Table 5.6 

show that Cases 1 and 2 have the best performance. Like Tables 5.2 and 5.3, 

Tables 5.5 and 5.6 also give the laws that a larger NSP value can cause longer 

CPU time and a larger MANS value may bring more function evaluations. 

In summary, the parametric analyses on the two representative multi-

modal problems Shubert and Griewank get similar laws, and meanwhile 

TABLE 5.4 Parametric Analysis of NCC and Ratio on GW

Cases

Parameters Test Results

NCC Ratio Min NFE Mean NFE Max NFE Obtained Values

Case 1 1 0.6 206 >285.5 >300(8) [1.32e-5, 7.40e-3]

Case 2 1 0.7 166 >286.6 >300(9) [1.31e-4, 7.40e-3]

Case 3 1 0.8 >300 >300 >300(10) [7.40e-3, 7.40e-3]

Case 4 1 0.9 >300 >300 >300(10) [7.40e-3, 7.40e-3]

Case 5 5 0.6 112 >216.2 >300(3) [1.90e-6, 7.40e-3]

Case 6 5 0.7 184 >275.4 >300(6) [7.89e-6, 7.40e-3]

Case 7 5 0.8 107 >260.5 >300(6) [3.53e-5, 7.40e-3]

Case 8 5 0.9 269 >296.9 >300(9) [4.73e-5, 7.40e-3]

Case 9 10 0.6 80 >203.9 >300(2) [7.95e-6, 7.40e-3]

Case 10 10 0.7 82 >152.7 >300(1) [3.38e-5, 7.40e-3]

Case 11 10 0.8 133 >235.4 >300(5) [2.77e-6, 7.40e-3]

Case 12 10 0.9 151 >257.8 >300(6) [1.36e-5, 7.40e-3]
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the recommended parameter ranges can make SOCE work well. In the 

subsequent comparison experiments, the four parameters NCC, Ratio, 

NSP and MANS of SOCE are defined as 10, 0.6, 30 and 2, respectively.

5.4 EXPERIMENTS ON BENCHMARK EXAMPLES
5.4.1 Comparison Test on Bound-Constrained Examples

Considering that SOCE is a multi-point global optimization algorithm, 

MSEGO supplements multiple samples in each cycle based on different 

surrogate models and is tested as the preliminary comparison. The test 

cases and the results of MSEGO come from Long et al. (2015). When ten 

independent tests are finished, the statistical results are given in Tables 5.7 

and 5.8. It is easy to find that SOCE has a better performance than MSEGO 

on most cases (SE, PK, SC, BR, RS, GN and HN). SOCE can quickly go 

close to the true global optimum within 40 function evaluations on SE, 

PK, SC and BR, but MSEGO needs more than 100 function evaluations. 

Furthermore, SOCE can get better values than MSEGO on RS, GN and 

HN with fewer function evaluations. Although both SOCE and MSEGO 

TABLE 5.5 Parametric Analysis of NSP on GW

Cases NSP

Test Results

Min NFE Mean NFE Max NFE Obtained Values CPUt

Case 1 5 147 >225.8 >300(2) [1.25e-5, 7.40e-3] 25.75s

Case 2 10 118 >192.2 >300(1) [4.79e-5, 7.40e-3] 23.75s

Case 3 20 88 >183 >300(2) [1.50e-5, 7.40e-3] 28.64s

Case 4 30 86 >179.8 >300(1) [5.36e-6, 7.40e-3] 35.82s

Case 5 40 72 >224.5 >300(3) [1.42e-6, 7.40e-3] 51.80s

Case 6 50 126 >221.2 >300(1) [2.60e-6, 7.40e-3] 58.55s

Case 7 60 101 >245.9 >300(2) [1.78e-6, 7.40e-3] 78.46s

TABLE 5.6 Parametric Analysis of MANS on GW

Cases MANS

Test Results

Min NFE Mean NFE Max NFE Obtained Values Iteration

Case 1 2 91 212.3 370 [1.17e-6, 5.28e-4] 46.0

Case 2 3 113 225 478 [6.54e-6, 9.43e-4] 41.3

Case 3 4 124 258.3 435 [4.51e-6, 9.72e-4] 38.1

Case 4 5 149 281.2 468 [2.26e-6, 6.96e-4] 36.9

Case 5 6 147 311.1 579 [2.34e-6, 8.56e-4] 36.0

Case 6 7 166 293.7 620 [1.51e-5, 9.83e-4] 30.2
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can find a value close to 3 on GP, MSEGO has a smaller computation cost. 

In summary, SOCE is more efficient and robust.

To further verify the algorithm’s efficiency and robustness, 15 represen-

tative benchmark problems are provided for comparison testing. Among 

them, there are 12 low-dimensional problems and three high-dimensional 

problems. More details about them are listed in Table 5.9. Since the sto-

chastic nature of SOCE, ten tests are carried out on these examples. In this 

work, three surrogate-based algorithms EGO, HAM and KMS are tested 

as contrast. EGO and HAM are two well-known global optimization algo-

rithms that have been widely cited. KMS is a Kriging-based multi-start 

global optimization method, which employs the MSSQP algorithm pro-

posed in SOCE. In addition, KMS uses the same multi-start optimization 

strategy as SOCE.

TABLE 5.7 Obtained Values of SOCE and MSEGO

Func.

SOCE MSEGO

Var. Range Median Var. Range Median

SE [−1.456, −1.448] −1.456 [−1.456, −1.454] −1.456

PK(Peaks) [−6.551, −6.494] −6.544 [−6.498, −5.979] −6.498

SC [−1.032, −1.030] −1.032 [−1.024, −0.987] −1.024

BR [0.398, 0.399] 0.399 [0.398, 0.431] 0.398

RS(F1) [−2.000, −1.980] −1.994 [−1.874, −1.636] −1.874

GF [0.003, 0.009] 0.007 [0.001,0.035] 0.001

GP [3.000, 3.029] 3.008 [3.002, 3.014] 3.002

GN [3.33e-15, 4.81e-3] 7.33e-4 [0.176, 0.627] 0.177

HN(HN6) [−3.317, −3.290] −3.306 [−3.208, −3.052] −3.145

TABLE 5.8 NFE of SOCE and MSEGO

Func.

SOCE MSEGO

Var. Range Mean Var. Range Mean

SE [29, 55] 33.4 [70, 123] 109.6

PK(Peaks) [29, 46] 37.3 [129, 132] 130.4

SC [26, 47] 34.9 [130, 132] 131.2

BR [22, 29] 25.9 [36, 132] 112.6

RS(F1) [29, 242] 108.5 [131, 132] 131.4

GF [47, 162] 113.5 [132, 132] 132.0

GP [68, 239] 145.9 [101, 132] 120.4

GN [11, 130] 95.7 [132, 132] 132.0

HN(HN6) [55, 149] 89.1 [176, 176] 176.0
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Table  5.10 shows the best values obtained by SOCE, KMS, EGO and 

HAM within 300 function evaluations. Table 5.11 presents the NFE used 

by the four algorithms in the experiments.

It is clear that the best values from SOCE mostly go much closer to the 

true global optima with the fewest function evaluations and meanwhile it 

has the fewest failure times. Since GW10 is a high-dimensional and multi-

modal problem, SOCE cannot find a value that is smaller than 0.001 within 

300 NFE. However, SOCE can get satisfactory accuracy on GW10. KMS 

can perform well on some problems that have fewer local optima, such as 

SE, Peaks, Beales, levy and HN6, but most of the time it misses the global 

optimum on more complex problems. EGO can solve low-dimensional 

multimodal problems well, except Rast, GW2 and Beale. Moreover, EGO 

has the worst performance on high-dimensional problems. Although the 

hybrid meta-model technology improves the robustness of HAM, HAM 

may still miss the global optimum. This is because HAM does not pro-

vide a search strategy to explore the sparsely sampled area. As observed 

in Tables 5.10 and 5.11, HAM sometimes can just find a local optimum on 

the multimodal problem, but HAM has a relatively robust performance on 

most of the examples.

To improve readability, the mean values of NFE for the four algorithms 

are given as a histogram in Figure 5.5. Meanwhile, the total ranks of the 

TABLE 5.9 Bound-Constrained Benchmark Problems for Global Optimization

Category Func.

Number 

of Dims. Design Space

Analytic Global 

Minimum

Low-dimensional problems 
(most of them are 
multimodal problems with 
lots of local minima)

Shub 2 [−2, 2]2 −186.731

GW2 2 [−10, 10]2 0.000

SE 2 [0, 5]2 −1.457

Peaks 2 [−3 3] × [−4 4] −6.551

Beale 2 [−4.5, 4.5]2 0.000

Alp 2 [0, 10]2 −6.130

F1 2 [−1, 1]2 −2.000

Rast 2 [−5.12, 5.12]2 0.000

Levy 2 [−10, 10]2 0.000

Zakh 2 [−5, 10]2 0.000

Shek10 4 [0, 10]4 −10.536

HN6 6 [0, 1]6 −3.322

High-dimensional problems 
(n = 10–16)

GW10 10 [−600, 600]10 0.000

Sphere 15 [−5.12, 5.12]15 0.000

F16 16 [−1, 1]16 25.875
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TABLE 5.10 Best Values Obtained by SOCE, KMS, EGO and HAM

Func

SOCE KMS EGO HAM

Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst

Shub −186.701 −186.053 −185.342 −186.203 −101.456 −39.589 −186.664 −186.109 −184.941 −186.720 −119.826 −39.589

GW2 2.86e-6 2.14e-4 8.28e-4 7.40e-3 8.63e-3 1.97e-2 1.03e-6 5.73e-4 3.53e-3 2.30e-6 7.40e-3 9.86e-3

SE −1.456 −1.456 −1.448 −1.457 −1.454 2.866 −1.457 −1.455 −1.451 −1.457 −1.453 −1.447

Peaks −6.551 −6.544 −6.494 −6.550 −6.524 −6.492 −6.551 −6.549 −6.511 −6.551 −6.542 −3.050

Beale 4.19e-5 3.15e-4 8.37e-4 1.18e-4 7.09e-4 9.51e-4 2.35e-3 2.12e-2 8.27e-2 3.37e-7 2.54e-4 2.87e-3

Alp −6.127 −6.115 −6.084 −6.123 −6.080 −2.854 −6.129 −6.116 −6.089 −6.126 −6.121 −2.854

F1 −2.000 −1.994 −1.980 −1.997 −1.879 −0.660 −2.000 −1.997 −1.985 −2.000 −1.991 −1.879

Rast 4.26e-14 1.78e-4 8.79e-4 1.40e-12 0.995 3.980 2.02e-3 1.00e-2 7.92e-2 1.40e-5 1.05e-4 8.84e-4

Levy 9.83e-6 3.10e-4 6.85e-4 1.07e-5 3.90e-4 9.20e-4 5.13e-5 4.48e-4 1.23e-3 6.03e-7 5.33e-5 9.29e-4

Zakh 7.58e-6 2.72e-4 8.47e-4 2.32e-5 5.04e-4 2.80e-3 6.31e-6 7.68e-4 7.71e-3 3.31e-6 7.51e-5 2.35e-4

Shekel −10.523 −10.486 −2.871 −10.507 −9.998 −5.126 −10.523 −10.169 −5.029 −10.517 −9.753 −2.427

HN6 −3.317 −3.306 −3.290 −3.312 −3.308 −3.291 −3.318 −3.298 −3.201 −3.316 −3.2945 −3.159

GW10 1.18e-2 3.28e-2 9.75e-2 0.912 1.093 1.367 13.968 28.083 56.223 9.88e-3 2.39e-2 0.585

Sphere 2.09e-10 2.33e-8 5.74e-5 1.29e-3 3.06e-3 7.00e-3 0.180 0.562 0.863 5.31e-4 3.24e-3 0.154

F16 26.073 26.109 26.130 26.096 26.122 26.876 26.356 26.668 27.270 26.061 26.129 26.323
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TABLE 5.11 Specific Statistical Results of NFE Obtained by SOCE, KMS, EGO and HAM

Func

SOCE KMS EGO HAM

Min Max Mean Min Max Mean Min Max Mean Min Max Mean

Shub 14 138 68 14 >300(8) >243.7 29 111 71 34 >300(5) >208.7

GW2 32 273 140.3 >300 >300(10) >300 24 >300(3) >157.3 58 >300(7) >244

SE 29 55 33.4 20 >300(1) >57.4 30 123 54.2 21 73 41.5

Peaks 29 46 37.3 17 92 39.8 21 45 34 21 >300(1) >67

Beale 58 249 151.9 80 237 156.1 >300 >300(10) >300 114 >300(1) >185.2

Alp 23 68 38.4 23 >300(4) >176.5 15 43 23.8 21 >300(1) >75.4

F1 29 242 108.5 56 >300(7) >235.5 39 105.1 155 30 >300(1) >93.7

Rast 10 64 25.6 11 >300(7) >214.9 >300 >300(10) >300 46 171 102.4

Levy 16 74 38.6 19 71 41.2 18 >300(1) >103.1 37 76 50.9

Zakh 63 231 134.8 54 >300(1) >198 28 >300(4) >157.5 42 63 48.2

Shekel 107 >300(2) >166.1 245 >300(9) >294.5 240 >300(5) >282.5 108 >300(8) >263.3

HN6 55 149 89.1 70 112 87.3 37 >300(3) >123.4 68 >300(3) >151.1

GW10 >300 >300(10) >300 >300 >300(10) >300 >300 >300(10) >300 >300 >300(10) >300

Sphere 138 141 138.6 >300 >300(10) >300 >300 >300(10) >300 261 >300(5) >286.5

F16 111 265 176.8 114 >300(1) >182.4 >300 >300(10) >300 187 >300(4) >252.8
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four algorithms are evaluated. Among them, SOCE performs the best. It is 

worth noting that all the four algorithms have the same NFE on GW10. In 

Table 5.10, the median values of SOCE, KMS, EGO and HAM on GW10 

are 3.28e-2, 1.093, 28.083 and 2.39e-2, respectively. Hence, the accuracy of 

their results is used for ranking. In summary, SOCE is a promising global 

optimization algorithm for expensive black-box multimodal problems.

Although Kriging-based optimization technologies commonly can-

not work well on high-dimensional problems, the proposed SOCE is still 

tested on the 50-dimensional Rosenbrock function in this work. Here, 

the maximal NFE is defined as 1,500. Figure 5.6 shows the true func-

tion values obtained by SOCE within 1,500 function evaluations. As 

discussed previously, QRS begins to work after 1,326 (0.5n2 + 1.5n + 1) 

samples are added.

In Figure  5.6, the best value changes slightly between 2.5e6 and 2e7 

within 1,326 function evaluations. It demonstrates that Kriging cannot 

efficiently guide SOCE to search the design space anymore. The combina-

tion of QRS and Kriging makes the overall trend begin to decrease after 

1,400 samples. However, the obtained best value 1.81e6 after 1,500 samples 

is still far away from the true global optimum 0. The essential reason for 

the poor performance is that the approximation accuracy of the two sur-

rogates is not good enough on 50-dimensional problems. Hence, SOCE 
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is not appropriate for high-dimensional problems (with 50+ design vari-

ables) and its better scope of application is lower than 20 dimensions.

5.4.2 Comparison Test on Nonlinear-Constrained Examples

Based on the overall optimization flow in Figure 5.2, a penalty strategy is 

suggested to make SOCE applicable for nonlinear-constrained optimiza-

tion. This strategy involves two penalty functions as follows.

 10 max ,0 1,2, ,10
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Yobj refers to the true objective value and Zi is one of the constraint values. 

As previously discussed, SOCE needs to sort samples to get the local con-

vergence criterion and update promising regions in Algorithm 5.1. Hence, 

Eq. (5.4) is employed to get the actual function value with the penalty term 

FIGURE 5.6 Test results of SOCE on 50-dimensional Rosenbrock.
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for ranking. Besides, Eq. (5.4) is also used to select promising solutions in the 

multi-start optimization process. On the other side, Eq. (5.5) is used to get the 

present best value for the termination judgment. For  nonlinear-constrained 

optimization problems, SOCE constructs surrogate models for objective 

and constraint functions, respectively. Equations (5.6) and (5.7) describe the 

optimization process on surrogate models.
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where ˆ ( )xg Krg
i  is the Kriging model of the ith constraint. ˆ ( )xfQRS  and 

ˆ ( )f xKrg  are the QRS and Kriging models of objective functions, respec-

tively. In this section, SOCE is tested on nonlinearly constrained problems 

(Zhang et al., 2008; Regis, 2014), which include five complex mathematical 

examples (G6, G7, G8, G9, G10) and two engineering problems (welded 

beam design (WB4) and speed reducer design (SR7)). The target values 

are given in Table  5.12. In the same way, all the tests are repeated ten 

times. Additionally, as contrast, KMS, EGO and HAM utilize Eq. (5.4) 

to deal with these constrained benchmark examples. Figure 5.7 presents 

the representative results of SOCE on these problems. Since G7 is a high- 

dimensional problem, the clear results close to the present best value are 

TABLE 5.12 Nonlinear-Constrained Benchmark Problems for Global Optimization

Problems

Number of 

Design Variables

Number of 

Constraints

Best Known 

Value

Target 

Value

Benchmark 
mathematical 
examples

G6 2 2 −6,961.8139 −6,800

G7 10 8 24.3062 25

G8 2 2 −0.0958 −0.09

G9 7 4 680.6301 1,000

G10 8 6 7,049.3307 8,000

Engineering 
examples

WB4 4 7 1.7250 2.5

SR7 7 11 2,994.42 2,995
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FIGURE 5.7 SOCE on nonlinearly constrained problems.
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also provided. It is clear that SOCE can quickly focus on the boundaries 

of constraints and find feasible solutions. Especially, SOCE can get accu-

rate results with fewer function evaluations on G6, G8, WB4 and SR7. For 

high-dimensional examples G7, G9 and G10, SOCE can mostly find their 

target values but higher computation cost is required.

Tables 5.13 and 5.14 give the statistical results including the obtained 

function values and NFE. SOCE has excellent performances on G6, G8, 

WB4 and SR7. For G9 and G10, SOCE just fails two times within 300 

function evaluations, but it still gets the acceptable results 1,012.288 and 

8,260.758 that are quite close to their target values. Additionally, it can 

TABLE 5.13 Statistical Results of Function Values on Nonlinear-Constrained Problems

Problems G6 G7 G8 G9 G10 WB4 SR7

SOCE Best Value −6,961.813 24.644 −0.0958 772.220 7,109.074 1.726 2,994.471

Med. value −6,953.338 26.208 −0.0937 927.255 7,767.577 2.205 2,994.471

Worst value −6,872.775 28.571 −0.0902 1,012.288 8,260.758 2.349 2,994.657

HAM Best Value −6,339.926 602.933 −0.0950 966.166 1.28e11 2.934 3,124.147

Med. value −3,338.948 1.54e10 −0.0940 1,294.343 2.21e11 3.191 3,222.033

Worst value −1,356.719 4.13e10 −0.0912 1,740.238 3.71e11 8.272 3,401.861

KMS Best value −6,073.916 169.209 −0.0943 825.588 1.65e11 2.314 3,041.883

Med. value −1,500.888 398.865 −0.0738 1,403.688 2.66e11 5.097 3,112.072

Worst value 1.15e10 2,088.117 −0.0579 3,083.203 3.87e11 1.45e9 3,191.210

EGO Best value 1.36e9 385.207 −0.091 763.358 6.30e10 2.654 3,051.468

Med. value 1.16e10 622.641 −0.057 1,033.078 1.88e11 5.142 3,070.588

Worst value 3.52e10 1,178.897 −0.015 1,295.343 2.58e11 7.511 3,151.450

TABLE 5.14 Statistical Results of NFE on Nonlinear-Constrained Problems

Problems G6 G7 G8 G9 G10 WB4 SR7

SOCE Min NFE 20 117 35 79 156 34 39

Mean NFE 43.9 >266.4 57 >170.7 >241.2 57.3 62.9

Max NFE 65 >300(8) 114 >300(1) >300(1) 100 85

HAM Min NFE >300 >300 69 295 >300 >300 >300

Mean NFE >300 >300 115.8 >299.5 >300 >300 >300

Max NFE >300(10) >300(10) 192 >300(9) >300(10) >300(10) >300(10)

KMS Min NFE >300 >300 16 71 >300 17 >300

Mean NFE >300 >300 >271.6 >218.3 >300 >271.7 >300

Max NFE >300(10) >300(10) >300(9) >300(6) >300(10) >300(9) >300(10)

EGO Min NFE >300 >300 10 29 >300 >300 >300

Mean NFE >300 >300 >243.6 >207.9 >300 >300 >300

Max NFE >300(10) >300(10) >300(8) >300(6) >300(10) >300(10) >300(10)
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be seen that SOCE cannot find its target value within 300 function eval-

uations on G7 in most cases. However, the range of the optimal values 

[24.644, 28.571] obtained by SOCE on G7 is satisfactory. HAM, EGO and 

KMS sometimes can reach the target value within 300 NFE on G8 and 

G9, but all of them cannot go close to the target value on G7 and G10. 

Especially on G10, HAM, EGO and KMS can hardly find feasible solutions 

within 300 NFE. Although KMS and HAM also failed on G6, they have 

almost reached the target. HAM, EGO and KMS have acceptable perfor-

mance on WB4 and SR7, but few of them can complete the mission within 

the maximal NFE. After the comparison test, it can be found that SOCE is 

also an efficient and robust algorithm for nonlinear-constrained EBOPs.

5.5 CHAPTER SUMMARY

In SOCE, a surrogate-based global optimization algorithm SOCE is pre-

sented, which can solve multimodal EBOPs and constrained EBOPs. 

SOCE employs Kriging and QRS to construct two surrogate models. Since 

Kriging models can always generate multiple predictive optimal loca-

tions, an MSSQP is suggested to find them as supplementary samples. To 

guarantee the diversity of the new samples, MSSQP defines an allowable 

distance to eliminate redundant samples. QRS models can predict the 

overall trend of a true model, thus the nature-inspired global optimiza-

tion algorithm GWO is utilized to capture the global optimum of QRS 

models. When the optimization process gets trapped in a local optimum, a 

clustering-based space exploration strategy is activated to make the search 

focus on unexplored regions. This proposed strategy includes four steps: 

(1) Generate multiple clustering centers; (2) Create small regions around 

these centers; (3) Count the current samples located in these regions and 

update regions until a defined ratio is reached; (4) Generate new samples 

and delete the samples outside of these regions. In this work, the specific 

pseudo is provided and a graphic example is shown to demonstrate the 

remarkable capacity of SOCE on multimodal EBOPs. To verify the robust-

ness of SOCE, tests were repeated ten times on 15 benchmark examples. 

Besides, three surrogate-based global optimization algorithms EGO, 

HAM and KMS were compared with SOCE. The results showed the pow-

erful capacity of SOCE in dealing with multimodal EBOPs. Finally, two 

penalty functions were proposed to make SOCE applicable for constrained 

optimization. In the tests of seven nonlinear-constrained examples, SOCE 

successfully found satisfactory solutions with fewer function evaluations. 

In summary, SOCE is a promising global optimization algorithm for mul-

timodal EBOPs and constrained EBOPs.
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NOTE
 1 Based on “Surrogate-based Optimization with Clustering-based Space 

Exploration for Expensive Multimodal Problems,” published in [Structural and 
Multidisciplinary Optimization], [2018]. Permission obtained from [Springer].

REFERENCES

Al-Sultan, K. S., & Nizami, M. F. H. S. (1996). A Genetic Algorithm for the Set 
Covering Problem. Journal of the Operational Research Society, 47(5), 
702–709.

Alexandrov, N. M., Dennis, J. E., Lewis, R. M., & Torczon, V. (1998). A Trust-Region 
Framework for Managing the Use of Approximation Models in Optimization. 
Structural Optimization, 15(1), 16–23. https://doi.org/10.1007/BF01197433

Coello Coello, C. A. (2002). Theoretical and Numerical Constraint-Handling 
Techniques Used with Evolutionary Algorithms: A Survey of the State of 
the Art. Computer Methods in Applied Mechanics and Engineering, 191(11), 
1245–1287. https://doi.org/10.1016/S0045-7825(01)00323-1

Cutbill, A., & Wang, G. G. (2016). Mining Constraint Relationships and 
Redundancies with Association Analysis for Optimization Problem 
Formulation. Engineering Optimization, 48(1), 115–134. https://doi.org/10.
1080/0305215X.2014.995177

Deshmukh, A. P., & Allison, J. T. (2016). Multidisciplinary Dynamic Optimization 
of Horizontal Axis Wind Turbine Design. Structural and Multidisciplinary 
Optimization, 53(1), 15–27. https://doi.org/10.1007/s00158-015-1308-y

Gutmann, H. M. (2001). A Radial Basis Function Method for Global 
Optimization. Journal of Global Optimization, 19(3), 201–227. https://doi.
org/10.1023/A:1011255519438

Haftka, R. T., Villanueva, D., & Chaudhuri, A. (2016). Parallel Surrogate-Assisted 
Global Optimization with Expensive Functions  –  A Survey. Structural 
and Multidisciplinary Optimization, 54(1), 3–13. https://doi.org/10.1007/
s00158-016-1432-3

Hartigan, J. A., & Wong, M. A. (1979). Algorithm AS 136: A k-Means Clustering 
Algorithm. Journal of the Royal Statistical Society, Series C (Applied Statistics), 
28(1), 100–108.

Jie, H., Wu, Y., & Ding, J. (2015). An Adaptive Metamodel-Based Global 
Optimization Algorithm for Black-Box Type Problems. Engineering 
Optimization, 47(11), 1459–1480.

Jones, D. R., Schonlau, M., & Welch, W. J. (1998). Efficient Global Optimization 
of Expensive Black-Box Functions. Journal of Global Optimization, 13(4), 
455–492. https://doi.org/10.1023/A:1008306431147

Leifsson, L., & Koziel, S. (2016). Surrogate Modelling and Optimization Using 
Shape-Preserving Response Prediction: A Review. Engineering Optimization, 
48(3), 476–496. https://doi.org/10.1080/0305215X.2015.1016509

Long, T., Wu, D., Guo, X., Wang, G. G., & Liu, L. (2015). Efficient Adaptive Response 
Surface Method Using Intelligent Space Exploration Strategy. Structural and 
Multidisciplinary Optimization, 51(6), 1335–1362. https://doi.org/10.1007/
s00158-014-1219-3

https://doi.org/10.1023/A:1008306431147
https://doi.org/10.1023/A:1011255519438
https://doi.org/10.1023/A:1011255519438
https://doi.org/10.1016/S0045-7825(01)00323-1
https://doi.org/10.1080/0305215X.2015.1016509
https://doi.org/10.1080/0305215X.2014.995177
https://doi.org/10.1080/0305215X.2014.995177
https://doi.org/10.1007/s00158-014-1219-3
https://doi.org/10.1007/BF01197433
https://doi.org/10.1007/s00158-015-1308-y
https://doi.org/10.1007/s00158-016-1432-3
https://doi.org/10.1007/s00158-016-1432-3
https://doi.org/10.1007/s00158-014-1219-3


SOCE   ◾   143

Mirjalili, S., Mirjalili, S. M., & Lewis, A. (2014). Grey Wolf Optimizer. 
Advances in Engineering Software, 69, 46–61. https://doi.org/10.1016/j.
advengsoft.2013.12.007

Regis, R. G. (2014). Constrained Optimization by Radial Basis Function 
Interpolation for High-Dimensional Expensive Black-Box Problems with 
Infeasible Initial Points. Engineering Optimization, 46(2), 218–243. https://
doi.org/10.1080/0305215X.2013.765000

Regis, R. G., & Shoemaker, C. A. (2013). A Quasi-Multistart Framework for Global 
Optimization of Expensive Functions Using Response Surface Models. 
Journal of Global Optimization, 56(4), 1719–1753. https://doi.org/10.1007/
s10898-012-9940-1

Sadollah, A., Eskandar, H., & Kim, J. H. (2015). Water Cycle Algorithm for 
Solving Constrained Multi-objective Optimization Problems. Applied Soft 
Computing, 27, 279–298. https://doi.org/10.1016/j.asoc.2014.10.042

Shi, Y., & Eberhart, R. C. (1998). Parameter selection in particle swarm optimiza-
tion. Evolutionary Programming VII: 7th International Conference, EP98, San 
Diego, California, USA, March 25–27, 1998 Proceedings 7.

Toropov, V. V., Filatov, A. A., & Polynkin, A. A. (1993). Multiparameter Structural 
Optimization Using FEM and Multipoint Explicit Approximations. Structural 
Optimization, 6(1), 7–14. https://doi.org/10.1007/BF01743169

Wang, X. (2010). A New Metaheuristic Bat-Inspired Algorithm. In J. R. González, 
D. A. Pelta, C. Cruz, G. Terrazas, & N. Krasnogor, (Eds.), Nature inspired 
cooperative strategies for optimization. Studies in computational intelligence 
(Vol. 10, pp. 65–74). Springer-Verlag Berlin Heidelberg.

Weise, T., Wu, Y., Chiong, R., Tang, K., & Lässig, J. (2016). Global versus Local 
Search: The Impact of Population Sizes on Evolutionary Algorithm 
Performance. Journal of Global Optimization, 66(3), 511–534. https://doi.
org/10.1007/s10898-016-0417-5

Yang, X. S. (2009). Harmony search as a metaheuristic algorithm. Springer Berlin 
Heidelberg.

Yin, H., Fang, H., Wen, G., Wang, Q., & Xiao, Y. (2016). An Adaptive RBF-Based 
Multi-objective Optimization Method for Crashworthiness Design of 
Functionally Graded Multi-cell Tube. Structural and Multidisciplinary 
Optimization, 53(1), 129–144. https://doi.org/10.1007/s00158-015-1313-1

Zhang, M., Luo, W., & Wang, X. (2008). Differential Evolution with Dynamic 
Stochastic Selection for CONSTRAINED OPTIMIZATION. Information 
Sciences, 178(15), 3043–3074.

Zadeh, P. M., Toropov, V. V., & Wood, A. S. (2009). Metamodel-Based Collaborative 
Optimization Framework. Structural and Multidisciplinary Optimization, 
38(2), 103–115. https://doi.org/10.1007/s00158-008-0286-8

Zeng, F., Xie, H., Liu, Q., Li, F., & Tan, W. (2016). Design and Optimization of a 
New Composite Bumper Beam in High-Speed Frontal Crashes. Structural 
and Multidisciplinary Optimization, 53(1), 115–122. https://doi.org/10.1007/
s00158-015-1312-2

Zhou, Y., Haftka, R. T., & Cheng, G. (2016). Balancing Diversity and Performance 
in Global Optimization. Structural and Multidisciplinary Optimization, 54(4), 
1093–1105. https://doi.org/10.1007/s00158-016-1434-1

https://doi.org/10.1016/j.asoc.2014.10.042
https://doi.org/10.1080/0305215X.2013.765000
https://doi.org/10.1080/0305215X.2013.765000
https://doi.org/10.1007/s10898-012-9940-1
https://doi.org/10.1007/s00158-015-1313-1
https://doi.org/10.1007/s00158-015-1312-2
https://doi.org/10.1007/s00158-008-0286-8
https://doi.org/10.1007/s10898-016-0417-5
https://doi.org/10.1007/BF01743169
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1016/j.advengsoft.2013.12.007
https://doi.org/10.1007/s00158-016-1434-1
https://doi.org/10.1007/s10898-012-9940-1
https://doi.org/10.1007/s10898-016-0417-5
https://doi.org/10.1007/s00158-015-1312-2


144

C H A P T E R  6

HSOSR

Hybrid Surrogate-Based 
Optimization Using Space 
Reduction for Expensive 
Black-Box Functions1

6.1 INTRODUCTION

Expensive black-box problems (EBPs) are prevalent in modern engineer-

ing design (Craven et  al., 2016). Traditional optimization techniques, 

like swarm intelligence and evolutionary computation (Mirjalili et  al., 

2014; Park & Kim, 2017), are difficult to get EBPs’ global optima, primar-

ily because of the substantial number of expensive function evaluations. 

Surrogate-based global optimization (SBGO) plays an important role in 

today’s simulation-based industrial design (Queipo et al., 2005; Wang & 

Shan, 2007).

In the past two decades, plenty of researchers focused on the develop-

ment of SBGO algorithms and their applications (Forrester & Keane, 2009; 

Gutmann, 2001; Kleijnen, 2009; Myers et al., 2004; Tang et al., 2013; Younis 

& Dong, 2010). Ong et al. (2003) introduced a hybrid approach that com-

bines surrogate modes with evolutionary algorithms to solve the global 

optimization of EBPs. Wild et al. (2008) presented a derivative-free opti-

mization algorithm called ORBIT, which employs RBF and a trust-region 

framework to solve unconstrained expensive optimization problems. 

DOI: 10.1201/9781003636267-6
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ORBIT was tested on two engineering applications, calibration of a water-

shed and optimization of a bioremediation plan, and the final results 

suggested that ORBIT could use fewer function evaluations to complete 

optimization. Park and Kim (2017) combined a generalized regression 

neural network with the particle swarm optimizer (PSO) to develop a new 

surrogate-assisted global optimization algorithm (MUGPSO). Compared 

to the original PSO, MUGPSO showed improvement in solution quality 

and computational efficiency. Li et  al. (2017) presented a Kriging-based 

constrained global optimization (KCGO) algorithm to solve expensive 

nonlinear constrained problems. KCGO includes two phases: (1) “How 

to find the feasible solutions” and (2) “How to find the better solutions,” 

which can help KCGO find the global optimum even if the initial samples 

are infeasible.

In recent years, many researchers have been paying attention to hybrid 

surrogate-based optimization approaches. Zhou et al. (2011) combined dif-

ferent independent surrogates into an ensemble model to improve the pre-

diction accuracy. A recursive process was proposed to obtain the updated 

weights for each stand-alone surrogate. Through tests on five numerical 

cases, the ensemble technique showed its advantages in saving sampling 

costs. Gu et al. (2012) developed a hybrid and adaptive meta-model-based 

(HAM) global optimization algorithm that employed PR, Kriging, and 

RBF to estimate the exact objective function, respectively. According to 

predictive results from the three surrogate models, HAM created seven 

candidate sets to generate supplementary sample points. HAM was veri-

fied by various numerical examples and used for the crashworthiness 

simulation of a vehicle, and the results showed remarkable computation 

efficiency and robustness performance. Viana et al. (2013) proposed the 

multiple surrogates EGO (MSEGO) algorithm that improves the paral-

lelism of EGO. MSEGO can add several new sample points in each opti-

mization cycle based on the predictions of these surrogates, which can 

considerably reduce the number of iterations required for convergence.

In order to solve unconstrained EBPs, a new algorithm—“Hybrid 

Surrogate-based Optimization using Space Reduction” (HSOSR) is pro-

posed in this chapter. Since Kriging and RBF have advantages in predicting 

nonlinear problems, they are employed to construct surrogate models of 

objective functions, respectively. Generally, different approximation tech-

niques may get different promising regions in a design space. We present 

a space reduction approach that fuses “Potentially Better Regions” from 

Kriging and RBF to create two subspaces for exploration. Additionally, a 
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multi-start optimization strategy is employed to search these subspaces on 

Kriging and RBF. The supplementary samples in each cycle will be selected 

to avoid repetition. Once the algorithm gets trapped in a local optimal 

location, a proposed strategy will be triggered to make HSOSR explore the 

sparsely sampled area of the design space.

6.2 HSOSR ALGORITHM
6.2.1 Surrogate Models – Radial Basis Function

The RBF approximation technique was originally developed by Hardy 

(1971) and then modified by Dyn et al. (1986). As its name shows, RBF is 

composed of multiple radial basis functions and it can also be understood 

as a single-layer neural network. The general expression of RBF is sum-

marized as follows:

 iˆ( ) ( )
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In Eq. (6.1), w is a weight vector, x is the to-be-tested location, and c is the 

center vector. Besides, m denotes the number of input samples and ψ (•) 

represents the basis functions that have multiple forms and they are shown 

in Eq. (6.2).

 

ln

3

2

ψ

ψ

ψ

( )

( )

( )

=

=

=

linear r r

cubic r r

thin plate spline r r r

 (6.2)

where r refers to the Euclidean distance between input vector x and center 

vector c. In HSOSR, the cubic basis function is employed to construct RBF.

6.2.2 HSOSR Construction Process

In this section, the proposed HSOSR will be explained in detail. 

HSOSR is different from the traditional hybrid surrogate-based (or 

meta-model-based) methods that commonly fuse the results from all the 

surrogates with weights or construct an ensemble model to combine the 

advantages of all the surrogates. HSOSR employs Kriging and RBF to 

construct surrogates for the same expensive black-box objective function, 

respectively. The better design regions predicted by Kriging and RBF are 

identified and two promising design subspaces are created for optimiza-

tion exploration. The specific demonstrations are summarized in the fol-

lowing contents.
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6.2.2.1 Space Reduction

For nonlinear multimodal problems, space reduction techniques can 

make optimization search focus on the potentially optimal regions and 

avoid unnecessary computation costs in non-significant areas. In this 

chapter, a large number of samples are first generated to get the predictive 

values of the Kriging and RBF models. According to the predictive results, 

HSOSR selects top M sample points from Kriging and RBF, respectively. 

Subsequently, two promising regions are identified based on these sample 

points: one is from Kriging and the other comes from RBF.
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In Eq. (6.3), Range_Kriging and Range_RBF denote the two promising 

regions, respectively. Skrg
topM and Srbf

topM are the ranked top M samples from 

Kriging and RBF, M is the number of good samples, and d denotes the 
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dimension. In addition, Ykrg
Ranki  and Yrbf

Ranki  are the predictive values from 

the two surrogate models, and Lbi and Ubi represent the lower and upper 

bounds, respectively. Based on Range_Kriging and Range_RBF, two sub-

spaces Range_union and Range_intersection are defined. The detailed 

pseudo codes are summarized in Algorithm 6.1.

Algorithm 6.1(a) Create the Promising Ranges—Range_union

(01)  Begin

(02) Sp ← Carry on Latin Hypercube Sampling (LHS) to obtain multiple 

starting points.

(03) Yrbf ← Evaluate the RBF values at these starting points Sp

(04) Ykrg ← Evaluate the Kriging values at these starting points Sp

(05) Goodpoints_r ← Sort the RBF values Yrbf and find the correspond-

ing points

(06) Goodpoints_k ← Sort the Kriging values Ykrg and find the corre-

sponding points

(07) Num_rank1 ← Define the number of the selected good points.

(08) Range_r, Range_k ← Define the promising range by the top Num_

rank1 good points, respectively.

(09) for i ← 1 to D ( The number of dimensions)

(10)  Range_union_lb(i) ← Get the minimum boundary from Range_r 

and Range_k at the ith dimension.

(11)   Range_union_ub(i) ← Get the maximum boundary from 

Range_r and Range_k at the ith dimension.

(12) end for

(13) Range_union ← Get the range [Range_union_lb; Range_union_ub].

(14)  End

Intuitively, Range_union is the union set of Range_Kriging and Range_RBF, 

and Range_intersection is the overlap of Range_Kriging and Range_RBF. 

Both Range_union and Range_intersection include better regions from 

Kriging and RBF, which decreases the risk of missing the global optimum. 

In Algorithm 6.1(b), after the top Num_rank2 points of Kriging and RBF 

are obtained, the same points in Goodpoints_r_inter and Goodpoints_k_

inter will be recorded in Points_intersection. These points in Points_ 

intersection may gather in a small region or may be distributed in several 

local optimal regions. Finally, the subspace is created to enclose the points 
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set Points_intersection. Figures 6.1 and 6.2 show how to create the pro-

posed subspaces, which involve two cases on Griewank (GW) and Ackley 

functions, respectively. Intuitively, GW and Ackley have many local valleys, 

but Ackley has a clearer convergence trend to its global minimum. Since 

GW has multiple similar valleys in the whole space, the top M samples 

from Kriging and RBF scatter in different local optimal regions. It can be 

seen from Figure 6.1b that Range_Kriging and Range_RBF enclose several 

promising local regions, respectively. Besides, Range_intersection focuses 

on the common better regions from the two surrogates. From Figure 6.1d, 

it is clear that Range_intersection encloses the exact global minimum and 

three other local minima and Range_union covers all the predicted prom-

ising regions from Kriging and RBF. Due to the characteristic of Ackley, 

the top M samples from the two surrogates are located in a concentrated 

area around the true global optima. Therefore, Range_intersection identi-

fies an accurate reduced space that encloses the global optimal solution. 

In conclusion, Range_union can contain more local optimal regions to 

FIGURE 6.1 (a–d) Graphic demonstration of GW function.
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avoid missing the global optimum, and Range_intersection can focus on 

the best joint regions of Kriging and RBF to accelerate convergence. In 

this work, the total number of cheap points generated by LHS is 1,000, 

Num_rank1 = 100 and Num_rank2 = 50. It is worth noting that the two 

subspaces are alternately employed for optimization search with iterations 

going on. The detailed pseudo codes are summarized in Algorithm 6.1(b).

Algorithm 6.1(b) Create the Promising Ranges—Range_intersection

(01)  Begin

(02) Goodpoints_r ← Sort the RBF values Yrbf and find the correspond-

ing points

(03) Goodpoints_k ← Sort the Kriging values Ykrg and find the corre-

sponding points

(04) Num_rank2 ← Define the number of the selected good points.

(05) Goodpoints_r_inter ←Goodpoints_r (1: Num_rank2, :)

FIGURE 6.2 Graphic demonstration of Ackley function.
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(06) Goodpoints_k_inter ←Goodpoints_k (1: Num_rank2, :)

(07) for i ← 1 to Num_rank2

(08) for j ← 1 to Num_rank2

(09)    Error ← Get the error of | Goodpoints_r_inter(i, :)- 

Goodpoints_k_inter(j, :) |

(10)   if Error is small enough

(11)       Record i and j

(12)   end if

(13) end for

(14) end for

(15) Points_intersection ← Select the points that have good performance 

on both Kriging and RBF.

(16) for i ← 1 to D

(17)  Range_intersection_lb(i) ← Min(Points_intersection(:, i))

(18)  Range_intersection_ub(i) ← Max(Points_intersection(:, i))

(19) end for

(20) Range_intersection ← Get the range [Range_intersection_lb; 

Range_intersection_ub]

ith dimension.

(21)  End

6.2.2.2 Multi-Start Optimization on Kriging and RBF

As Figures 6.1 and 6.2 show, surrogate models like Kriging and RBF, always 

produce multiple approximate local optima, especially for highly nonlin-

ear multimodal problems. Some of these local optima are in the neigh-

borhood of the true local or global optimal solutions but some are not. 

Compared with traditional global optimization algorithms, like genetic 

algorithm or particle swarm optimization, multi-start optimization can 

capture multiple local optima from surrogate models more easily. On one 

hand, supplementing multiple sample points in each cycle can improve 

the algorithm’s parallelism. On the other hand, multi-start optimization 

can increase the probability of successfully capturing the global optimum.

In each iteration, HSOSR utilizes Latin hypercube sampling (LHS) to 

generate several starting points, where the local optimizer–sequential  

quadratic programming (SQP) is employed to perform optimization 

search. Considering the demand for sample diversity, two different dis-

tance values are defined to select new samples alternately. The multi-start 

optimization exploration is carried out in the subspaces of the Kriging 
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and RBF models, respectively. Then, all the to-be-supplemented samples 

are collected and added to a database for further selection. HSOSR prom-

ises that the final supplementary samples should keep a distance between 

each other. Once the algorithm gets trapped in a local optimal region, a 

proposed strategy begins to explore the sparsely sampled area. The specific 

pseudo code is listed in Algorithm 6.2.

Algorithm 6.2(a) Exploitation on Surrogates

(01)  Begin

(02) if the remainder of (iteration/3)== 0

(03)  dis ← ∆1*sqrt(range_legnth(1)^2+ range_legnth(2)^2). Here, 

range_length denotes the length vector of the design range (1e-3)

(04) else

(05) dis ← ∆2*sqrt(range_legnth(1)^2+ range_legnth(2)^2).(1e-6)

(06) end if

(07) Gn ← If D (Dimension) is smaller than 7, the number is 5D. 

Otherwise, the number is 2D

(08) M ← Call Latin Hypercube Sampling to get Gn starting points in 

the defined subspace.

(09) for i=1: Gn

(10)  S_rbf ← Call SQP to perform optimization search at the ith 

starting points M(i) on RBF. Save the obtained local optimal 

solution in the defined subspace.

(11) end for

(12) S_rbf_select ← Select the better samples from S_rbf and guarantee 

that the selected sample points keep a distance (bigger than dis) 

between the existing samples.

(13) for i=1: Gn

(14)  S_Kriging ← Call SQP to perform optimization search at the ith 

starting points M(i) on Kriging. Save the obtained local optimal 

solution in the defined subspace.

(15) end for

(16) S_krg_select ← Select the better samples from S_Kriging and guar-

antee that the selected sample points keep a distance dis between 

the existing samples.

(17) S_new ← [S_rbf_select; S_krg_select]

(18)  End
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In Algorithm 6.2(a), a distance dis is provided to make samples have the 

diversity. When iteration is the multiple of 3, the coefficient of dis is ∆1.  

Otherwise, the coefficient is defined as ∆2. In the subsequent tests, ∆1 is 

1e-3 and ∆2 is 1e-6. In the loop, different sizes of dis affect the selection 

of samples from the predicted sets S_rbf and S_Kriging. The larger the 

parameter dis is, the more rigorous the selection will be. Eventually, the 

selected promising samples from Kriging and RBF are gathered into a 

sample set S_new.

When dis gets larger (Employ ∆1), multi-start optimization some-

times may hardly find a satisfactory solution from Kriging and RBF, 

which makes S_new empty. Sometimes, the algorithm may get stuck 

near a local valley, and the present best value cannot be improved for 

multiple iterations. Once the above-mentioned cases happen, Algorithm 

6.2(b) is activated to explore the sparsely sampled area. Since the esti-

mated MSE of Kriging has the maxima at the sparsest area as Figure 6.3 

shows, the proposed multi-start optimization is employed to get the 

updating samples in a randomly generated range. Figure 6.4 shows the 

captured new samples located in the sparse area. Algorithm 6.2(b) is 

shown below.

FIGURE 6.3 MSE of Kriging.
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FIGURE 6.4 Samples updating by maximizing MSE.

Algorithm 6.2(b) Exploration of Sparsely Sampled Area

(01)  Begin

(02) if S_new is empty or the present best value does not change remark-

ably for continuous 10 iterations.

(03) w ← Generate a random value between 0 to 1.

(04)  lbmse ← (range_lb+range_ub)/2-w(range_ub-(range_lb+range_

ub)/2).

(05)  ubmse ← (range_lb+range_ub)/2+w(range_ub-(range_lb+ 

range_ub)/2).

(06) range_mse ← [lbmse;ubmse]

(07)  M_mse ← Call Latin Hypercube Sampling to get Gn starting 

points in the defined range_mse.

(08) for i=1: Gn

(09)   S_mse ← Call SQP to perform optimization search at the ith 

starting points M_mse(i) on the MSE function of Kriging. Save 

the samples with local maximal MSE values in range_mse.
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(10) end for

(11) S_new ← [S_new; S_mse].

(12) end if

(13) S_new_checked ← Check the repeated points in S_new and delete 

them.

(14)  END

6.2.2.3 Optimization Flow

The whole optimization process is shown in Figure 6.5, where “Exploitation” 

and “Exploration” affect each other and jointly search the global optimum. 

The termination criterion is proposed for the subsequent comparison tests 

as below,
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where ybest is the present best value. yoptimal is the true optimal value. NFE is 

the number of function evaluations and dim refers to the dimension.

6.3 COMPARISON EXPERIMENTS

In order to verify the efficiency and robustness of the algorithms, 15 rep-

resentative benchmark functions are given in this chapter for compara-

tive testing, including ten low-dimensional problems (Ack, GW, Peak, ST, 

AP, F1, HM, GF, Levy, HN6) and five high-dimensional problems (Schw3, 

Trid, Sums, Sphere, F16). It is worth noting that most of the benchmark 

algorithms are highly nonlinear problems.

In contrast, five methods, including EGO, CAND, HAM, MKRG, and 

MRBF, are employed in this chapter. Among them, EGO is a Kriging-based 

global optimization algorithm which captures new samples by maxi-

mizing the EI function. CAND originally comes from a stochastic RBF 

algorithm presented by Regis and Shoemaker (2007) and is currently 

implemented by Müller’s surrogate toolbox in this work. HAM is a hybrid 
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meta-model-based method using three surrogates to predict the global 

optimum, which has a robust performance in most mathematical cases. 

MKRG and MRBF have the same idea as HSOSR, except that MKRG and 

MRBF just use their predictive information (One from Kriging and the 

other from RBF) and explore the global design space. Figure  6.6 shows 

the iterative results of the six algorithms on all the above-mentioned cases 

FIGURE 6.5 Flowchart of HSOSR.
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FIGURE 6.6 Iteration diagram of the six algorithms on 15 cases.
(Continued)
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FIGURE 6.6 (Continued) Iteration diagram of the six algorithms on 15 cases.
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within 300 function evaluations. It is worth mentioning that most cases 

have clearer subgraphs to describe the convergent parts. Since most of 

these test cases are multimodal problems, it is easy for an algorithm to get 

stuck in a local valley. As Figure 6.6a shows, CAND, HSOSR, and MRBF 

get closer to the true target, but EGO, HAM, and MKRG get stuck in some 

local optimal regions. It also can be seen from Figure 6.6c, e, h, and j that 

HAM has the worst performance and cannot jump out of a local region 

within 300 function evaluations. From Figure 6.6a, g, i, and l, it can be 

found that EGO has difficulty in dealing with Ackley, Him, Levy, and Trid. 

Besides, CAND performs worse on higher-dimensional problems (HN6, 

Schw3, Trid, Sums, F16, and Sphere). Although MKRG decreases slowly 

at the beginning as Figure 6.6c, i, j, l, and n show, it can go close to the 

target values at last. Intuitively, HSOSR and MRBF are relatively efficient. 

In most cases, HSOSR and MRBF can quickly find the global optima. 

However, MRBF has a slower convergence speed compared with HSOSR 

in Figure 6.6b, e, f, and i–k. In summary, Figure 6.6 provides a prelimi-

nary comparison of the six algorithms on iterative results. On one hand, 

Figure 6.6 shows the convergence abilities of these different algorithms. 

On the other hand, it proves that HSOSR is more efficient than others on 

these benchmark cases.

Since the stochastic nature of the six algorithms, ten tests are repeated 

on all the cases. Equation (6.4) is employed as the termination crite-

rion in this test. Besides, since EGO spends much execution time on 

higher-dimensional problems, the allowable NFE in Eq. (6.4) is defined as 

300 for the high-dimensional cases. Tables 6.1 and 6.3 show the mean NFE 

and final best values of the six algorithms. Tables 6.2 and 6.4 list the statis-

tical results of NFE. NFE refers to the number of function evaluations. The 

best results in Tables 6.1–6.4 are flagged with boldface. In Tables 6.2 and 

6.4, Min, Median and Max represent the minimum NFE, median NFE, 

and maximum NFE, respectively. In the four tables, the results with the 

symbol “>” indicate that at least one test cannot find target values within 

a defined NFE. Besides, the numbers in brackets reflect the failure times.

From Tables 6.1–6.4, it can be found that MKRG, MRBF, HAM, EGO, 

and CAND have several failure times on low-dimensional multimodal 

problems. Since HAM does not have a strategy that makes the search jump 

out of a local region, it performs the worst on multimodal problems. As per 

the previous discussion, Ackley possesses a lot of local optimal solutions. 

MKRG, EGO, and HAM can hardly find a value below 0.001 on Ackley 

within 300 function evaluations. Similarly, MKRG, MRBF, EGO, and HAM 
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also have difficulty in dealing with Levy. Intuitively, HSOSR has the most 

robust performance on all the low-dimensional problems. Furthermore, 

HSOSR can use fewer function evaluations to get the target values.

For high-dimensional tests, it is difficult for MKRG, HAM, EGO, and 

CAND to perform well on Schw3, Trid10, Sums, and Sphere. However, 

MKRG, HAM, and CAND can efficiently get the target value on F16. Both 

HSOSR and MRBF can solve high-dimensional cases well, but HSOSR 

uses fewer NFE than MRBF on Schw3 and Trid10. Moreover, HSOSR finds 

a satisfactory solution on F16 just using about 69 function evaluations.

TABLE 6.1 Mean NFE and Final Best Values of HSOSR, MKRG and MRBF

Func.

HSOSR MKRG MRBF

NFE Best Value NFE Best Value NFE Best Value

Ackley 139 [1.18e-4, 

9.43e-4]

>300 [0.067, 
4.331]

>131 [3.91e-5, 
2.580]

GW 90 [1.37e-7, 

5.57e-4]

133.2 [9.42e-7, 
4.45e-4]

149.4 [4.65e-5, 
7.46e-4]

Peaks 30.3 [−6.551, 

−6.491]

36.2 [−6.548, 
−6.512]

85 [−6.547, 
−6.487]

ST 38.4 [−78.329, 
−77.599]

30.1 [−78.332, 
−77.679]

30.2 [−78.173, 
−77.585]

Alp 19.2 [−6.128, 

−6.074]

35.4 [−6.129, 
−6.076]

40.3 [−6.119, 
−6.079]

F1 136.7 [−2.000, 
−1.993]

>161.5 [−2.000, 
−1.879]

>186.1 [−1.999, 
−1.879]

Him 30.4 [5.96e-6, 

7.02e-4]

>142.6 [8.62e-7, 
1.23e-2]

50.6 [5.02e-4, 
9.13e-4]

GF 52.4 [0.524, 
0.527]

30.4 [0.523, 
0.528]

>148.4 [0.525, 
0.678]

Levy 190.6 [4.91e-4, 

9.60e-4]

>278.7 [3.95e-4, 
1.951]

>230.6 [7.97e-4, 
3.090]

HN6 52.6 [−3.313, 

−3.291]

103.8 [−3.315, 
−3.289]

92.5 [−3.306, 
−3.290]

Schw3 299.8 [5.26e-4, 

9.84e-4]

>500 [0.075, 
1.823]

>402 [7.67e-4, 
2.83e-3]

Trid10 169.9 [−208.785, 

−207.92]

171.3 [−208.949, 
−207.911]

292.6 [−208.336, 
−207.906]

Sums 304.6 [5.61e-4, 

9.96e-4]

>500 [0.018, 
0.059]

315 [5.18e-4, 
9.91e-4]

F16 69 [26.016, 

26.133]

174.6 [26.002, 
26.128]

71.5 [25.927, 
26.129]

Sphere 124.5 [5.32e-4, 
9.41e-4]

>500 [8.08e-3, 
5.84e-2]

111.7 [5.70e-4, 

9.42e-4]
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TABLE 6.2 Statistical NFE of HSOSR, MKRG and MRBF

Func.

HSOSR MKRG MRBF

Min Median Max Min Median Max Min Median Max

Ackley 88 113.5 245 >300 >300 >300(10) 94 112.5 >300(1)

GW 28 93 193 62 150 205 38 162 243

Peaks 16 24 59 20 35 56 20 68 247

ST 16 33 86 16 28 52 12 28 68

Alp 10 20 22 19 34 62 17 35 97

F1 92 131 223 98 159.5 >300(1) 53 196 >300(2)

Him 27 30.5 36 28 98.5 >300(2) 30 46.5 79

GF 27 54 82 16 30 53 25 119.5 >300(2)

Levy 95 187.5 299 203 >300 >300(7) 82 >300 >300(6)

HN6 37 52 72 60 106.5 129 42 75 211

Schw3 218 281 464 >500 >500 >500(10) 283 422.5 >500(3)

Trid10 115 163 237 145 161 246 208 291 397

Sums 242 311 336 >500 >500 >500(10) 234 303.5 426

F16 60 68 80 113 164 299 61 70 85

Sphere 106 119.5 149 >500 >500 >500(10) 101 112.5 132

TABLE 6.3 Mean NFE and Final Best Values of HAM, EGO and CAND

Func.

HAM EGO CAND

NFE Best Value NFE Best Value NFE Best Value

Ackley >300 [2.78e-3, 
1.664]

>300 [0.037, 
0.503]

>241.9 [7.49e-4, 
2.24e-3]

GW >164.8 [3.10e-5, 
7.40e-3]

97.4 [1.42e-6, 
7.73e-4]

>205.3 [1.57e-4, 
7.40e-3]

Peaks >113 [−6.551, 
−3.050]

31.5 [−6.551, 
−6.518]

35.3 [−6.550, 
−6.494]

ST >71.3 [−78.325, 
−64.196]

33.5 [−78.332, 
−77.803]

27.2 [−78.252, 

−77.555]

Alp >53.6 [−6.128, 
−2.854]

23.5 [−6.126, 
−6.073]

26.8 [−6.124, 
−6.080]

F1 85.5 [−2.000, 
−1.983]

73.7 [−2.000, 

−1.986]

>226.3 [−1.999, 
−1.879]

Him 76.2 [7.70e-6, 
7.99e-4]

>112.2 [1.78e-4, 
7.39e-3]

82.8 [1.91e-5, 
9.94e-4]

GF >164.9 [0.524, 
1.079]

>136.9 [0.523, 
0.550]

25.9 [0.523, 

0.528]

Levy >263 [2.15e-4, 
7.10e-2]

>300 [0.016, 
0.413]

224.1 [3.55e-4, 
9.92e-4]

(Continued)
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As a summary of Tables 6.1–6.4, Table 6.5 shows the total NFE mean 

(TNM) values, failure times, success rates, relative improvements of com-

putational efficiency (RICE) and relative improvements of success rates 

(RISR) in all the cases. Importantly, RICE and RISR reflect the improved 

levels of HSOSR than the other five methods. To sum up, HSOSR is a 

promising global optimization algorithm for EBPs.

TABLE 6.4 Statistical NFE of HAM, EGO and CAND

Func.

HAM EGO CAND

Min Median Max Min Median Max Min Median Max

Ackley >300 >300 >300(10) >300 >300 >300(10) 94 >290.5 >300(5)

GW 27 112.5 >300(4) 32 100 137 117 199.5 >300(2)

Peaks 22 43.5 >300(2) 20 30 45 18 28 60

ST 21 39.5 >300(1) 13 30 83 17 29 38

Alp 14 24 >300(1) 11 23 38 17 19 49

F1 27 66.5 205 25 57.5 166 90 234.5 >300(2)

Him 44 65.5 185 30 32.5 >300(3) 52 79.5 129

GF 63 122 >300(3) 22 58 >300(3) 17 24 40

Levy 115 >300 >300(7) >300 >300 >300(10) 157 223 278

HN6 48 88 >300(3) 38 46 >300(1) 52 79 >300(4)

Schw3 >500 >500 >500(10) >300 >300 >300(10) >500 >500 >500(10)

Trid10 >500 >500 >500(10) >300 >300 >300(10) 439 >500 >500(9)

Sums >500 >500 >500(10) >300 >300 >300(10) >500 >500 >500(10)

F16 160 343.5 >500(4) 192 >300 >300(8) 182 193 259

Sphere >500 >500 >500(10) >300 >300 >300(10) >500 >500 >500(10)

TABLE 6.3 (Continued) Mean NFE and Final Best Values of HAM, EGO and CAND

Func.

HAM EGO CAND

NFE Best Value NFE Best Value NFE Best Value

HN6 >144.4 [−3.317, 
−3.176]

>82 [−3.310, 
−3.202]

>157.8 [−3.314, 
−3.137]

Schw3 >500 [0.144, 
2.693]

>300 [0.422, 
2.127]

>500 [0.036, 
0.447]

Trid10 >500 [−161.737, 
26.035]

>300 [−29.129, 
−18.946]

>493.9 [−207.901, 
91.161]

Sums >500 [1.45e-3, 
3.191]

>300 [1.256, 
6.426]

>500 [0.027, 
0.347]

F16 >351.5 [26.109, 
26.651]

>283.2 [25.994, 
26.527]

205 [26.042, 
26.129]

Sphere >500 [5.80e-3, 
0.414]

>300 [2.495, 
9.393]

>500 [3.45e-3, 
2.37e-2]
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6.4 CHAPTER SUMMARY

In this chapter, an SBGO algorithm HSOSR is presented, which can solve 

expensive black-box optimization problems. HSOSR constructs RBF and 

Kriging models to approximate the true expensive problems, respectively. 

In each iteration, a group of samples is employed to get the predictive 

values from RBF and Kriging. Two promising regions from Kriging and 

RBF are identified by these predictive values. Considering the relations 

between the two promising regions, two reduced subspaces are created. 

Furthermore, the optimization search begins to run in the two subspaces 

alternately. Since RBF and Kriging models can always generate multiple 

predictive optimal locations, a multi-start optimization algorithm is pro-

posed to find them as supplementary samples. The multi-start optimiza-

tion search promises that the new samples keep a defined distance from 

the obtained samples. For the diversity of samples, two different sizes of 

distance are suggested in this chapter. Once HSOSR gets stuck in a local 

region, the multi-start optimization algorithm will be run on the esti-

mated mean square error of Kriging to explore the sparsely sampled area.

In order to verify the efficiency and robustness of HSOSR, ten 

low-dimensional multimodal functions and five high-dimensional func-

tions are tested, and five other algorithms are employed as contrast refer-

ences. The results show the powerful capacity of HSOSR in dealing with 

expensive black-box optimization problems. Compared with other classi-

cal algorithms, HSOSR can use fewer function evaluations to get close to 

the true global optimal values.

NOTE

 1 Based on “Hybrid Surrogate-based Optimization using Space Reduction 
(HSOSR) for Expensive Black-box Functions,” published in [Applied Soft 
Computing], [2018]. Permission obtained from [Elsevier].

TABLE 6.5 Summary of the Final Results

Algorithm TNM Failure Times Success Rate RICE RISR

HSOSR 1,747.4 0 100% — —

MKRG >3,097.8 50 66.67% >77.28%↑ 50%↑

MRBF >2,336.9 14 90.67% >33.74%↑ 10.29%↑

HAM >3,788.2 75 50% >116.79%↑ 100%↑

EGO >2,673.9 75 50% >53.02%↑ 100%↑

CAND >3,452.3 52 65.33% >97.57%↑ 53.07%↑
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C H A P T E R  7

MGOSIC

Multi-Surrogate-Based 
Global Optimization Using a 
Score-Based Infill Criterion1

7.1 INTRODUCTION

Due to rapid development and continuous progress in modern engineer-

ing, optimization design associated with high-fidelity simulation is gain-

ing more attention (Lakshika et  al., 2017; Sala et  al., 2016; Tyan et  al., 

2015; H. Wang et al., 2017; G. Zhou et al., 2017). On one hand, advanced 

simulation techniques provide precise analyses for real-world applica-

tions; On the other hand, they also bring enormous computational costs  

(Gu et al., 2017; Masters et al., 2017; Singh et al., 2017). Many complex sim-

ulation models are multimodal, black-box and time-consuming, which is 

challenging for global optimization.

Commonly, it is difficult for derivative-based optimization methods 

to solve expensive black-box optimization problems (EBOPs) (Ong et al., 

2003). This is because large numbers of operations on expensive models 

produce a great computational burden, and meanwhile, uncertain error or 

noise from simulation codes affects the accuracy of approximate deriva-

tives. Additionally, derivative-based methods overly depend on starting 

points and easily get trapped in a local valley of multimodal problems. 

Derivative-free optimization algorithms (Jiang et  al., 2017; Meng et  al., 

2016; Pan, 2012; L. Wang et al., 2017) involving evolutionary computation 

DOI: 10.1201/9781003636267-7

https://doi.org/10.1201/9781003636267‑7
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(EC) or swarm intelligence (SI) have developed for several decades, which 

can optimize black-box models in parallel. These algorithms like parti-

cle swarm optimization (PSO) (Sun et al., 2013), gray wolf optimization 

(GWO), bat algorithm (BA), differential evolution (DE) (Rocca et al., 2011) 

and so on, have been widely used in actual applications. Although EC and 

SI have remarkable advantages in global optimization, they have to utilize 

large numbers of function evaluations to explore the design space, which 

is not efficient for EBOPs. An effective approach to address this issue is to 

build surrogate models in an optimization process.

Surrogate models, namely meta-models or response surfaces generally 

use obtained expensive samples to construct simple mathematical expres-

sions as approximate models of complex problems (Q. Zhou, Y. Wang, 

et al., 2017). Commonly used surrogate models such as Kriging, RBF and 

QRS can predict function values at the to-be-tested locations (Q. Zhou, P. 

Jiang, et al., 2017). Although prediction error is inevitable, surrogate mod-

els can still give useful guidance information for optimization to improve 

search efficiency. In general, a complete surrogate-based global optimiza-

tion (SGO) process includes the following steps: (1) Design of experiment 

(DOE), that is, an initial sampling process; (2) Construct surrogate models 

dynamically in each cycle; (3) Exploit surrogate models to find promis-

ing samples; (4) Explore sparsely sampled regions; (5) Evaluate the exact 

function values of obtained new samples; (6) Repeat Steps (2) to (5) until 

the termination criterion is met. A key factor or difficult point to develop 

an efficient and robust SGO algorithm is how to find a balance between 

“Exploitation and Exploration.” “Exploitation” refers to search based on 

surrogate models where a local or global optimizer can be employed to 

find the predictive best sample for subsequent model updating. Although 

optimization efficiency is improved, pure “Exploitation” may make the 

above search get stuck in a local valley. “Exploration” denotes search in 

sparsely sampled areas, which can make an algorithm jump out of local 

regions and continue looking for the global optimum.

Due to the wide existence of EBOPs in various fields, SGO has attracted 

a lot of attention. Jones et al. (1998) developed an efficient global optimi-

zation (EGO) algorithm, which maximizes an “Expected Improvement” 

criterion to capture the promising expensive samples. Gutmann (2001) 

introduced a distinctive SGO strategy that includes two steps: (1) Assume 

a target value for the true global optimum; (2) Select the next sample 

(combined with the target value) that will cause the least “bumpiness” of 
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surrogate models. Wang et al. (2004) presented a mode-pursuing sampling 

method for SGO, which can generate more samples around the function 

mode and meanwhile detect the regions possibly containing the global 

minimum based on QRS. Regis and Shoemaker (2007) proposed a sto-

chastic response surface method that can select a supplementary sample 

from a set of candidate points in each cycle by RBF approximation. Younis 

and Dong (2010) presented a region elimination algorithm that identifies 

several key unimodal regions to speed up the local search. Although most 

of the above-mentioned methods have better global convergence capabil-

ities, they have lower sampling efficiency in each cycle. In other words, 

these algorithms do not possess strong parallel capabilities.

Therefore, some scholars have begun to pay attention to both  

the total computation cost and the iterative efficiency (parallelism) in SGO  

 algorithms (Cai et  al., 2017). Ong et  al. (2003) developed a parallel  

SGO algorithm that combines a proposed hybrid optimizer with RBF. On 

the one hand, the hybrid optimizer utilizes an evolutionary algorithm to 

do global search; On the other hand, it employs the sequential quadratic 

programming algorithm to realize local search on RBF. Importantly, the 

parallelism of traditional evolutionary algorithms is retained in their 

method. Gu et al. (2017) presented a hybrid and adaptive SGO algorithm, 

HAM, that simultaneously uses Kriging, RBF and QRS to create several 

sets for parallel sampling. According to the importance of these sets, the 

number of to-be-selected samples in each set is different. The points that all 

three surrogate models approve will have a bigger opportunity to be sam-

pled. In order to supplement multiple samples in each cycle, Viana et al. 

(2013) developed a multi-surrogate EGO (MSEGO) algorithm. Instead 

of using one single surrogate model Kriging, MSEGO maximizes the 

“Expected Improvement” criterion over multiple surrogates. Krityakierne 

et al. (2016) provided a multi-point SGO strategy that draws lessons from 

the idea of multi-objective optimization. One objective is the expensive 

function value of a point, and the other one is the minimum distance of 

the point to other obtained points. Once the Pareto frontier is obtained, 

multiple sample points can be selected by a candidate search strategy. Li 

et al. (2016) decomposed the large-scale optimization space into several 

subspaces for local exploitation and global exploration, which can avoid 

the difficulties in constructing Kriging with a large size of training data. 

In addition, a heuristic criterion was proposed to select promising samples 

from candidate points obtained in these subspaces per iteration.



MGOSIC   ◾   169

This chapter introduces a new global optimization algorithm named 

MGOSIC to solve unconstrained EBOPs. In MGOSIC, three surrogate 

models, Kriging, radial basis function (RBF) and quadratic response sur-

faces (QRS) are dynamically constructed, respectively. Additionally, a 

multi-point infill criterion is proposed to obtain new points in each cycle, 

where a score-based strategy is presented to mark cheap points generated 

by Latin hypercube sampling. According to their predictive values from 

the three surrogate models, the promising cheap points are assigned with 

different scores. In order to obtain the samples with diversity, a max–min 

approach is proposed to select promising sample points from the cheap 

point sets with higher scores. Simultaneously, the best solutions predicted 

by Kriging, RBF and QRS are also recorded as supplementary samples, 

respectively. Once MGOSIC gets stuck in a local valley, the estimated mean 

square error of Kriging will be maximized to explore the sparsely sampled 

regions. Moreover, the whole optimization algorithm is carried out alter-

nately in the global space and a reduced space. In summary, MGOSIC not 

only brings a new idea for multi-point sampling but also builds a reason-

able balance between exploitation and exploration.

7.2 ALGORITHM FLOW

In this section, the proposed algorithm flow is provided. Before MGOSIC 

begins, an initialization process is required for the algorithm parameters 

like design ranges, internal parameters of surrogate models, termination 

variables, target values and so on. Subsequently, the specific algorithm 

steps are summarized as follows.

• Step  1 Utilize optimized Latin hypercube sampling (OLHS) (Jin 

et al., 2005) to identify initial sample points in the original design 

range and then evaluate their exact sample values.

• Step  2 Create a database to save these expensive samples. Besides, 

sort all the samples by their expensive function values.

• Step 3 Construct Kriging, RBF and QRS models based on the sam-

ples in the database, respectively.

Figure 7.1 shows a specific example to demonstrate Steps 1 to 3. 

The employed function is called Himmelblau, which is a multimodal 

problem. Kriging and RBF can capture the nonlinear feature of 

Himmelblau, while QRS can just identify a general trend.



170   ◾   Data-Driven Global Optimization Methods and Applications

• Step 4 Create a reduced subspace around the present best solution to 

speed up the local convergence.
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FIGURE 7.1 Construction of surrogate models.
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where Si
best is the present best solution, Lbi

Range and Ubi
Range are the 

lower and upper bounds of the original design space, and Lbi
Sub and 

Ubi
Sub are the bounds of the new subspace. In Eq. (7.1), w is a weight 

coefficient that determines the size of this subspace. In this chapter, 

w is set as 0.1.

• Step 5 Determine which space, the subspace or global space, will be 

regarded as the search space in accordance with the present num-

ber of iterations. Define the numbers of the total cheap points (N1 

and N2), and the numbers of promising samples (M1 and M2) in 

the subspace and global space, respectively. In the subsequent tests, 

N1 = 10,000 and N2 = 1,000, M1 = 100 and M2 = 500.

• Step 6 Judge whether MGOSIC has got stuck in a local valley. If so, 

the samples with bigger MSE values of Kriging will be chosen to 

explore the sparsely sampled area. In the subsequent sections, more 

details will be provided.

• Step 7 Evaluate Kriging, RBF and QRS values at all the N cheap sam-

ple points and select the top M samples from the three groups of 

results, respectively. The points that are located in the top M samples 

of all three surrogate models have a score of 3, and those located in 

the top M samples of two surrogate models have a score of 2.

• Step 8 Firstly, save the predictive optimal points from Kriging, RBF 

and QRS, respectively. Furthermore, select K1 and K2 promising solu-

tions from the point sets with scores 2 and 3, respectively. All these 

points will be used to update the previous database. More details 

about Steps 7 and 8 will be shown in the following section.

• Step 9 Delete repeated samples to avoid unnecessary computation.

• Step 10 Evaluate expensive function values at the newly added sam-

ple points and sort them. Repeat Steps 2 to 10 until a termination 

criterion is satisfied.

For better readability, a flowchart of MGOSIC is shown in Figure 7.2. The 

termination criterion for the subsequent test is suggested as follows.
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FIGURE 7.2 Flowchart of MGOSIC.

where NFE denotes the number of function evaluations, target refers 

to target values of expensive black-box problems, and dim represents 

dimensions.

7.3 MULTI-POINT INFILL CRITERION

Before introducing this proposed infilling criterion, we will give an exam-

ple to make it easier to understand. Assume that there is a businessman 

who has no idea about how to choose rabbits but wants to buy ten better 
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ones from 1,000 rabbits. Besides, there are three experienced experts, each 

of whom can recommend 100 better rabbits for the businessman based on 

their respective opinions. Under this circumstance, firstly, the business-

man should buy the best ones that are recommended by the three experts, 

respectively; Secondly, the businessman should identify which ones from 

the 300 rabbits are recommended by all three experts, two experts and one 

expert. Naturally, the businessman will select more rabbits that are jointly 

recommended by more experts.

Intuitively, Kriging, RBF and QRS are three experienced experts who 

can guide an optimization process, MGOSIC is the businessman and sam-

ple points are those rabbits. The total number of cheap points is N and the 

number of recommended sample points is M. In this proposed infilling 

criterion, three best solutions are first selected based on the three surrogate 

models. The specific formulas are summarized below.
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where Ykrg
ranki, Yrbf

ranki and Yqrs
ranki are the ith ranked predictive values from 

Kriging, RBF and QRS, respectively. Besides, 1Skrg
rank , 1Srbf

rank  and 1Sqrs
rank  are 

the best solutions obtained from the three surrogate models. In order to 

improve the search accuracy, 1Skrg
rank , 1Srbf

rank  and 1Sqrs
rank  can be obtained from 

the three surrogate models by a global optimizer. In this chapter, the GWO 

is employed to get them.

Subsequently, MGOSIC fuses the sample points from Matrixkrg
topM, 

Matrixrbf
topM and Matrixqrs

topM into one big matrix, in which generally there are 

multiple groups of repeated sample points. A scoring strategy is proposed 

below.
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In the big matrix, scores of these points equal the number of their occur-

rences. k1, k2 and k3 represent the number of sample points in the three 

sets. The specific pseudo code about the proposed scoring strategy is sum-

marized below.

Algorithm 7.1 Scoring Mechanism

(01)  Begin

(02) S_hybrid ← Skrg
topM,Srbf

topMand Sqrs
topM

(03) m ← Calculate the total number of sample points in S_hybrid.

(04) Score ← Define a unit vector with the length m.

(05) Z ← Define an empty logical variable.

(06) for i ← 1 to m−1

(07) for j ← i+1 to m

(08)  Z ←S_hybrid (i, :)== S_hybrid (j, :).

(09)  Ztemp ←True value 1.

(10)  for k ← 1 to d

(11)  Ztemp ←Ztemp && Z(k)

(12)  end for
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(13)  if Ztemp == 1

(14)  Score(i) ← Score(i)+1;

(15)  Score(j) ← Score(j)+1;

(16)  end if

(17) end for

(18) end for

(19) Sscore3 ← Delete repeated points in S_hybrid ((Score==3), :) and save 

them.

(20) Sscore2 ← Delete repeated points in S_hybrid ((Score==2), :) and save 

them.

(21) Sscore1 ← Delete repeated points in S_hybrid ((Score==1), :) and save 

them.

(22)  End

Figure  7.3 provides an example on Ackley to demonstrate the scoring 

strategy clearly. Assume that there are ten expensive samples (dots in 

Figure 7.3a), and Kriging, RBF and QRS are constructed in Figure 7.3b–d, 

FIGURE 7.3 Ackley and its surrogate models. (a) Original Ackley function. (b) 

Kriging model of Ackley. (c) RBF model of Ackley. (d) QRS model of Ackley.
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FIGURE 7.4 Illustration of scoring strategy.

respectively. LHS is used to generate 10,000 cheap points and each sur-

rogate model provides their respective top 500 points based on Eq. (7.3). 

Finally, Figure 7.4 shows the point sets with scores 1, 2 and 3, which are 

obtained by Eq. (7.4).

In this work, the newly added sample points will be selected from the 

point sets with scores 3 and 2. Additionally, in order to keep sampling 

diversity, the to-be-added points need to satisfy a proposed max–min cri-

terion. “max–min” denotes that the minimum distance is maximized, and 

its pseudocode is shown below.

Algorithm 7.2 A Proposed Max–Min Criterion

(01)  Begin

(02) S_temp ← All the present expensive sample points.

(03) SscoreX_new ← Empty.

(04) if the number of points in set SscoreX > N (In this chapter, N is set as 2)

(05) K ← N.

(06) else

(07) K ← the number of points in SscoreX.

(08) end if

(09) for i ← 1 to K
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(10)  Dis ←find the nearest neighbors in S_temp for each point in 

SscoreX, and get the minimum distance vector.

(11) Max_dis ←find the maximum distance from Dis

(12) Max_point ←find the corresponding point in SscoreX.

(13) SscoreX_new ← [SscoreX_new; Max_point]

(14) S_temp ← [S_temp; Max_point]

(15) end for

(16)  End

In Algorithm 7.2, SscoreX_new is the selected sample points, which can 

make MGOSIC have a better space-filling feature in the neighborhood 

of the present promising regions. Actually, this max–min criterion aims 

at selecting points that possess the maximum difference with the known 

expensive samples from the two promising point sets. Figure 7.5 gives an 

example to explain the max–min approach. Firstly, each new point (dots) 

needs to find its closest neighbor (squares) and the corresponding mini-

mum distance in the space. As Figure 7.5 shows the four minimum dis-

tances are 0.2558, 0.3245, 0.3360 and 0.7933 and Point 3 and Point 4 will 

be chosen as supplementary sample points.

FIGURE 7.5 Illustration of max–min approach.
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As Step 4 in Section 3.1 has introduced, the best samples from Kriging, 

QRS and RBF are obtained in the original design space, and the scored 

samples are alternately selected in a reduced space and the original space. 

Figure  7.6 shows the search process of MGOSIC on Ackley, where  tri-

angles are DOE points, gray small dots are cheap points generated by LHS, 

big gray dots are updated points in the current iteration, and black dots 

are supplementary points in the last iteration. In Figure 7.6(a, seven new 

points are captured from the original design space, and five new points 

are obtained in Figure 7.6b. During the first iteration, three best predicted 

solutions [−0.7137, 0.7144], [−0.7346, 0.5641] and [−0.0504, 0.2226] are 

obtained from the three surrogate modes, respectively. Besides, four points 

[−0.8786, 3.8146], [−3.8661, 2.1467], [0.5865, −2.0495] and [−3.4302, 1.7663] 

are selected from the cheap points by the presented infill criterion. It can 

be found that the four infill points can effectively explore the sparsely sam-

pled area of the design space. Moreover, in the second iteration, three best 

predicted solutions [0.0412, 0.1741], [0.8092, 0.0452] and [0.0832, 0.1683] 

are supplemented, and meanwhile two infill points [0.1704, 0.1415] and 

[0.0243, 0.0981] around the present best solution are acquired by the pre-

sented strategy. After the two iterations, the best solution [0.0243, 0.0981] 

that is close to the global optimal solution [0, 0] has been found. Obviously, 

the cheap points in Figure 7.6a are distributed over the whole design space, 

realizing the global exploration. In Figure 7.6b, the cheap points gathering 

in a promising space around the present best solution effectively enhance 

the local search. It is worth noting that the coefficient w in Eq. (7.1) deter-

mines the size of the reduced space and meanwhile affects the density of 

FIGURE  7.6 Search process of MGOSIC. (a) Original Ackley function.  

(b) Kriging model of Ackley.
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cheap points. Essentially, a smaller w can bring a high density of cheap 

points around the present best solution, which promotes the local search. 

However, when w is too small, the search space is overly limited, which 

may decrease the search efficiency. Hence, the proposed range for w is 

[0.05, 0.15], and w is defined as 0.1 in the subsequent tests.

7.4 EXPLORATION OF UNKNOWN AREA

The above-mentioned infilling criterion mainly focuses on the promis-

ing locations predicted by Kriging, RBF and QRS. Besides, the proposed 

max–min criterion can make MGOSIC have a better space-filling perfor-

mance in a local region, but cannot explore the sparsely sampled regions 

in the global space. Therefore, the estimated MSE of Kriging is employed 

to explore unknown areas of the global space. In this work, a local condi-

tion is defined to judge whether MGOSIC gets stuck in a local valley or 

not. In each iteration, the average change of the top P sample values will 

be recorded. Furthermore, if they do not change obviously during several 

successive iterations, the exploration strategy will begin working. The spe-

cific pseudo code is listed as follows.

Algorithm 7.3 Exploration Unknown Area

(01)  Begin

(02) Rank_value ← Sort all the present best sample values.

(03) MeanbestY(iteration) ← Get mean values of the top P sample val-

ues in each iteration. (In this chapter, P is set as 3)

(04) if the number of iterations> Q (In this chapter, Q is set as 5)

(05) GVI ← | MeanbestY(end)− MeanbestY(end-5)|.

(06) end if

(07) if GVI < ∆ (In this chapter, the default value of ∆ is 1e−4)

(08)  Smse ← Get multiple sample points in the original design range 

by LHS.

(09) for i ← 1 to m (In this work, m equals to 30d)

(10)  MSE ← Get the estimated MSE values of Kriging at Smse

(11) end for

(12)  S_exploration ← Sort MSE and select two samples with the max-

imal MSE values.

(13) end if

(14)  End
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7.5 COMPARISON EXPERIMENTS

In order to demonstrate the capability of MGOSIC, two parts of bench-

mark cases (Gu et al., 2012; Long et al., 2015) including lower-dimensional 

(d = 2–5) and higher-dimensional problems (d = 6–20) are used for testing. 

These representative cases have different characteristics involving multi-

modal, convex, large-scale and so on. Additionally, the specific target val-

ues of all the cases are given in this chapter, and more details are listed 

in Tables 7.1 and 7.2. It can be found that all the proposed target values 

are much closer to the true global minima. Finally, an algorithm will stop 

when the termination criterion in Eq. (7.2) is satisfied.

7.5.1 Preliminary Comparison and Analysis

As our previous introduction, EGO (Jones et  al., 1998) is a well-known 

SGO algorithm and has advantages in low-dimensional multimodal prob-

lems. Similarly, CAND presented by Regis and Shoemaker (2007) also has 

a remarkable performance in low-dimensional problems. Hence, EGO 

and CAND are tested on two-dimensional cases as a preliminary contrast. 

TABLE 7.1 Comparison on Low-Dimensional Problems

Func.

MGOSIC EGO CAND

Values 

Range

NFE NIT Values 

Range

NFE NIT Values 

Range

NFE NIT

Ack [5.98e−7, 
7.19e−4]

75.8 12.4 [5.55e−2, 
7.87e−1]

>300(10) >293 [5.30e−4, 
1.93e−3]

>227.8(6) >220.8

BA [3.66e−6, 
9.67e−4]

35.5 5.9 [1.06e−4, 
1.34e−2]

>168.6(4) >161.6 [6.18e−5, 
8.56e−4]

217.8 210.8

Peak [−6.551, 
−6.538]

50.9 8.7 [−6.551, 
−6.505]

27.2 20.2 [−6.550, 
−6.502]

29.3 22.3

SE [−1.457, 
−1.450]

34.5 5.6 [−1.457, 
−1.450]

45.4 38.4 [−1.456, 
−1.451]

32.9 25.9

GP [3.001, 
3.005]

93.1 16.8 [3.000, 
3.684]

>262(8) >255 [3.000, 
3.009]

111.4 104.4

F1 [−2.000, 
−1.993]

116.9 19.2 [−2.000, 
−1.994]

95.4 88.4 [−1.999, 
−1.992]

202.3 195.3

HM [3.63e−6, 
8.50e−4]

40.5 6.5 [9.71e−5, 
6.51e−2]

>225.7(7) >218.7 [1.09e−5, 
9.15e−4]

83.9 76.9

GF [0.5233, 
0.5234]

51 8.9 [0.5233, 
0.5459]

>209.8(6) >202.8 [0.5233, 
0.5234]

38.8 31.8

RS [3.55e−14, 
7.77e−4]

52.7 8.7 [5.03e−3, 
3.35e−1]

>300(10) >293 [6.52e−5, 
1.990]

>267.5(8) >260.5
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Considering the randomness of these algorithms, all the following tests 

are repeated ten times. Table  7.1 shows the comparison results, includ-

ing the range of obtained best values (Values Range), number of function 

evaluations (NFE) and number of iterations (NIT). Here, NFE and NIT in 

Table 7.1 are mean values. The symbol “>” means that target values cannot 

be found within the maximal NFE, and the numbers in “()” represent the 

failure times. From Table 7.1, it can be seen that MGOSIC can efficiently 

find all the target values. Although EGO and CAND have a good perfor-

mance on Peak, SE and F1, they need more NFE and NIT than MGOSIC 

to get close to these target values in most cases. Especially, Ack and RS 

have so many local valleys that EGO and CAND can hardly succeed in 

most cases. More importantly, EGO and CAND can just add one point in 

each cycle, which causes larger NIT values than MGOSIC. In addition, the 

widely used global optimization algorithm DE is also tested for compari-

son on higher-dimensional cases. For DE, the maximal allowable NFE is 

10,000. Like Table 7.1, Table 7.2 gives the similar comparison results. It is 

TABLE 7.2 Comparison on Higher-Dimensional Problems

Func.

MGOSIC DE

Values Range NFE NIT Values Range NFE NIT

Levy [3.36e−4, 
9.86e−4]

169 27.9 [2.35e−4, 
9.67e−4]

2,290 114.5

DP [2.56e−4, 
9.94e−4]

325.8 53.9 [1.80e−4, 
9.02e−4]

3,860 193

ST [−195.77, 
−195.15]

214.7 34.2 [−195.51, 
−181.49]

>5,884(2) >294.2

HN6 [−3.319, 
−3.301]

77.5 11.7 [−3.312, 
−3.300]

3,488 174.4

Schw [7.54e−5, 
9.72e−4]

301.9 47.1 [2.24e−4, 
9.08e−4]

3,914 195.7

GW [4.63e−4, 
9.94e−4]

332.9 48 [0.426, 
0.725]

>1e4(10) >500

Trid [−209.99, 
−209.56]

87.6 13 [−209.73, 
−209.01]

4672 233.6

Sums [2.31e−15, 
4.27e−13]

145.3 25.1 [7.11e−4, 
1.25e−3]

>8,556(1) >427.8

F16 [25.959, 
26.096]

81.5 9.1 [26.021, 
26.100]

2,728 136.4

Sphere [2.93e−4, 
9.98e−4]

171 28.5 [9.47e−4, 
7.61e−3]

>9,990(9) >499.5
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obvious that traditional global optimization algorithms need more NFE 

and NIT than MGOSIC on these higher-dimensional cases.

Additionally, MGOSIC are also compared with two SGO algorithms 

with multi-point infill criteria. One is called SOCE (Dong et al., 2018) that 

is a clustering-based global optimization algorithm using Kriging and 

QRS to build surrogates; the other one named MSEGO was presented by 

Viana et  al. (2013), which extends the original EGO to sample multiple 

points per cycle by using several surrogates. Tables 7.3 and 7.4 provide the 

comparison results, where the data of MSEGO and EGO come from the 

reference Long et  al. (2015) and the results of SOCE are obtained from 

Dong et  al. (2018). As Long et  al. (2015) mentioned, EGO and MSEGO 

were tested by Viana’s surrogate toolbox (Viana et al., 2013), and MSEGO 

supplemented three points per cycle in their tests. Besides, due to the adap-

tive sampling feature, SOCE has an uncertain sampling number, but most 

of the time it adds three points per cycle. From Tables  7.3 and 7.4, it is 

clear that all four algorithms can get much closer to the true global optima 

on SE, Peak, SC and BR which are nonlinear problems with fewer local 

TABLE 7.3 Obtained Values of EGO, MSEGO, SOCE and MGOSIC

Func.

EGO MSEGO SOCE MGOSIC

Var. Range Median

Var. 

Range Median Var. Range Median Var. Range Median

SE [−1.456, 
−1.436]

−1.453 [−1.456, 
−1.454]

−1.456 [−1.456, 
−1.448]

−1.456 [−1.457, 
−1.450]

−1.455

Peak [−6.550, 
−6.383]

−6.550 [−6.498, 
−5.979]

−6.498 [−6.551, 
−6.494]

−6.544 [−6.551, 
−6.538]

−6.549

SC [−1.032, 
−1.031]

−1.031 [−1.024, 
−0.987]

−1.024 [−1.032, 
−1.030]

−1.032 [−1.032, 
−1.030]

−1.031

BR [0.398, 
0.400]

0.398 [0.398, 
0.431]

0.398 [0.398, 
0.399]

0.399 [0.398, 
0.398]

0.398

F1 [−1.375, 
−1.283]

−1.375 [−1.874, 
−1.636]

−1.874 [−2.000, 
−1.980]

−1.994 [−2.000, 
−1.993]

−1.999

GF′ [0.966, 
3.480]

0.966 [0.001, 
0.035]

0.001 [0.003, 
0.009]

0.007 [1.17e−4, 
9.56e−4]

5.50e−4

GP [7.581, 
43.353]

7.581 [3.002, 
3.014]

3.002 [3.000, 
3.029]

3.008 [3.001, 
3.005]

3.001

GN [0.459, 
0.459]

0.459 [0.176, 
0.627]

0.177 [3.33e−15, 
4.81e−3]

7.33e−4 [6.33e−15, 
7.18e−4 ]

3.61e−4

HN6 [−3.316, 
−3.308]

−3.313 [−3.208, 
−3.052]

−3.145 [−3.317, 
−3.290]

−3.306 [−3.319, 
−3.301]

−3.311
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minima, but MSEGO requires more NFE. For F1 and GN that possess lots 

of local minima, EGO and MSEGO have a worse performance. Relatively, 

MSEGO with the help of multiple surrogate models can find better solu-

tions than EGO on F1 and GN, but NFE also gets larger at the same time. 

In Tables 7.3 and 7.4, GF′ is the same as GF in Table 7.1, except that the 

variable range of GF′ is [−5, 5]. Among the four algorithms, EGO has the 

worst performance on GF′ and GP within 41 iterations, but it is very effi-

cient on HN6. SOCE has an acceptable performance in all nine cases, but 

it usually uses more function evaluations and iterations than MGOSIC. 

In summary, compared with others, MGOSIC needs fewer NIT and can 

always efficiently get the target values on these cases.

7.5.2 Analysis and Discussion

After the preliminary comparisons, MGOSIC has shown its powerful capa-

bility in solving expensive black-box problems. In order to further dem-

onstrate its significance, two recently presented SGO algorithms, MSSR 

(Dong et al., 2016) and HAM (Gu et al., 2012), are tested for comparison. 

Since the maximal sampling number per iteration (MSNPI) in MGOSIC 

is 7, and HAM most of the time also adds about seven points per cycle, 

the MSNPI of MSSR is also defined as seven in this test. Firstly, a group of 

representative iterative results that can reflect their average performance 

is listed in Figure  7.7. In order to make it clearer, some sub-graphs like 

Figure  7.7p and r are locally magnified, and some are improved by the 

log10 function. Intuitively, MGOSIC can always find the target values 

more quickly in most cases. Sometimes, MGOSIC may get stuck on mul-

timodal problems like Peak, GP, F1, RS, but it can successfully jump out 

TABLE 7.4 Mean NFE and NIT of EGO, MSEGO, SOCE and MGOSIC

Func.

EGO MSEGO SOCE MGOSIC

Mean 

NFE

Mean 

NIT

Mean 

NFE

Mean 

NIT

Mean 

NFE

Mean 

NIT

Mean 

NFE

Mean 

NIT

SE 52 41 109.6 33.5 33.4 9.3 34.5 5.6

Peak 42.6 31.6 130.4 40.5 37.3 11.7 50.9 8.7

SC 32.6 21.6 131.2 40.7 34.9 10 41 7

BR 36.1 25.1 112.6 34.5 25.9 7.1 40.2 6.8

F1 52 41 131.4 40.8 108.5 27.8 116.9 19.2

GF’ 52 41 132.0 41 113.5 35.1 123.6 22.7

GP 52 41 120.4 37.1 145.9 45.5 93.1 16.8

GN 52 41 132.0 41 95.7 27.2 44.8 7.2

HN6 68.8 13.8 176.0 41 89.1 24.7 77.5 11.7
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of the local optimal regions and find the global optima at last. Conversely, 

HAM lacks an effective exploration strategy, so it frequently misses the 

global optima. Since MSSR is only guided by Kriging, it overly relies on the 

predictive capability of Kriging. Therefore, MSSR has worse performance 

on AK, RS, HN6, Schw and GW. From these iterative figures, it can be 

found that MGOSIC is more efficient than HAM and MSSR. Moreover, 

FIGURE 7.7 Iterative results of MGOSIC, MSSR and HAM. (a) ACK. (b) BA. (c) 

Peak. (d) SE. (e) GP. (f) F1. (g) HM. (h) GF. (i) RS. (j) Levy. (k) DP. (l) ST. (m) HN6. 

(n) Schw. (o) GW. (p) Trid. (q) Sums. (r) F16. (s) Sphere.

(Continued)
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in order to compare their stability, each test is repeated ten times and the 

detailed data are shown in Tables  7.5–7.7. The termination criterion in 

Eq. (7.2) is employed for the three algorithms. Here, “NFE Range,” “NIT 

Range” and “Values Range” denote the ranges of obtained NFE, NIT and 

best values during the ten tests, respectively. Besides, “R.” represents ranks 

of the three algorithms, which are obtained based on their average perfor-

mance. In Table 7.7, “SR” is the abbreviation of “Success Rate.”

In Tables 7.5–7.7, there is no doubt that MGOSIC has the highest efficiency 

and strongest stability. MSSR and HAM have a satisfactory performance on 

low-dimensional problems. MSSR can find the target value on Peak using 

the fewest NFE, and HAM has the best performance on F1. Although MSSR 

and HAM can hardly find the target value on ACK, sometimes they can 

get much closer to 1e−4. Besides, compared with MSSR, HAM has a lower 

success rate on multimodal problems Peak and SE. Since the target value 

FIGURE 7.7 (Continued) Iterative results of MGOSIC, MSSR and HAM. (a) ACK. 

(b) BA. (c) Peak. (d) SE. (e) GP. (f) F1. (g) HM. (h) GF. (i) RS. (j) Levy. (k) DP. (l) 

ST. (m) HN6. (n) Schw. (o) GW. (p) Trid. (q) Sums. (r) F16. (s) Sphere.
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of GF is quite strict, HAM cannot find it within 300 function evaluations. 

Although the case RS has a lot of local optimal solutions, it has an over-

all downward trend that can be predicted accurately by QRS. Therefore, 

MGOSIC and HAM that use QRS to construct surrogate models have 

higher efficiency. With the dimension increasing, the success rate of MSSR 

and HAM decreases significantly. Especially, MSSR and HAM can hardly 

TABLE 7.5 Statistical NFE of MGOSIC, MSSR and HAM on All Cases

Func.

MGOSIC MSSR HAM

NFE Range Mean R. NFE Range Mean R. NFE Range Mean R.

Ack [15, 149] 75.8 1 [>300, 
>300] (10)

>300 2 [>300, 
>300] (10)

>300 2

BA [28, 40] 35.5 1 [51, 141] 89.5 3 [44, 117] 72.8 2

Peak [18, 99] 50.9 2 [24, 73] 38.4 1 [26, >300]
(3)

>114.8 3

SE [27, 42] 34.5 1 [26, 86] 37.6 2 [22, >300]
(2)

>91.5 3

GP [82, 106] 93.1 1 [76, 165] 122.8 3 [81, 172] 110.8 2

F1 [42, 193] 116.9 2 [27, 242] 158 3 [34, 171] 92.8 1

HM [30, 49] 40.5 1 [34, 145] 59.2 2 [29, 159] 74.1 3

GF [28, 69] 51 1 [20, 129] 60.3 2 [>300, 
>300] (10)

>300 3

RS [15, 95] 52.7 1 [47, >300]
(4)

>200.3 3 [46, 243] 86.8 2

Levy [90, 285] 169 1 [154, >500]
(4)

>337.8 2 [102, >500]
(7)

>389.8 3

DP [241, 461] 325.8 1 [>500, 
>500](10)

>500 3 [326, >500]
(6)

>440.2 2

ST [62, 389] 214.7 1 [80, >500]
(6)

>339.8 2 [124, >500]
(5)

>373.5 3

HN6 [52, 228] 77.5 1 [59, 218] 107.4 2 [87, >500]
(2)

>181.1 3

Schw [242, 334] 301.9 1 [>500, 
>500](10)

>500 2 [>500, 
>500](10)

>500 2

GW [263, 428] 332.9 1 [>500, 
>500](10)

>500 3 [375, >500]
(9)

>490.5 2

Trid [73, 136] 87.6 1 [162, >500]
(8)

>438.6 2 [>500, 
>500](10)

>500 3

Sums [144, 146] 145.3 1 [>500, 
>500](10)

>500 3 [368, >500]
(7)

>466.7 2

F16 [72, 93] 81.5 1 [103, 197] 161.7 2 [184, >500]
(5)

>363.2 3

Sphere [152, 186] 171 1 [>500, 
>500](10)

>500 2 [>500, 
>500](10)

>500 2
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TABLE 7.6 Statistical NIT of MGOSIC, MSSR and HAM on All Cases

Func.

MGOSIC MSSR HAM

NIT Range Mean R. NIT Range Mean R. NIT Range Mean R.

Ack [2, 24] 12.4 1 [>48, >59] >55 3 [>49, >55] >52.4 2

BA [5, 7] 5.9 1 [12, 25] 17.5 3 [7, 19] 11.3 2

Peak [3, 19] 8.7 1 [7, 22] 10.6 2 [4, >47] >17.4 3

SE [4, 7] 5.6 1 [8, 33] 14.2 3 [3, >48] >13.9 2

GP [15, 19] 16.8 1 [15, 28] 21.8 3 [13, 28] 17.8 2

F1 [8, 29] 19.2 2 [10, 96] 55 3 [5, 25] 13.7 1

HM [5, 8] 6.5 1 [9, 28] 14.6 3 [4, 24] 11.1 2

GF [5, 12] 8.9 1 [7, 24] 15.4 2 [>45, >49] >47.3 3

RS [2, 16] 8.7 1 [13, >84] >50.5 3 [7, 37] 13 2

Levy [15, 46] 27.9 1 [35, >85] >61.6 2 [16, >85] >64.2 3

DP [41, 73] 53.9 1 [>74, >93] >79.8 3 [52, >82] >70.2 2

ST [9, 62] 34.2 1 [21, >102] >61.7 3 [19, >78] >56.1 2

HN6 [8, 37] 11.7 1 [13, 74] 30.9 3 [13, >78] >27.4 2

Schw [37, 52] 47.1 1 [>87, >121] >98.1 3 [>80, >83] >82.3 2

GW [39, 62] 48 1 [>68, >75] >69.5 2 [70, >99] >94.9 3

Trid [11, 20] 13 1 [26, >84] >68.8 2 [>83, >88] >85.8 3

Sums [25, 26] 25.1 1 [>82, >136] >109.1 3 [61, >88] >80 2

F16 [7, 12] 9.1 1 [53, 119] 96.3 3 [28, >85] >59.5 2

Sphere [24, 32] 28.5 1 [>122, >146] >132 3 [>94, >98] >96.1 2

TABLE 7.7 Statistical Best Values of MGOSIC, MSSR and HAM on All Cases

Func.

MGOSIC MSSR HAM

Values 

Range

SR R. Values 

Range

SR R. Values 

Range

SR R.

Ack [5.98e−7, 
7.19e−4]

1 1 [8.96e−3, 
2.581]

0 2 [3.33e−3, 
5.16e−1]

0 2

BA [3.66e−6, 
9.67e−4]

1 1 [7.73e−5, 
7.86e−4]

1 1 [3.98e−6, 
7.06e−4]

1 1

Peak [−6.551, 
−6.538]

1 1 [−6.551, 
−6.501]

1 1 [−6.551, 
−3.050]

0.7 2

SE [−1.457, 
−1.450]

1 1 [−1.456, 
−1.450]

1 1 [−1.457, 
2.866]

0.8 2

GP [3.001, 
3.005]

1 1 [3.000, 
3.009]

1 1 [3.000, 
3.009]

1 1

F1 [−2.000, 
−1.993]

1 1 [−2.000, 
−1.992]

1 1 [−2.000, 
−1.993]

1 1

HM [3.63e−6, 
8.50e−4]

1 1 [2.15e−6, 
5.13e−4]

1 1 [8.32e−7, 
8.00e−4]

1 1

(Continued)
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find the target values of DP, Schw, GW, Sums and Sphere. Besides, MSSR 

and HAM have the lower success rate on ST. On the contrary, MGOSIC 

still has the remarkable performance on high-dimensional problems. It is 

worth noting that MGOSIC just uses 87.6 and 81.5 function evaluations on 

Trid and F16, respectively. What is more, for the 20- dimensional problem 

Sphere, MGOSIC just needs 171 function evaluations. More importantly, 

MGOSIC uses the fewest NIT to find the target values in most cases, which 

reflects its outstanding parallel capability. To sum up, MGOSIC is an effi-

cient SGO algorithm that can be applied for EBOPs.

7.5.3 Engineering Applications

In order to demonstrate the engineering applicability of MGOSIC, the 

optimal shape design of a two-dimensional hydrofoil is used for the test. 

TABLE 7.7 (Continued) Statistical Best Values of MGOSIC, MSSR and HAM on All 

Cases

Func.

MGOSIC MSSR HAM

Values 

Range

SR R. Values 

Range

SR R. Values 

Range

SR R.

GF [0.5233, 

0.5234]

1 1 [0.5233, 

0.5234]

1 1 [0.5235, 

0.5276]

0 2

RS [3.55e−14, 

7.77e−4]

1 1 [5.96e−6, 

0.995]

0.6 2 [1.46e−6, 

8.13e−4]

1 1

Levy [3.36e−4, 

9.86e−4]

1 1 [2.97e−4, 

1.04e−2]

0.6 2 [1.51e−4, 

5.51e−2]

0.3 3

DP [2.56e−4, 

9.94e−4]

1 1 [1.33e−3, 

1.14e−1]

0 3 [1.25e−4, 

6.17e−1]

0.4 2

ST [−195.77, 

−195.15]

1 1 [−195.62, 

−167.56]

0.4 3 [−195.52, 

−181.55]

0.5 2

HN6 [−3.319, 

−3.301]

1 1 [−3.317, 

−3.302]

1 1 [−3.316, 

−3.203]

0.8 2

Schw [7.54e−5, 

9.72e−4]

1 1 [1.38e−2, 

1.89e−1]

0 2 [2.51e−2, 

1.864]

0 2

GW [4.63e−4, 

9.94e−4]

1 1 [0.691, 

2.561]

0 3 [8.07e−4, 

0.632]

0.1 2

Trid [−209.99, 

−209.56]

1 1 [−209.74, 

−200.87]

0.2 2 [−207.33, 

−78.88]

0 3

Sums [2.31e−15, 

4.27e−13]

1 1 [1.01e−2, 

2.21e−1]

0 3 [4.87e−4, 

1.77e−1]

0.3 2

F16 [25.959, 

26.096]

1 1 [26.021, 

26.096]

1 1 [25.968, 

27.039]

0.5 2

Sphere [2.93e−4, 

9.98e−4]

1 1 [4.90e−3, 

9.24e−2]

0 2 [6.30e−3, 

4.24e−1]

0 2
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The geometric parameterization for the hydrofoil employs the class and 

shape function transformation (CST) method (Kulfan, 2008) that is origi-

nally expressed as follows:
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where C(•) and S(•) are the class and shape functions, respectively. Besides, 

c refers to the chord length of the hydrofoil, ZTE/c denotes the thickness 

of the tail flange, and N1 and N2 are two coefficients to decide the class 

of the hydrofoil. It is worth noting that vr and Sr,n come from Bernstein 

polynomials. In this chapter, we modify the CST formulas to make them 

appropriate for the proposed optimization problem as below.

 ( ) ( ) (1 ) ( )0

0

1 2 ∑= + −

=

y x y x x x A S xu
N N

ui i

i

n

 (7.8)

 ( ) ( ) (1 ) ( )0

0

1 2 ∑= + −

=

y x y x x x A S xl
N N

li i

i

n

 (7.9)

where yu(x), yl(x) and y0(x) refer to the upper bounds, lower bounds and a 

basic hydrofoil, respectively. Here, x represents the coordinate along the 

chord of the hydrofoil, and y is the coordinate along the thickness direc-

tion. The class coefficients N1 and N2 are constants 0.5 and 1, and n is set 

as 5. Considering that the upper and lower curves have the same radius 

of the front edge, Au0 equals to −Al0. Hence, nine Bernstein coefficients 

Ai are regarded as design variables of this optimization problem, and 

their design ranges come from two basic airfoils “modified NACA0008” 

and NACA0016. Figure  7.8 shows the design space of the hydrofoil. 

Additionally, the length of the chord and the angle of attack are also 

regarded as design variables. The objective is to minimize the drag coef-

ficient, and meanwhile, the area and lift coefficients are supposed to satisfy 

inequality constraints.
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The specific optimization formula is summarized as follows.

 

=

≤ ≤ − ≤ ≤ − ≤ ≤

− ≤ ≤ ≤ ≤ − ≤ ≤

− ≤ ≤ − ≤ ≤ − − ≤ ≤

≤ ≤ ≤ ≤

≥

≥

≥

min

: [ , , ]

0 0.1141; 0.0232 0.1008; 0.010 0.1072;

0.0050 0.0815; 0.005 0.111; 0.1008 0.013;

0.1072 0.022; 0.0815 0.0258; 0.1112 0.1445;

0.2 0.3; 3 4;

. . 0.3510

0.0051

0.12

1 2 3

4 5 6

7 8 9

c

X paraments A c aoa

A A A

A A A

A A A
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s t c

S
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(7.10)

where c is the length of the chord, aoa refers to the angle of attack, cl is the 

lift coefficient, S refers to the area and thick represents the maximal thick-

ness. The reference values 0.3510, 0.0051 and 0.12 come from NACA0012, 

which will be regarded as the reference case. Considering that MGOSIC 

FIGURE 7.8 Design space of the hydrofoil.
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and other comparison methods are mainly developed for box-constrained 

problems, Equation (7.10) is modified as follows by a penalty function.

 
min max 0.3510 ,0 max 0.0051 ,0 max 0.12 ,0

: [ , , ]

( )( ) ( ) ( )+ × − + − + −

=

c P c S thick

designrange X paramentsA c aoa

d l

(7.11)

where P is the penalty factor that is defined as 106. The modified objective 

function including all the response values like lift coefficient, drag coef-

ficient, area and thickness is directly approximated by surrogates, which 

is easy to implement in an actual engineering application. The simula-

tion analysis is realized by Computational Fluid Dynamics (CFD), and 

the maximal iteration number is set as 500 that generally can get satis-

factory convergence results. Each analysis process from parametric mod-

eling to CFD simulation will cost about 1.5 minutes. In this chapter, we 

employ MGOSIC, MSSR and HAM to realize the optimization design of 

this hydrofoil, and the maximal allowable times of simulation are 300. 

Figure 7.9 shows the grid partition of the hydrofoil, and Figure 7.10 shows 

the pressure contour of the reference case NACA0012.

FIGURE 7.9 Grid partition diagram.
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The obtained results from the three methods are listed in Table  7.8. 

Obviously, MGOSIC gets the minimum drag coefficient, and meanwhile 

gets larger improvements compared to NACA0012. Additionally, the itera-

tive results of the three global optimization methods are also provided in 

Figure 7.11. It is clear that MGOSIC has a faster convergence rate. MSSR 

performs worse within the first 100 simulation analyses, but it can gradu-

ally find better solutions. However, HAM can hardly find a better solu-

tion after 100 analyses. The best shape and pressure contour obtained 

by MGOSIC are shown in Figure  7.12. Figure  7.13 shows the compari-

son results of the obtained best shape and the shape of NACA0012, and 

Figure 7.14 gives their comparison diagram of pressure curves. In sum-

mary, MGOSIC outperforms the other two methods on the shape optimi-

zation of the hydrofoil.

FIGURE 7.10 Pressure contour of NACA0012.

TABLE 7.8 Best Results Obtained from MGOSIC, MSSR and HAM

Methods cd Cl S Thick Improvement

NACA0012 0.0153776 0.3510 0.0051 0.12 NA

MGOSIC 0.0148780 0.3678 0.0072 0.1298 3.25%↑

MSSR 0.0149357 0.4300 0.0074 0.1269 2.87%↑

HAM 0.0155002 0.3767 0.0071 0.1309 0.80%↓
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FIGURE 7.11 Comparison of iterative results.

FIGURE 7.12 Pressure contour of the optimal shape.
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FIGURE 7.13 Comparison diagram of shapes.

FIGURE 7.14 Comparison diagram of pressure curves.
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7.6 CHAPTER SUMMARY

In this chapter, we propose a new SGO algorithm MGOSIC for EBOPs. 

Traditional multi-surrogate methods mostly utilize weighted sums to con-

struct an ensemble model for optimization, and pay much attention to the 

choice of these weights. MGOSIC proposes a different strategy that gets 

multiple sample points in each cycle based on the integrated prediction 

information from three surrogate models.

In MGOSIC, three approximation methods, Kriging, RBF and QRS, 

are employed to construct surrogate models, respectively. Besides, a 

multi-point infilling criterion is presented to capture the new sample 

points on the three models per iteration. In the proposed infilling crite-

rion, the newly added sample points mainly come from two parts: one is 

the present best solutions from each surrogate model, and the other one is 

selected from several promising point sets. These point sets are created by 

a proposed score-based strategy that marks a lot of cheap sample points 

based on their predictive values from Kriging, RBF and QRS. The new 

sample points will be selected from the point sets with higher scores by 

a proposed max–min approach that maximizes the minimum distance 

between new points and obtained points. When MGOSIC gets trapped in 

a local region, the estimated MSE of Kriging will be used to explore the 

unknown area. Finally, the whole optimization flow is carried out alter-

nately in the global space and a reduced space. Compared with seven exist-

ing global optimization algorithms, MGOSIC has the best performance. 

After the tests on 19 benchmark cases and an engineering application, 

MGOSIC shows its high efficiency, strong stability and remarkable paral-

lel capability. To sum up, MGOSIC is a promising method to optimize 

expensive black-box problems.

NOTE
 1 Based on “Multi-surrogate-based Global Optimization using a Score-based 

Infill Criterion,” published in [Structural and Multidisciplinary 
Optimization], [2019]. Permission obtained from [Springer].
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SCGOSR

Surrogate-Based Constrained 
Global Optimization Using 
Space Reduction1

8.1 INTRODUCTION

Continuous advancements in modern industry make simulated-based 

design and optimization imperative (Tolson & Shoemaker, 2007). Although 

the above-mentioned algorithms have advantages in dealing with expen-

sive black-box optimization problems with boundary constraints, most of 

them cannot handle nonlinear constrained optimization problems.

When both the objective and constraints are computationally expen-

sive black-box functions, the complexity of optimization gets further 

increased. Bjorkman and Holmstrom (2000) developed a radial basis func-

tion (RBF)-based optimization algorithm that utilized a penalty technique 

to transform an inequality-constrained problem into a box-constrained 

problem. Besides, a train design optimization problem was successfully 

solved with fewer costly function evaluations. Basudhar et al. (2012) pre-

sented an efficient global optimization algorithm for constrained prob-

lems, where Kriging is used for approximation of the objective function 

and support vector machines (SVMs) are employed to approximate the 

boundary of feasible regions. Importantly, one unique SVM can represent 

several correlated constraints, which considerably simplifies the complex-

ity of constrained optimization. Regis (2011) extended the previous local 

199DOI: 10.1201/9781003636267-8
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metric stochastic RBF (LMSRBF) algorithm to handle costly nonlinear 

inequality-constrained problems. The constrained LMSRBF algorithm 

constructs surrogate models for objective and constraint functions, respec-

tively, and identifies candidate points that are predicted to be feasible. 

Bagheri et al. (2017) presented a “Self-Adjusting Constrained Optimization 

by RBF Approximation (SACOBRA)” method based on Regis’s research. 

Importantly, SACOBRA can efficiently find feasible solutions without 

parameter tuning. Parr et  al. (2012) presented an enhanced infill sam-

pling criterion that treats objective improvement and constraint satisfac-

tion as two separate functions and uses multi-objective optimization to 

select update points. Additionally, there is also some literature focusing 

on multi-objective optimization with expensive objectives and constraints 

(Audet et al., 2010; Durantin et al., 2016). Muller and Woodbury (2017) 

also pointed out that algorithms for problems with expensive objectives 

and constraints are scarce.

Hence, this chapter aims at developing a new global optimization algo-

rithm for computationally expensive black-box-constrained problems. 

The problem type considered in this chapter can be briefly summed up as 

follows:
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where x is the design variable vector, f(x) denotes the costly objective and 

g(x) refers to the costly constraint vector. Lb and Ub are the lower and upper 

bounds of the design variable x, respectively. For the computationally expen-

sive problems described in Eq. (8.1), using a smaller number of function 

(objective and constraints) evaluations to get the global optimum is impor-

tant. Since the actual engineering applications involve multimodal or high 

nonlinear models, both f(x) and g(x) in Eq. (8.1) may have complex forms.

Actually, this chapter is the extension of our previous work where a 

Kriging-based global optimization algorithm MSSR was presented. MSSR 

is mainly developed for unconstrained expensive black-box problems. 

On constraint handling, MSSR just adds a penalty term to the objective 

function, and the reduced spaces are created without using penalty-based 

strategies. Besides, MSSR always constructs the complete surrogate mod-

els for costly objective and constraint functions, respectively, which is 
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time-consuming. In this chapter, Kriging is used to approximate the costly 

objective and constraints. In addition, a proposed multi-start constrained 

optimization algorithm carries out a search on the Kriging models to get 

supplementary points in each cycle. In order to find feasible regions, even 

the global optimum quickly, a penalty-based space reduction strategy is pre-

sented. In this strategy, two penalty methods are used respectively to sort 

the expensive samples and two subspaces are created based on the rank-

ing of the present samples. Considering the difficulty in fitting an accurate 

large-scale surrogate model, two groups of local surrogate models located 

in the defined subspaces are dynamically constructed per optimization 

cycle. Furthermore, once SCGOSR gets stuck in a local valley, the estimated 

mean square error of Kriging is maximized to explore the sparsely sampled 

area, guaranteeing the balance between the local and global searches.

8.2 SCGOSR ALGORITHM

In SCGOSR, Kriging is employed to construct surrogate models for costly 

objective and constraint functions, respectively. In order to add multiple 

promising samples in each cycle, a multi-start constrained optimization 

algorithm is proposed to exploit Kriging models. Furthermore, a space 

reduction strategy is presented to create two subspaces where two groups 

of local surrogate models are separately constructed. The multi-start opti-

mization is carried out alternately in the two subspaces and the overall 

design space. Once a local convergence criterion is satisfied, SCGOSR will 

maximize the estimated MSE of Kriging to explore the sparsely sampled 

regions. More details will be introduced in the following sections.

8.2.1 Multi-Start Constrained Optimization

Generally, optimization on surrogate models may generate several predic-

tive local optimal solutions, especially when both objective and constraint 

functions are Kriging models. The true global optimal solution may exist 

among these potential optimal locations, and thus, it is important to cap-

ture these predictive local optimal samples and select more promising 

ones. In this chapter, a multi-start constrained optimization algorithm 

is utilized to exploit the Kriging models. Different from MSSR, which is 

mainly designed for unconstrained problems, this multi-start constrained 

optimization algorithm utilizes a penalty function to deal with the pre-

dicted results and save them in a defined matrix. Besides, in MSSR the 

distances between points are defined as constants, while in this chapter 

a distance criterion that relies on the size of the design space is proposed. 

The specific process is described as follows.
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Firstly, several starting points are generated in a defined space by Latin 

hypercube sampling, and then sequential quadratic programming (SQP) 

begins to run from these starting points. Samples and the corresponding 

predictive values obtained by multiple SQP solvers are saved in a matrix 

PLO. Equation (8.2) gives the specific expression of the multi-start con-

strained optimization.
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where Ykrg ( )ˆ x  and g krg ( )ˆ x  are Kriging models of the exact objective and 

constraint functions, respectively. In Eq. (8.2), M refers to the number 

of starting points and xi denotes the ith starting point. Once the predic-

tive local optima are obtained, these samples and predictive values of the 

objective and constraints will be recorded in matrix PLO. Equation (8.3) 

describes a penalty method that can transform the Kriging-based objec-

tive and constraints into an augmented function. As Eq. (8.4) shows, the 

new PLO matrix has M rows and (n + 1) columns.
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(8.4)

According to the size of Yaug
iˆ  in PLO, the matrix is sorted in ascending 

order. Since multiple SQP solvers may get similar or repeated local optimal 
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solutions, the redundant samples will be deleted from PLO. The samples in 

Eq. (8.5) need to keep a defined distance as below.

 S S Ub Lb− > ∆ ⋅ −i j  (8.5)

where Ub and Lb are the design bounds and ∆ is a weight factor that deter-

mines the size of the distance. Generally, a smaller ∆ may bring more points 

that are much closer to each other, but a bigger ∆ may make SCGOSR miss 

some promising points. Hence, the recommended range for ∆ is [1e−6, 

1e−4]. Besides, the samples that go much closer to the obtained sample will 

also be eliminated. The final supplementary samples will be chosen from 

the filtered PLO and the smaller Yaug
iˆ  will have the higher priority.

8.2.2 Space Reduction for Constrained Optimization

Space reduction (also called region elimination) can remove the less prom-

ising and previously explored regions to decrease the number of costly func-

tion evaluations. Mostly, a reduced space is the neighborhood of the present 

best solution or a small region that encloses several promising solutions. For 

constrained optimization, the so-called best solution not only possesses the 

minimum objective value but also has to satisfy all constraints. In order to 

find these promising samples from the expensive sample set, two penalty 

functions are utilized, and the specific formulas are shown below.
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where m is the number of constraints, K is the number of expensive sam-

ples and n represents the dimension of design variables. In Eqs. (8.3), (8.6) 
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and (8.7), P is the penalty factor that needs to be noticeably bigger than 

the objective function value, and Yaug1 and Yaug2 are two augmented func-

tions. A smaller P will not generate remarkable changes to the augmented 

objective functions, and thus, the recommended range for P is [1e10, 1e20]. 

Equation (8.8) shows the sample matrix, expensive objective vector and 

expensive constraint matrix. Additionally, two augmented objective vec-

tors are obtained by the proposed penalty functions. Intuitively, the first 

penalty function will punish solutions that just violate any constraint, 

while the second one can “forgive” solutions that go much closer to the 

constraint bounds. Relatively speaking, Eq. (8.6) is more rigorous than 

Eq. (8.7) when dealing with the solutions near bounds. Besides, solutions 

on both sides of constraint bounds may enhance the approximation accu-

racy of Kriging models in the vicinity of bounds. In other words, the solu-

tions that violate constraints but are located near constraint bounds are 

also valuable. Considering this characteristic, Yaug1 is minimized to find 

the present best solution and Yaug2 is sorted to obtain the ranks of all the 

expensive samples. The specific process is described as follows.
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In Eq. (8.9), aug1Smin  may not equal to aug
rank

2
1S , because they come from two dif-

ferent evaluation criteria. On the basis of the above-obtained better sam-

ples, two subspaces are created as follows:
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In Eq. (8.10), Ubrange and Lbrange are the upper and lower bounds of the 

original design space, w is a weight factor, and n refers to the number 

of dimensions. In Eq. (8.11), r is a ratio coefficient and K represents the 

number of expensive samples. The two user-defined parameters, “w” and 

“r” determine the size of the subspaces. If “w” is bigger than 50% or “r” 

is bigger than 100%, it will lose the significance of the space reduction. 

On the contrary, if “w” and “r” are too small, the local surrogate mod-

els will get inaccurate and SCGOSR may miss some promising solutions. 

Therefore, the recommended ranges for “w” and “r” are [10%, 20%] and 

[20%, 40%], respectively. Intuitively, Subspace1 is a neighborhood of the 

present best solution that comes from Eqs. (8.6) and (8.9), while Subspace2 

encloses several promising samples that are defined by Eqs. (8.7) and (8.9). 

In SCGOSR, the proposed multi-start constrained optimization algorithm 

alternately explores the three spaces: Subspace1, Subspace2 and the global 

design space. As Ong et al. (2003) suggested, it is difficult to construct an 

accurate global surrogate model, especially when objective and constraint 

functions are multimodal problems. Hence, based on the samples in the 

two subspaces, two groups of local Kriging models for the costly objective 

and constraints are constructed, respectively.

8.2.3 Exploration on Unknown Area

Generally, a successful global optimization algorithm has the capacity 

to escape from local optima to explore the unknown area. In SCGOSR, 

when all the new samples in the matrix PLO do not satisfy the diversity 

requirement, or several successive iterations do not bring better samples, 

the algorithm will focus on the sparsely sampled regions. Here, the esti-

mated MSE of Kriging is maximized by the multi-start optimization 

algorithm to search the added sample points. The specific pseudocode is 

shown as follows:
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Algorithm 8.1 Escape from Local Optima

(01)  Begin

(02)  OptSpace ← Identify the optimization space (Subspace1, Subspace2, 

Design Space) based on the number of iterations

(03)  Snew ← New samples selected from the PLO matrix

(04)  , ,1
1

1
2

1Y Y Yaug
rank

aug
rank

aug
rankK  ← Sort the augmented function values to get 

the ranks

(05)  1Yaug
mean ← mean , ,1

1
1

2
1Y Y Y( )aug

rank
aug
rank

aug
rankm , Get the mean value of the top 

m augmented function values based on the ranks

(06)  Ymean(iteration) ← Save and Record 1Yaug
meanin each iteration.

(07)  if iteration > 5

(08)   GVI ← | Ymean(pre_iter)- Ymean(pre_iter-5)|. (Here, “pre_iter” 

refers to the present iteration)

(09)  else

(10)   GVI ← 1e20

(11)  end if

(12)  if Snew is empty or GVI <=1e−6

(13)     Snew_mse ← Call multi-start constrained optimization to 

maximize the estimated MSE of Kriging in OptSpace based 

on Eqs. (8.2) to (8.5)

(14)    Snew ← [Snew; Snew_mse]

(15)  end if

(16)  End

In Algorithm 8.1, GVI is a temporary variable that records the changes of 

the top m augmented function values. From Lines (04) to (06) of Algorithm 

1, it is clear that the top m samples are selected and their mean value is 

recorded in each cycle. Besides, as Lines (07) to (12) in Algorithm 8.1 show, 

if the mean value of the top m sample values does not change obviously or 

Snew is empty, the multi-start constrained optimization begins to explore 

the unknown area.

8.2.4 Optimization Flow

In this section, the overall flowchart of SCGOSR is given, and it mainly 

includes three parts: initialization, exploitation and exploration. For a 

global optimization algorithm, exploitation refers to the quick search in 

the vicinity of the present best solution, while exploration denotes sup-

plementing new points in sparsely sampled areas. SCGOSR possesses the 
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capacity of intensive search in a local promising region and meanwhile 

is also able to jump out from a local valley. The flowchart of SCGOSR is 

shown in Figure 8.1.

In Figure 8.1, the local convergence criterion is provided in Algorithm 

8.1, and the global stopping criterion is defined as below.

 y t et or NFEbest ≤ >, 500arg  (8.12)

FIGURE 8.1 Flowchart of SCGOSR.
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where target is a defined target value and NFE represents the number of 

objective or constraint function evaluations.

In Figure 8.1, the function “rem(A, B)” returns the remainder after the 

division of A by B.

8.3 COMPUTATIONAL EXPERIMENTS

In order to verify the capability and demonstrate the advantage of 

SCGOSR, different representative benchmark cases in the nonlinear con-

strained optimization domain are tested. These cases include eight bench-

mark mathematical examples (BR, SE, GO, G4, G6, G7, G8 and G9) and 

five engineering applications (TSD, WBD, PVD, SRD and SCBD) that are 

commonly used. More details of the test cases can be seen in Table 8.1.

In Table  8.1, dim denotes the number of dimensions, and Noc is the 

abbreviation of “Number of Constraints.” Besides, “Target value” and 

“Known Best Value” come from the already published papers about con-

strained problems (Garg, 2014; Thanedar & Vanderplaats, 1995). It is men-

tionable that these cases have various characteristics and involve different 

dimensions and constraints. Obviously, they can represent most of the 

constrained optimization problems that we may encounter in the actual 

engineering design. In the following tests, the parameter P in Eqs. (8.3), 

(8.6) and (8.7) equals to 1e10, ∆ in Eq. (8.5) is defined as 1e−5, w in Eq. 

(8.10) is 15%, and r in Eq. (8.11) is 25%.

TABLE 8.1 Nonlinear Constrained Optimization Cases

Category Func. dim Noc. Design Range

Target 

Value

Known 

Best Value

Benchmark 
mathematical 
examples

BR 2 1 [−5,10] × [0,15] 0.3980 0.3979

SE 2 1 [0,5]2 −1.1740 −1.1743

GO 2 1 [−0.5,0.5] × [−1,0] −0.970 −0.9711

G4 5 6 [78,102] × [33,45] × [27,45]3 −31,025 −31,025.56

G6 2 2 [13,100] × [0,100] −6,960 −6,961.81

G7 10 8 [−10,10]10 25 24.3062

G8 2 2 [1e−15,10]2 −0.0958 −0.0958

G9 7 4 [−10,10]7 1,000 680.6301

Engineering 
applications

TSD 3 4 [0.05,2] × [0.25,1.3] × [2,15] 0.0128 0.01267

WBD 4 7 [0.1,2] × [0.1,10]2 × [0.1,2] 1.8 1.7249

PVD 4 4 [0.0625,6.1875]2 × [10,200]2 6,000 5,885.33

SRD 7 11 [2.6,3.6] × [0.7,0.8] × [17,28] ×  
[7.3,8.3]2 × [2.9,3.9] × [5.0,5.5]

3,000 2,994.42

SCBD 10 11 ([2,3.5] × [35,60])5 65,000 62,791
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8.3.1 Preliminary Test

Preliminarily, the presented SCGOSR algorithm is tested on the 13 bench-

mark cases, and the results are listed in Table 8.2. What is more, Figure 8.2 

provides the iterative results of SCGOSR on all these cases. It is worth not-

ing that SCGOSR uses “NFE > 500” as the global stopping criterion in the 

preliminary test. It is clear that SCGOSR can easily find the target values 

of these cases and even get much closer to the global optima shown in 

Table 8.1. In order to improve the readability of Figure 8.2, clearer results 

are given in some cases, like BR, G6, G7, G8, G9 and WBD. As Figure 8.2a, 

e, f, g, i, l, m, o and p shows the initial DoE cannot provide a feasible solu-

tion in most cases, but SCGOSR can still capture the feasible solutions 

with iterations going on.

8.3.2 Comparison and Analyses

Due to the random feature of SCGOSR, ten independent tests were con-

ducted to verify its stability. Additionally, five surrogate-based constrained 

optimization algorithms (RBFCGOSR, SCGO, MSSR, MS and MSRBF) are 

tested in contrast. Specifically, RBFCGOSR is the same as SCGOSR except 

that RBFCGOSR uses cubic RBF to construct the surrogate model; SCGO 

is the SCGOSR algorithm without space reduction; MSSR is a previously 

presented global optimization algorithm that can deal with constrained 

problems; MS is the MSSR algorithm without using space reduction strate-

gies; MSRBF is an RBF-based optimization algorithm using the multi-start 

TABLE 8.2 Preliminary Test Results of SCGOSR

Problems Design Variables f(x)

BR [9.4248, 2.4750] 0.3979

SE [2.7450, 2.3523] −1.1743

GO [0.1092, −0.6234] −0.9711

G4 [78, 33, 27.0734, 45, 44.9619] −31,025.35

G6 [14.0950, 0.8430] −6,961.80

G7 [2.1640, 2.3825, 8.7750, 5.0870, 0.9753, 1.3864, 1.3067, 

9.8169, 8.2413]

24.3187

G8 [1.2315, 4.2450] −0.0958

G9 [2.0341, 1.9175, −0.6860, 4.4691, −0.2074, 1.7834, 1.6773] 686.8836

TSD [0.0516, 0.3550, 11.3904] 0.0126653

WBD [0.2057, 3.4705, 9.0366, 0.2057] 1.7249

PVD [0.7792, 0.3852, 40.3713, 199.3308] 5,888.66

SRD [3.5002, 0.7000, 17, 7.3000, 7.7153, 3.3503, 5.2867] 2,994.78

SCBD [2.9921, 59.8408, 2.7943, 55.3846, 2.5237, 50.4720, 2.2206, 

43.9321, 2, 35.0028]

62,874.36
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FIGURE 8.2 SCGOSR on benchmark cases. (a) SCGOSR on BR. (b) SCGOSR on 

SE. (c) SCGOSR on GO. (d) SCGOSR on G4. (e) SCGOSR on G6. (f) SCGOSR on 

G8. (g) SCGOSR on G7. (h) Clear results of SCGOSR on G7. (i) SCGOSR on G9. 

(j) Clear results of SCGOSR on G9. (k) SCGOSR on PVD. (l) SCGOSR on SRD. 

(m) SCGOSR on WBD. (n) Clear results of SCGOSR on WBD. (o) SCGOSR on 

TSD. (p) SCGOSR on SCBD.
(Continued)
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FIGURE  8.2 (Continued ) SCGOSR on benchmark cases. (a) SCGOSR on BR.  

(b) SCGOSR on SE. (c) SCGOSR on GO. (d) SCGOSR on G4. (e) SCGOSR on 

G6. (f) SCGOSR on G8. (g) SCGOSR on G7. (h) Clear results of SCGOSR on G7. 

(i) SCGOSR on G9. (j) Clear results of SCGOSR on G9. (k) SCGOSR on PVD. (l) 

SCGOSR on SRD. (m) SCGOSR on WBD. (n) Clear results of SCGOSR on WBD. 

(o) SCGOSR on TSD. (p) SCGOSR on SCBD.
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optimization solvers of SCGOSR. Besides, SCGOSR is also compared with 

KCGO that is recently published. The ranges of best values are shown in 

Tables 8.3 and 8.5. The statistical NFE results are shown in Tables 8.3–8.6. 

Here, the NFE values with the symbol “>” indicate that at least one of the 

tests cannot find the target value within 500 function evaluations, the 

numbers in the brackets “()” refer to the number of failures, and the num-

bers in the brackets “{}” represent how many times the algorithm cannot 

find feasible solutions.

Intuitively, SCGOSR can find the target values of all the cases within 

500 function evaluations, but the other five algorithms have failed cases 

in varying degrees. In this work, two-dimensional cases like BR, SE, GO, 

G6 and G8 are nonlinear constrained problems. For these low-dimen-

sional problems, it is clear that MS and MSRBF have a higher possibility 

of failure, and RBFCGOSR and MSSR can succeed in most cases. BR is 

a relatively simple case whose global optima can be easily found by all 

these algorithms. Besides, it is difficult for the two RBF-based algorithms 

(RBFCGOSR and MSRBF) to quickly find the target value of GO and G8. 

What is more, MSSR, MS and MSRBF sometimes may go close to the tar-

get value of SE but finally, they cannot reach the target.

When the number of dimensions and constraints increases, it will get 

harder for a surrogate-based optimization algorithm to find target values. 

For G4, which has five dimensions and six constraints, the proposed opti-

mization flow including SCGOSR, RBFCGOSR and SCGO can success-

fully find the target value with fewer function evaluations, but MSSR, MS 

and MSRBF always fail. In the mathematical examples, G7 and G9 seem to 

be the most complex cases, and thus most of these algorithms have larger 

NFE values. In particular, MSRBF sometimes cannot even find a feasible 

solution on G7 when it stops.

For engineering applications, SCGOSR and MSSR perform better. Due 

to the lack of an exploration strategy that can help an algorithm escape 

from local valleys, MSRBF is easy to get trapped in a local optimal region. 

Hence, MSRBF is not stable in most engineering cases. Since SRD and 

SCBD both have 11 constraints that bring challenges for optimization, 

RBFCGOSR, MSSR, MS and MSRBF commonly use more function evalu-

ations to search their target values.

Table  8.7 shows the comparison results of SCGOSR and KCGO (Li 

et  al., 2017). In Table  8.7, KCGO provides a group of results that come 

from the reference. Here, G4′ is a little different from G4 (Garg, 2014) that 

was previously introduced. The coefficient 0.00026 in G4 is changed to 
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TABLE 8.3 Best Values and Mean NFE of SCGOSR, RBFCGOSR, and SCGO

Func.

SCGOSR RBFCGOSR SCGO

NFE Best Value NFE Best Value NFE Best Value

BR 25.1 [0.3979, 0.3980] 69 [0.3979, 0.3980] 26.7 [0.3979, 0.3980]

SE 25.9 [−1.1743, −1.1740] 43.2 [−1.1743, −1.1741] 24.3 [−1.1743, −1.1741]

GO 51.1 [−0.9711, −0.9706] >137.6 [−0.9711, −0.7653] 85.7 [−0.9711, −0.9708]

G4 53.9 [−31,026, −31,025] 252.6 [−31,026, −31,025] 55.7 [−31,026, −31,025]

G6 78.5 [−6,961.8, −6,961.4] 46.4 [−6,961.8, −6,961.2] >464 [−6,961.6, −6,937.3]

G7 178.2 [24.3149, 24.9969] 247.2 [24.3062, 24.8145] >290.6 [24.4436, 27.824]

G8 51.8 [−0.0958, −0.0958] >178.1 [−0.0958, −0.0936] 115.5 [−0.0958, −0.0958]

G9 115.6 [826.30, 981.86] 124.2 [845.75, 974.07] 165.2 [730.19, 990.14]

TSD 75.7 [1.267e−2, 1.278e−2] >293.3 [1.273e−2, 1.287e−2] 110.2 [1.267e−2, 1.279e−2]

WBD 101.9 [1.7249, 1.7888] 194 [1.7449, 1.7983] >392.4 [1.7745, 2.7610]

PVD 42.9 [5,885.3, 5,982.1] 174.2 [5,885.4, 5,972.7] 31.9 [5,885.3, 5,981.7]

SRD 88.1 [2,994.5, 2,997.8] 232.6 [2,994.5, 2,994.5] 147.8 [2,994.5, 2,999.3]

SCBD 152.5 [62,861, 64,895] >256.9 [62,791, 70,594] 216.3 [63,079, 64,699]
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TABLE 8.4 Statistical NFE of SCGOSR, RBFCGOSR and SCGO

Func.

SCGOSR RBFCGOSR SCGO

Min Median Max Min Median Max Min Median Max

BR 21 25.5 29 28 60 160 17 24 48

SE 18 24.5 41 25 33 128 20 25 30

GO 17 28 156 22 60.5 >500(1) 18 21 297

G4 32 35.5 174 188 253 307 21 25.5 181

G6 33 65.5 171 27 44.5 71 123 >500 >500(9)

G7 102 199.5 239 107 200.5 459 64 >293.5 >500(5)

G8 24 47.5 80 32 104.5 >500(2) 44 97 297

G9 54 112 198 58 121 213 31 187.5 235

TSD 43 69 114 113 244 >500(1) 62 96.5 249

WBD 72 97 153 112 180.5 372 186 408 >500(3)

PVD 27 41 63 92 159 285 26 31.5 36

SRD 35 60.5 272 143 219.5 345 35 127 331

SCBD 62 119.5 297 134 222.5 >500(1) 42 209 470
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TABLE 8.5 Best Values and Mean NFE of MSSR, MS and MSRBF

Func.

MSSR MS MSRBF

NFE Best Value NFE Best Value NFE Best Value

BR 22.6 [0.3979, 0.3980] 21.8 [0.3979, 0.3979] >145.9 [0.3979, 0.3981]

SE >162.8 [−1.1743, −1.1739] >233.7 [−1.1743, −1.1735] >74.5 [−1.1743, −1.1729]

GO 33.6 [−0.9711, −0.9701] 41.8 [−0.9711, −0.9703] >357.7 [−0.9708, −0.1664]

G4 >272.3 [−31,026, −31,020] >310.5 [−31,026, −30,742] >232.2 [−31,026, −31,024]

G6 >253.5 [−6,961.4, −6,958.3] >454.6 [−6,960.9, −6,918.7] 147.2 [−6,961.8, −6,961.8]

G7 >147.8 [24.3540, 25.1828] >213.4 [24.3342, 27.8559] >500 [25.0043, 1e10] {*1}

G8 68.9 [−0.0958, −0.0958] 94.8 [−0.0958, −0.0958] >427.8 [−0.0958, −2.89e−5]

G9 109.1 [828.79, 999.87] 160.8 [822.56, 999.99] >438.1 [946.63, 11,690]

TSD 95.4 [1.267e−2, 1.279e−2] 100.7 [1.268e−2, 1.279e−2] 179.2 [1.267e−2, 1.278e−2]

WBD 156 [1.7354, 1.7976] >348.4 [1.7643, 2.8849] >311.6 [1.7333, 2.7608]

PVD 30.4 [5,891.2, 5,951.5] 29.7 [5,885.4, 5,965.3] >150.2 [5,885.4, 6,025.5]

SRD >209.6 [2,994.5, 3,019.2] >322.3 [2,994.5, 3,018.7] >328.3 [2,994.5, 5,448.7]

SCBD 284.4 [62,858, 64,648] 307 [62,791, 64,731] >387.8 [62,791, 1e10]



2
1
6

   ◾   D
ata-D

riven
 G

lo
b
al O

p
tim

izatio
n

 M
eth

o
d
s an

d
 A

p
p
licatio

n
s

TABLE 8.6 Statistical NFE of MSSR, MS and MSRBF

Func.

MSSR MS MSRBF

Min Median Max Min Median Max Min Median Max

BR 17 23 28 19 20.5 30 45 79 >500(1)

SE 25 124.5 >500(1) 22 116 >500(4) 20 26 >500(1)

GO 13 33 54 14 42.5 74 17 >500 >500(7)

G4 21 >288.5 >500(5) 22 >500 >500(6) 161 198 >500(1)

G6 15 190 >500(4) 230 >500 >500(8) 53 75 408

G7 72 104 >500(1) 73 98 >500(3) >500 >500 >500(10)

G8 39 64.5 109 42 95.5 152 31 >500 >500(8)

G9 60 102.5 189 83 145 295 139 >500 >500(8)

TSD 52 101 153 53 84 249 75 167 399

WBD 98 133 411 178 358 >500(2) 60 299 500(4)

PVD 26 31 37 23 28 49 46 63 >500(1)

SRD 31 201.5 >500(1) 34 364 >500(2) 120 305 >500(3)

SCBD 52 310.5 384 146 317.5 466 147 >500 >500(6)
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0.0006262 in G4′. Now, the known global optima of G4′ is −30,665.54. 

Obviously, KCGO has impressive performance on these cases. KCGO 

can find an approximate optimum on G4′ only using 24 function evalu-

ations. SCGOSR can always get satisfactory values on G4′ but needs at 

least 33 function evaluations. However, SCGOSR sometimes can find the 

true global optimum −30,665.54. Similarly, SCGOSR can find much better 

values than KCGO on G6, but KCGO uses fewer function evaluations. For 

G7, KCGO can get more accurate results than SCGOSR, while SCGOSR 

sometimes can be more efficient. Intuitively, SCGOSR mostly outperforms 

KCGO on G8, because the best value of KCGO is outside of the SCGOSR’s 

value range and SCGOSR can use fewer function evaluations. For G9, 

SCGOSR is able to find a better value of 826.30 than KCGO with a smaller 

NFE. Besides, the mean NFE of SCGOSR (115.6) is also much smaller than 

163. For the three engineering applications TSD, WBD and SRD, there is 

no doubt that SCGOSR gets more accurate results than KCGO. What is 

more, SCGOSR also performs efficiently on the three applications.

No matter the mathematical examples or engineering applications, 

SCGOSR always has impressive performance. More importantly, SCGOSR 

shows advantages in stability and efficiency compared with other algo-

rithms. In summary, SCGOSR is a promising constrained optimization 

algorithm for expensive black-box problems.

8.3.3 Further Comparison and Analyses

Additionally, in order to demonstrate the extensive applicability of 

SCGOSR, further experiments are set up. The constrained optimization 

algorithm “superEGO” is used as contrast. “superEGO” (Sasena et  al., 

2002) was developed to solve computationally expensive problems with 

TABLE 8.7 Comparison of SCGOSR and KCGO

Cases

SCGOSR KCGO

Mean NFE Range of NFE Range of Best Value NFE Best Value

G4′ 60.3 [33, 163] [−30,665.54, −30,665.20] 24 −30,665.51

G6 78.5 [33, 171] [−6,961.8, −6,961.4] 31 −6,677.68

G7 178.2 [102, 239] [24.3149, 24.9969] 107 24.3093

G8 51.8 [24, 80] [−0.0958, −0.0958] 39 −0.0956

G9 115.6 [54, 198] [826.30, 981.86] 163 860.9243

TSD 75.7 [43, 114] [1.267e−2, 1.278e−2] 38 0.0135

WBD 101.9 [72, 153] [1.7249, 1.7888] 115 2.3230

SRD 88.1 [35, 272] [2,994.5, 2,997.8] 43 2,999.76
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disconnected feasible regions. In this chapter, two benchmark examples, 

Gomez and newBranin suggested by Sasena et al. (2002) are tested. new-

Branin has three feasible regions that only cover about 3% of the design 

space, and the disconnected feasible regions of Gomez cover approxi-

mately 19% of the design space. According to the reference, SCGOSR also 

utilizes LHS to generate ten initial sample points and runs ten times on the 

two examples. Besides, SCGOSR will stop and NFE will be recorded when 

a feasible point is obtained within a box (±1% of the design space range) 

around the true global optimal solution. The main data of Table 8.8 comes 

from the reference, and it is clear that superEGO2 performs the best in the 

two examples. It is worth noting that SCGOSR also has impressive perfor-

mance. For newBranin, SCGOSR is much closer to the superEGO’s results. 

However, SCGOSR needs more function evaluations than superEGO2 on 

Gomez. What is more, SCGOSR outperforms the deterministic optimiza-

tion algorithm DIRECT (Jones, 2001), the gradient-based algorithm SQP, 

and the nature-inspired algorithm SA (Kirkpatrick et al., 1983).

In order to demonstrate how SCGOSR works on the problems with 

disconnected feasible regions, two graphical examples are shown in 

Figures 8.3 and 8.4. In the two figures, the stars are the global optimal 

solutions, the squares are DoE sample points, the black circles are pre-

viously added points and the blue circles are the currently added points. 

Besides, the dashed lines refer to the constraint bounds.

We advisedly provide the two cases with “worse initial sample points.” 

In other words, the initial sample points cannot offer positive guidance for 

SCGOSR to find the global optimum at the beginning. From Figure 8.3, 

it can be seen that the search at first focuses on the “wrong” feasible 

regions. Figure 8.3b and c shows that the search gradually goes close to the 

most important feasible region. Additionally, since SCGOSR can capture 

TABLE 8.8 Comparison on newBranin 
and Gomez

Algorithm

Average Number of 

Function Evaluations

newBranin Gomez

SCGOSR 24.6 47.5

superEGO1 22.2 66.3

superEGO2 22.0 36.5

DIRECT 76 93

SQP 363 831

SA 5,371 7,150
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multiple local optimal points in each cycle, the three feasible regions are 

sufficiently explored. Finally, 44 function evaluations are used to find the 

best solution [3.2340, 0.9547].

Intuitively, Gomez is more complex than newBranin as illustrated in 

Figure 8.4. It is clear that the search begins from the left feasible region that 

includes an initial sample point. During the first 20 iterations, SCGOSR is 

busy exploring “wrong” feasible regions. After SCGOSR explores five fea-

sible regions, it begins to pay attention to the neighborhood of the global 

optimal point. Finally, SCGOSR finds the satisfactory feasible solution 

[0.1110, −0.6233] by 35 iterations and 79 function evaluations. In sum-

mary, SCGOSR can also solve complex problems with disconnected fea-

sible regions.

8.3.4 Specific Analyses on Space Reduction

After the previous comparison with other methods, SCGOSR has shown 

its remarkable capability. According to the comparison results of SCGOSR 

and SCGO in Table  8.3, it is clear that the two subspaces speed up the 

search process of SCGOSR. In order to analyze the contribution of using 

Subspace1 and Subspace2, separately, two algorithms SCGOSR_S1 and 

FIGURE 8.3 Iterative results of SCGOSR on newBranin. (a) Iterations 1–4. (b) 

Iterations 5–9. (c) Iterations 10–15. (d) Iterations 16–17.
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SCGOSR_S2 are tested. The two algorithms are the same as SCGOSR, 

except that the two subspaces are used, respectively. Table 8.9 shows the 

statistical results of the two algorithms. Combining the results of SCGOSR 

TABLE 8.9 Best Values and Mean NFE of SCGOSR_S1 and SCGOSR_S2

Func.

SCGOSR_S1 SCGOSR_S2

Mean NFE Best Values Mean NFE Best Values

BR 23.7 [0.3979, 0.3980] 28.3 [0.3979, 0.3980]

SE 27.7 [−1.1743, −1.1742] 26.5 [−1.1743, −1.1741]

GO 64.2 [−0.9711, −0.9704] 26.7 [−0.9711, −0.9701]

G4 96.2 [−31026, −31025] 37 [−31,026, −31,025]

G6 80.3 [−6,961.8, −6,960.0] >362.8 (7) [−6,961.8, −6,914.1]

G7 152.6 [24.3083, 24.9307] 220.3 [24.3086, 24.8412]

G8 79.6 [−0.0958, −0.0958] 46.2 [−0.0958, −0.0958]

G9 96.9 [782.31, 988.15] 118.5 [720.83, 982.69]

TSD 120.8 [1.267e−2, 1.276e−2] 77.7 [1.267e−2, 1.272e−2]

WBD 89.5 [1.7249, 1.7998] >150.7(1) [1.7286, 2.5605]

PVD 40.9 [5,907.3, 5,995.1] 36.8 [5,885.4, 5,959.5]

SRD 168.6 [2,994.5, 2,999.5] 60.9 [2,994.5, 2,999.9]

SCBD 223.4 [62,792, 64,846] 157.7 [62,791, 64,318]

FIGURE  8.4 Iterative results of SCGOSR on Gomez. (a) Iterations 1–4. (b) 

Iterations 5–9. (c) Iterations 10–15. (d) Iterations 16–17.
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in Table 8.3 with the results in Table 8.9, we give the specific ranking of the 

three algorithms in Table 8.10. Intuitively, SCGOSR_S2 fails several times 

on G6 and WBD, but it has the best performance on GO, G4, G8, PVD 

and SRD. Differently, SCGOSR_S1 uses the fewest function evaluations on 

BR, G7, G9 and WBD, but performs badly on SRD and SCBD. Relatively 

speaking, SCGOSR has the most stable performance and its total ranking 

is the best. Although the combinative utilization of the two subspaces may 

increase NFE on some problems, it makes the space reduction strategy 

more robust.

8.4 CHAPTER SUMMARY

In this work, a surrogate-based global optimization algorithm for com-

putationally expensive black-box problems (SCGOSR) is presented. It is 

worth mentioning that SCGOSR can handle problems with costly objec-

tives and constraints, which frequently appear in actual engineering 

design. In SCGOSR, Kriging is used to construct surrogate models that will 

be updated with iterations going on. Besides, a multi-start optimization 

method is proposed to exploit surrogate models, and newly added samples 

are selected from predictive local optimal solutions. In order to speed up 

the search on Kriging, two subspaces are created based on two penalty 

functions. Among them, Subspace1 is the vicinity of the present best solu-

tion, and Subspace2 is a region that encloses several promising solutions. 

TABLE 8.10 Ranking of SCGOSR, SCGOSR_S1 and SCGOSR_S2

Ranking SCGOSR SCGOSR_S1 SCGOSR_S2

BR 2 1 3

SE 1 3 2

GO 2 3 1

G4 2 3 1

G6 1 2 3

G7 2 1 3

G8 2 3 1

G9 2 1 3

TSD 1 3 2

WBD 2 1 3

PVD 3 2 1

SRD 2 3 1

SCBD 1 3 2

Total ranking 23 29 26
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Furthermore, two groups of local surrogate models are constructed by the 

samples in the two subspaces, respectively. On the one hand, local sur-

rogates can improve the local convergence efficiency. On the other hand, 

local surrogates make SCGOSR spend less time in constructing Kriging 

models for objective and constraint functions. The proposed multi-start 

optimization is carried out alternately on Subspace1, Subspace2 and the 

overall design space. Once SCGOSR gets trapped in a local optimal region 

and a proposed local convergence criterion is satisfied, SCGOSR begins to 

explore the sparsely sampled area.

Finally, through the comparison tests on eight mathematical examples 

and five engineering applications, SCGOSR shows the powerful capacity 

in dealing with expensive black-box-constrained optimization problems.

NOTE
 1 Based on “SCGOSR: Surrogate-based Constrained Global Optimization 

using Space Reduction,” published in [Applied Soft Computing], [2018]. 
Permission obtained from [Elsevier].
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KTLBO

Kriging-Assisted Teaching–
Learning-Based Optimization to 
Solve Computationally Expensive 
Constrained Problems1

9.1 INTRODUCTION

As high-fidelity simulation techniques are leaping forward and being 

applied extensively, computationally expensive black-box global opti-

mization has turned out to be one of the most challenging problems in 

engineering optimization (Dong, Song, Wang, et al., 2018; Li et al., 2020; 

Ororbia et al., 2020). Overall, the more accurate the simulation analysis, 

the more computation budget it will bring. Thus, engineers are required to 

take some time to achieve satisfactory accuracy. Besides, costly black-box 

constraints may further complicate optimization and impose greater chal-

lenges (Bagheri et al., 2017; Li, 2019; Miranda-Varela & Mezura-Montes, 

2018; Muller & Woodbury, 2017). Sometimes, feasible solutions are dif-

ficult to find in actual simulation-based engineering applications with 

acceptable computational budgets (Akbari & Kazerooni, 2020; Wu et al., 

2018). Specifically, the expensive black-box constrained problems (EBCPs) 

that the chapter focuses on can be described as follows:

 
min ,

. . 0, 1, , .

x

x 

[ ]( )

( )

∈

≤ =

xf lb ub

s t C i mi

 (9.1)
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Where [lb, ub] denotes the search space; f(x) represents the objective func-

tion; Ci(x) denotes the ith inequality constraint; and m is the total num-

ber of inequality constraints. It is assumed that both f (x) and Ci(x) are 

time-consuming black boxes. If the objective function f(x) is calculated at 

an unknown point x, the corresponding constraints Ci(x) can be attained 

concurrently. In other words, f(x) and Ci(x) are different response values 

from one simulation model.

Since most of the mentioned time-depending and black-box simula-

tion models are unable to present an explicit mathematical expression, 

the conventional gradient-based mathematical programming methods 

become inferior. In the existing literature, swarm intelligence (SI) and 

evolutionary computation (EC) combined with some constraint-handling 

techniques are widely employed to address black-box constrained prob-

lems (Mezura-Montes & Coello Coello, 2011). Farmani and Wright (2003) 

presented a self-adaptive fitness formulation for constrained optimization 

by referencing their previous work (Wright & Farmani, 2001), where a 

penalty-function method was proposed for genetic algorithm (GA). In the 

optimized version, constraint violations were represented by a single infea-

sibility measure function involving a two-stage penalty strategy, which 

could decrease the dimensionality of the problem and make the method 

more dynamic and self-adaptive. Daneshyari and Yen (2012) developed a 

constrained multi-swarm particle swarm optimization (CPSO) method in 

a cultural framework (cultural CPSO), where numerous concepts from the 

cultural algorithm were employed to optimize PSO’s updating mechanism 

and swarm-communication capability. In cultural CPSO, objective and 

constraint violation values are normalized, and a V–F space is established 

to form a modified fitness formulation for comparisons of particles. Wang 

and Cai (2012) developed an algorithm combining multiobjective opti-

mization with differential evolution (CMODE) to solve constrained opti-

mization by using their previous Cai-Wang (CW) algorithm. In CMODE 

(Wang & Cai, 2012), objective and constraint violation functions emerged 

into a biobjective optimization formulation as an attempt to minimize 

objective values and degree of constraint violations. Unlike CW (Wang &  

Cai, 2012), CMODE employed DE as the search engine to decrease the 

number of tuning parameters and proposed a more efficient replacement 

mechanism for infeasible solutions. Furthermore, Wang et al. (2016) intro-

duced a novel constrained optimization method: integrating feasibility 

rules with objective function information (FROFI). A novel replacement 

mechanism and a mutation strategy have been cooperatively adopted to 

generate promising offspring and achieve global exploration.
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Though SI and EC algorithms (Chen et  al., 2018; Kar, 2016; Mavro-

vouniotis et al., 2017) can effectively solve complex black-box optimization, 

they are overly determined by the number of function assessments, which 

is inappropriate for computationally expensive problems. In most cases, 

one simulation may require several minutes or hours, while thousands of 

calls to the simulation models will cause unbearable computation costs, 

thereby enormously extending the design cycle. When the time-to-market 

requirement is tight, an efficient optimization method that requires fewer 

calls to the expensive model is indispensable (Liu et al., 2014).

Dong, Li, et  al. (2018) developed a multi-surrogate-based global opti-

mization method using a score-based infill criterion (MGOSIC), where 

Kriging, radial basis function (RBF), and polynomial response surface 

(PRS) are separately employed to build dynamically updated surrogate 

models. In addition, a score-based infilling criterion is presented to find the 

candidate sample sets. The points that can perform better on most of the 

surrogate models will have higher scores. Furthermore, high-score points 

farther from the known expensive samples will be first introduced into the 

expensive sample set. Most of the existing surrogate-based optimization 

(SBO) methods are developed to solve expensive black-box unconstrained 

problems, and they cannot directly apply to EBCPs. As proposed by Haftka 

et  al. (2016), “When it comes to adaptive sampling algorithms for con-

strained optimization, the state of the art is less advanced.” Regis (2011) 

extended his previous work and developed a constrained local metric sto-

chastic RBF (ConstrLMSRBF) method that separately builds RBF models 

for objective and constraint functions. Among the candidate points, the 

ones predicted to be feasible are first collected. If none of the candidate 

points are feasible on surrogate models, the point with the least number of 

constraint violations will be selected. Though ConstrLMSRBF can effec-

tively process some EBCPs, it requires at least one feasible point as the initial 

sample to drive the subsequent optimization loop. Sometimes, it is difficult 

to identify the feasible solutions of an actual EBCP at the beginning. Liu 

et  al. (2017) presented an improved constrained optimization algorithm, 

termed eDIRECT-C, for EBCPs, where a DIRECT-type (Jones et al., 1993) 

constraint-handling technique using the Voronoi diagram (Liu et al., 2015) 

was proposed to separately deal with feasible and infeasible cells. Though 

eDIRECT-C does not contain user-defined parameters and can effectively 

explore the unknown feasible area, it requires more running time and thus 

is not appropriate for large-scale and multi-constraint problems. Dong, 

Song, Dong, et al. (2018) developed a surrogate-based constrained global 

optimization method using space reduction (SCGOSR), where a multi-start 
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optimization strategy was proposed to capture the promising points from 

the local and global spaces of Kriging. SCGOSR outperforms other algo-

rithms on most of the benchmark cases, while it overly relies on Kriging’s 

predicting accuracy. If Kriging has a larger prediction error on some prob-

lems, SCGOSR will be mistakenly guided by Kriging and exhibit poor per-

formance. Wang et al. (2019) proposed a global and local surrogate-assisted 

DE (GLoSADE) algorithm for EBCPs, consisting of two phases. At the 

global phase, DE acts as the search engine to generate potential samples 

and the generalized regression neural network is adopted to classify these 

points, achieving the global exploration; at the local phase, the interior 

point method coupled with RBF is employed to improve the individuals of 

the population, eventually accelerating the convergence. Surrogate-assisted 

evolutionary algorithms (e.g., GLoSADE) (Yu et al., 2019) comply with the 

stochastically sampling mechanism of metaheuristic algorithms, while 

they exploit the potential information from surrogates, which have aroused 

considerable attention recently (Dong et al., 2019).

In this chapter, an efficient surrogate-assisted SI method is devel-

oped by exploiting the unique optimization framework of teaching– 

learning-based optimization (TLBO) (Rao et  al., 2011) and Kriging’s 

prediction mechanism. Since TLBO was originally developed to pro-

cess constrained mechanical design optimization, a novel method based 

on TLBO is expected to efficiently process computationally expensive 

inequality- constrained optimization. Since TLBO consists of two phases 

to generate new points, two Kriging-guided sampling strategies that can 

effectively balance the local search and global exploration are corre-

spondingly proposed. In the Kriging-assisted teaching phase (KATP), the 

neighborhoods around the present best solution are sufficiently exploited 

to accelerate the convergence, and a constrained expectation of improve-

ment (EI) function considering the probability of feasibility is set as a 

prescreening tool to select the potential individuals from the learners. 

However, in the Kriging-assisted learning phase (KALP), a constrained 

mean square error (MSE) function more concerned with Kriging’s predic-

tion uncertainty is proposed to select the learners located at the sparsely 

sampled feasible region for global exploration. Through the joint search 

of the proposed two phases, the new KTLBO algorithm can efficiently 

solve EBCPs. For this, KTLBO uses Kriging to construct a dynamically 

updated surrogate model for the objective and constraint functions and 

establishes a  constraint-optimization–oriented data management strategy 

for archiving, sorting and updating valuable samples.



228   ◾   Data-Driven Global Optimization Methods and Applications

9.2 TEACHING–LEARNING-BASED OPTIMIZATION

TLBO first presented by Rao et al. (2011) refers to a phenomenon-inspired 

method that exploits a population to iteratively search the global optimal 

solution. Uniquely, TLBO imitates how knowledge spreads in a class (pop-

ulation), where the individuals consist of several learners and one teacher. 

The teacher possessing the highest-level knowledge can guide the learners 

to get improved, so the overall knowledge level of this class will ultimately 

shift to the teacher. Moreover, one learner can be inspired by other learn-

ers: if you are better, I can follow you; otherwise, I can try the opposite 

direction. To sum up, TLBO involves two search phases: teaching and 

learning. To be more specific, Figure 9.1 illustrates the detailed formulas 

and algorithm steps.

FIGURE 9.1 Illustration of TLBO.
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9.3 THE PROPOSED KTLBO

In the presented KTLBO, the design of experiments (DoE) is first employed to 

yield a group of well-distributed points that should be assessed by real objec-

tive and constraint functions. Thereafter, these expensive samples are orga-

nized to build surrogate models of objectives and constraints, respectively. 

In this chapter, a novel sampling method combining metaheuristic search 

mechanism and the prediction capability of Kriging is presented, to achieve 

a reasonable balance of global exploration and local exploitation. For each 

cycle of KTLBO, real data are required to undergo assessment, preprocess-

ing, classifying, surrogate modeling and updating, while the potential candi-

date points determined from Kriging-assisted teaching and learning phases 

should go through prescreening and repeatability detecting. After several 

iterations, the predicting performance of the mentioned Kriging models is 

gradually enhanced, and more potential points around the true feasible area 

or global optimum will be captured. Figure 9.2 presents the overall flow of 

KTLBO, and more details will be explained in the following sections.

FIGURE 9.2 Data flow of KTLBO.
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9.3.1 Initialization of KTLBO

At the initial phase of KTLBO, some basic parameters (e.g., design range, 

numbers of variables and constraints, population size and number of initial 

sample points) are initialized and defined, respectively. Next, optimized 

Latin hypercube sampling (OLHS) is employed to obtain the initial point 

set S = {x(1), x(2), …, x(N)} and its corresponding objective and constraints 

values y y y NY { }= , , ,(1) (2) ( )  and NC c c c{ }= , , ,(1) (2) ( ) , where S and Y 

denote two vectors, and C is a matrix. To efficiently compare the expensive 

samples in a constrained problem, a penalty-function method is written:
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where x(j) denotes the jth point in the sample set S; Y represents the objec-

tive values set; and max(Y) is the maximal objective function value. It is 

assumed that there are two points A and B. According to Eq. (9.2), it is easy 

to draw three conclusions.

 1. If A is feasible and B is infeasible, F(A) should be better than F(B) 

because:
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 2. If both A and B are infeasible and the constraint violation of A is 

smaller than that of B, F(A) should be better than F(B) because:
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 3. If both A and B are feasible and the objective function value of A is 

smaller than that of B, F(A) should outperform F(B) because:

 Y Y( ) ( ) ( ) ( )< ⇒ <A B F A F B  (9.5)
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Obviously, if both A and B are infeasible, Eq. (9.2) considers more about 

how seriously they violate the constraints, which will promote the algo-

rithm to find feasible solutions efficiently. Besides, the penalty function 

F is employed to classify all samples in S, Y and C, and select the promis-

ing individuals as the population members Pop. Figure 9.3 illustrates the 

data structure and flow of the initial phase, underpinning the subsequent 

sampling loop. Moreover, since the initial samples are extensively distrib-

uted over the whole design space, the first population Pop has a better 

space-filling performance. With the loop continuing and more promising 

samples added, the Pop in teaching phase will concentrate on the present 

best solution to accelerate convergence, and the Pop in learning phase may 

continuously exhibit a wide distribution to achieve global exploration. 

More details can be found in the following sections.

9.3.2 Kriging-Assisted Teaching Phase

The optimization loop includes two phases: one is the KATP that suffi-

ciently exploits the local area around the present best solution; the other 

one is KALP that can effectively search the sparsely sampled area. In KATP, 

the predicted local optimal solution xplo should be first captured in a local 

area enclosing the present best solution xbest. Since the Kriging models for 

objective and constraint functions have been built, TLBO directly acts as 

an optimizer to search the surrogate models. Equation (9.6) expresses the 

pure exploitation of surrogates.

FIGURE 9.3 Data flow of initial phase.
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where [lb, ub] denotes the whole design range; ˆ x( )Y  and ˆ x( )Ci  are the 

Kriging models of objective and constraint functions, respectively. 

Considering the constraints of Eq. (9.6), a contrast rule is adopted to com-

pare any two points in TLBO. More precisely, if a predicted point is better, 

it is assumed as feasible or at least has a lower constraint violation value. 

Equation (9.7) accounts for the details about the contrast rule, and it will 

be used for selecting teachers and smarter learners in TLBO.
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where pi and p j denote two predicted points in one population; v̂ repre-

sents the constraint violation; P is the population size in TLBO; Ŷ  is the 

predicted objective function; and Ci
ˆ  is the ith predicted constraint. After 

considerable generations, the predicted best point can be found.

On the other hand, the current Pop whose individuals originate from 

the expensive samples S Y C begins to generate the new individuals. 

Figure 9.4 presents the data structure and flow of KATP. In each cycle, 

Pop will generate M groups of new positions based on the metaheuris-

tic teaching mechanism and archive these newcomers into a candidate 

sample pool, from which a proposed prescreening strategy is used to 

select the most promising points that keep balanced exploitation and 

exploration.
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As Figure  9.4 shows, Pop Rank Rank RankKx x x= { , , , }( 1) ( 1) ( )  is classified by 

Eq. (9.2) and then selected from S. Based on the TLBO’s search mecha-

nism, the new positions are estimated by the following equations.
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where xi denotes the new position generated by x(Ranki); j denotes the jth 

group; TF is a random integer between {1, 2}; r is a random number in 

the range [0, 1]; K refers to the size of Pop; M is the number of groups. 

Lastly, K M×  new points are archived into a temporary sample pool for 

prescreening.

Since the EI strategy can identify potential points that balance Kriging’s 

prediction values and space-filling performance, KTLBO utilizes the EI 

function to select promising points from the sample pool. To be more spe-

cific, the EI equations are written as:

FIGURE 9.4 Data flow of Kriging-assisted teaching phase.
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I(x) represents the improvement of the objective function; Y(x) over the 
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Equation (9.10) refers to the EI of objective function. Besides, it is neces-

sary to consider the possibility of feasibility at x, and the specific formulas 

are listed.
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where x( )C  also complies with the normal distribution ˆ , 2x x( )( ) ( )N C sc . To 

improve the readability, Figure 9.5 illustrates the EI strategy. For a prob-

lem with m constraints, the final EI expression can be formulated as:
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 (9.12)

It is clear that Eq. (9.12) considers the potential contribution of a new 

point to the objective function, as well as its feasibility. Thus, Eq. (9.12) is 

regarded as a sorting criterion to find the maximal EI value of each group.

FIGURE 9.5 Illustration of teaching-based prescreening theory.
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Lastly, a group of new points ∗ ∗ ∗{ , , , }1 2 Kx x x  that balance the exploration of 

unexplored areas and exploitation of Kriging are attained. Furthermore, 

the predicted best solution xplo and these selected new points will be 

assessed and saved into the expensive sample set for the next cycle. The 

detailed pseudo code of KATP is provided in Algorithm 9.1.

Algorithm 9.1 Kriging-assisted Teaching Phase

Input:  Sample sets S, Y, C, F; The number of constraints m; the number 

of design variables d; the population Pop; the Pop’s size K; the 

number of sampling groups M;

Output: Updated sample sets S, Y, C, F

(01)  Begin

(02) KRG ← { KRGobj, KRGc1, KRGcm } /* Build Kriging models based on 

(S, Y), (S, C)*/;

(03) xplo ← Get the predicted best solution based on Eqs. (9.11) and 

(9.12) using TLBO;

(04) Flag ← Check the repeatability to the samples set S /* Use K-nearest 

Neighbors */;

(05) If Flag = True /* True implies that xpbest is not repeated*/

(06)  ypbest, cpbest ← Calculate the objective and constraint function val-

ues of xpbest;

(07) S, Y, C ← S  xpbest, Y  ypbest, C  cpbest;

(08) End If

(09) Teacher ← Identify the most promising sample from S by Eq. (9.7);

(10) Q ← Evaluate mean positions of Pop;

(11) For i from 1 to K

(12) For j from 1 to M

(13)  i
j
x  ← Get the new point by Eq. (9.13)

(14) End For



236   ◾   Data-Driven Global Optimization Methods and Applications

(15) ix
* ← Select the most promising individual by Eqs. (9.14)–(9.18)

(16)  Flag ← Check the repeatability to the samples set S /* K-nearest 

Neighbors */;

(17) If Flag = True /* True implies that ix
* is not repeated*/

(18)   iy
*, ic

* ← Calculate the objective and constraint function values 

of ix
*;

(19)  S, Y, C ← S  ix
*, Y  iy

*, C  ic
*;

(20) End If

(21) End For

(22) F ← Update the penalty function values set based on Eq. (9.7).

(23) Return Updated sample sets S, Y, C, F

(24)  End

9.3.3 Kriging-Assisted Learning Phase

In KALP, TLBO is first employed to get the predicted global optimal solu-

tion xpgo from Kriging models, where the search range has been changed to 

global design space [lb, ub]. Besides, in KALP, the manner to form the cur-

rent population Pop is also inconsistent with KATP. Figure 9.6 illustrates 

the corresponding data flow. The point with the best F value is first chosen, 

and then K − 1 points are randomly selected from the remaining N − 1  

points. This selection manner makes the samples in Pop more diverse 

and distribute more extensively, which promotes the search for unknown 

areas. According to Figure 9.6, Pop will generate M groups of new points 

by following TLBO’s learning mechanism.

FIGURE 9.6 Data flow of Kriging-assisted learning phase.
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FIGURE 9.7 Illustration of learning-based prescreening theory.
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where r denotes a random number in the range [0, 1]; K is the size of Pop; 

M represents the number of groups. Likewise, K M×  new points are gener-

ated, which are saved into a temporary sample pool for prescreening.

As discussed above, the estimated MSE s2(x) can indicate the sample 

density of the design space. A point with larger MSE value implies that it is 

located in a sparsely sampled area. Figure 9.7 gives a more intuitive expla-

nation, where the MSE values of generated points are 0, whereas x1 and x2 

are relatively larger. In fact, points with larger MSE values should be added 

to enhance the global exploration capability.

For constrained problems, the feasibility of points should be consid-

ered. Accordingly, a prescreening method combining MSE and possibility 

of feasibility expressed in Eq. (9.11) is proposed:
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Equation (9.15) reveals that a point x with a larger s(x) value and higher 

probability of feasibility will be more attractive. Thus, Eq. (9.15) is regarded 

as a sorting criterion to determine the maximal SPc value of each group.
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Similar to KATP, a group of new points ∗ ∗ ∗{ , , , }1 2 Kx x x  located in the 

sparsely sampled area is generated. The mentioned new points and the pre-

dicted best solution xpgo from the current Kriging models will be saved into 

the expensive sample set. Specifically, the pseudo-code regarding KALP is 

summarized in Algorithm 9.2.

Algorithm 9.2 Kriging-assisted Learning Phase

Input:  The number of constraints m; the number of design variables d; 

the Pop’s size K; the number of sampling groups M; sample sets  

S, Y, C, F

Output: Updated sample sets S, Y, C, F

(01)  Begin

(02) Pop(1) ←  Rankx( 1)/* Select the best sample from S as Figure 9.6 shows*/

(03) T ← Get K-1 random integers ranging from 2 to N /* N is the num-

ber of points in S*/

(04) For i from 1 to K-1

(05) Pop(i) ← RankT ix( ( ))

(06) End For

(07) KRG ← { KRGobj, KRGc1, KRGcm } /* Build Kriging models based on 

(S, Y), (S, C)*/;

(08) xpgo ← Get the predicted best solution on design space [lb, ub] using 

TLBO;

(09) Flag ← Check the repeatability to the samples set S /* K-nearest 

neighbors */;
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(10) If Flag = True /* True implies that xpbest is not repeated*/

(11)  ypbest, cpbest ← Calculate the objective and constraint function val-

ues of xpbest;

(12) S, Y, C ← S  xpbest, Y  ypbest, C  cpbest;

(13) End If

(14) For t from 1 to K

(15) s← Identify an index s K s t∈ ≠{1,2, , }, ;

(16) For j from 1 to M

(17)  t
j
x  Get the new point by Eq. (9.14)

(18) End For

(19)  ← tx
* Select the most promising individual by Eqs. (9.15) and 

(9.16)

(20)  Flag ← Check the repeatability to the samples set S /* K-nearest 

neighbors */;

(21) If Flag = True /* True implies that ← is not repeated*/

(22)   ∗

iy  ∗

ic  ← Calculate the objective and constraint function values 

of ∗

tx ;

(23)  S, Y, C ← S  ∗

tx , Y   ∗

ty , C   ∗

tc ;

(24) End If

(25) End For

(26) F ← Update the penalty function values set based on Eq. (7)

(27) Return Updated sample sets S, Y, C, F

(28)  End

9.3.4 Overall Optimization Framework of KTLBO

To clearly demonstrate the whole optimization flow, an illustration with 

specific algorithm steps is given in Figure 9.8. Three areas displaying dif-

ferent colors separately represent initial phase, KATP and KALP, and the 

logic of the three phases is clearly presented. After the initial phase, KATP 

and KALP are conducted alternately to realize efficient global optimiza-

tion. It is clear that KTLBO will continue to work until reaching the maxi-

mum allowable number of function evaluations.

9.4 COMPARISON EXPERIMENTS

In this chapter, KTLBO is compared with six well-known and recently pub-

lished algorithms MSSR (refer to Chapter 4) (Dong et al., 2016), SCGOSR 

(Dong, Song, Dong, et al., 2018), ConstrLMSRBF (Regis, 2011), TLBO (Rao 

et al., 2011), CMODE (Wang & Cai, 2012) and FROFI (Wang et al., 2016). 

Specifically, MSSR, SCGOSR and ConstrLMSRBF refer to SBO algorithms 
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and have proved handling black-box optimization problems with costly 

objectives and constraints on various mathematical cases. In contrast, 

TLBO, CMODE and FROFI act as three efficient metaheuristic algorithms 

for constrained optimization and have shown superior performance on 

black-box constrained optimization problems. To verify KTLBO’s capabil-

ity, 18 benchmark cases exhibiting a range of characteristics are collected 

as test cases, whose specific information is listed in Table 9.1.

In the 18 benchmark cases, there are 15 extensively used mathemati-

cal cases, consisting of 13 CEC2006 cases (Yang et al., 2020), two famous 

multimodal cases GO and SE (Dong, Song, Dong, et  al., 2018), as well 

as three classical engineering applications TSD, SRD and SCBD (Dong, 

Song, Dong, et al., 2018). Their design dimension dim ranges from 2 to 20, 

and the number of constraints (Noc) falls in the range (1–38). Moreover, 

LI denotes “linear inequality constraint” and NI represents “Nonlinear 

inequality constraint.”

FIGURE 9.8 Overall optimization flow of KTLBO.
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Since SBO algorithms are generally use fewer function evaluations (FEs) 

to yield satisfactory solutions, and metaheuristic algorithms require more 

FEs, two groups of experiments are set. In the first experiment, KTLBO is 

compared with SCGOSR, MSSR and ConstrLMSRBF, and the maximal 

number of function evaluations (NFE) is set to 200. In the second, the 

maximal NFE (maxNFE) is defined as 500, and KTLBO is compared with 

TLBO, CMODE and FROFI. For all the parameters of SCGOSR, MSSR and 

ConstrLMSRBF, their default values [42, 25, 38] are used for test, whereas 

their maximal NFE is defined as 200. For CMODE, FROFI and TLBO, the 

maxNFE reaches 500, the population size is defined as 10, and all the other 

parameters remain at their default values [16, 19, 46]. For KTLBO, the size 

of Pop K is 3, the number of sampling groups M is 10, and the number of 

DoE samples reaches 2d + 1, where d denotes the number of dimensions. 

Besides, KTLBO adopts OLHS [48] to yield its initial DoE samples.

Tables 9.2 and 9.3 list the statistical results on the 13 CEC2006 cases, 

where SR denotes the successful ratio to find the feasible solutions after the 

maximal NFE, W-t refers to the Wilcoxon rank sum test, and all the best 

results are marked in bold. Intuitively, KTLBO can find feasible solutions 

in all these cases, since its SR is always 100%. SCGOSR exhibits unstable 

TABLE 9.1 Specific Characteristics of 18 Test Cases

Category Func. dim Noc LI NI Known Best Value Type of Obj.

Mathematical 
cases 
(13 CEC2006 
cases and two 
widely used 
cases)

g01 13 9 9 0 −15.0000 Quadratic

g02 20 2 0 2 −0.8036 Nonlinear

g04 5 6 0 6 −30,665.5387 Quadratic

g06 2 2 0 2 −6,961.8139 Cubic

g07 10 8 3 5 24.3062 Quadratic

g08 2 2 0 2 −0.0958 Nonlinear

g09 7 4 0 4 680.6301 Polynomial

g10 8 6 3 3 7,049.2480 Linear

g12 3 1 0 1 −1.0000 Quadratic

g16 5 38 4 34 −1.9052 Nonlinear

g18 9 13 0 13 −0.8660 Quadratic

g19 15 5 0 5 32.6556 Nonlinear

g24 2 2 0 2 −5.5080 Linear

GO 2 1 0 1 −0.9711 Polynomial

SE 2 1 0 1 −1.1743 Nonlinear

Engineering 
application 
cases

TSD 3 4 1 3 0.01267 Polynomial

SRD 7 11 4 7 2,994.4711 Polynomial

SCBD 10 11 5 6 62,791 Polynomial
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TABLE 9.2 Statistical Results on CEC2006 Cases (NFE = 200)—Part 1

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF

g01 Best −15.000 −14.959 −3.000 −13.596

Median −15.000 −11.944 −2.085 −9.439

Worst −15.000 −7.828 −1.169 −3.725

Mean −15.000 −11.687 −2.085 −9.326

Std 0.000 1.880 1.294 3.148

SR 100% 100% 10% 100%

W-t (+) (+) (+)

g02 Best −0.398 −0.258 −0.335 −0.400

Median −0.273 −0.203 −0.180 −0.286

Worst −0.159 −0.155 −0.151 −0.142

Mean −0.273 −0.209 −0.185 −0.288

Std 0.062 0.062 0.038 0.068

SR 100% 100% 100% 100%

W-t (+) (≈) (+)

g04 Best −30,665.539 −30,665.539 −30,665.537 —

Median −30,665.539 −30,665.520 −30,663.910 —

Worst −30,665.538 −30,562.619 −30,617.768 —

Mean −30,665.539 −30,658.768 −30,659.544 —

Std 0.000 23.235 11.123 —

SR 100% 100% 100% 0%

W-t (+) (+) (+)

g06 Best −6,961.803 −6,961.814 −6,961.776 —

Median −6,961.784 −6,961.804 −6,957.937 —

Worst −6,961.762 −6,961.730 −6,952.356 —

Mean −6,961.784 −6,961.795 −6,958.198 —

Std 0.014 0.023 2.922 —

SR 100% 100% 100% 0%

W-t (−) (+) (+)

g07 Best 24.376 24.309 31.539 32.402

Median 24.419 24.405 112.481 38.662

Worst 24.507 30.139 217.320 42.044

Mean 24.436 26.060 126.714 38.598

Std 0.044 2.372 66.111 2.389

SR 100% 100% 50% 100%

W-t (≈) (+) (+)

g08 Best −0.096 −0.096 −0.096 −0.096

(Continued)
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TABLE 9.2 (Continued) Statistical Results on CEC2006 Cases (NFE = 200)—Part 1

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF

Median −0.096 −0.096 −0.096 −0.094

Worst −0.090 −0.096 −0.096 −0.088

Mean −0.095 −0.096 −0.096 −0.093

Std 0.002 0.000 0.000 0.002

SR 100% 100% 100% 100%

W-t (−) (+) (+)

g09 Best 682.635 683.524 830.918 736.743

Median 736.662 703.344 1,313.413 908.523

Worst 891.725 818.397 1,903.922 1,183.825

Mean 744.492 714.327 1,309.897 923.902

Std 52.052 34.229 297.661 122.212

SR 100% 100% 100% 100%

W-t (−) (+) (+)

TABLE 9.3 Statistical Results on CEC2006 Cases (NFE = 200)—Part 2

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF

g10 Best 7,051.015 7,176.968 7,050.922 —

Median 7,061.990 11,125.224 7,051.715 —

Worst 7,108.000 14,567.211 7,052.509 —

Mean 7,064.030 10,667.396 7,051.715 —

Std 12.679 3,106.373 1.123 —

SR 100% 25% 10% 0%

W-t (+) (+) (+)

g12 Best −1.000 −1.000 −1.000 −1.000

Median −1.000 −0.997 −0.965 −1.000

Worst −1.000 −0.924 −0.822 −0.960

Mean −1.000 −0.991 −0.944 −0.994

Std 0.000 0.017 0.058 0.011

SR 100% 100% 100% 100%

W-t (+) (+) (+)

g16 Best −1.905 −1.905 −1.905 —

Median −1.905 −1.905 −1.905 —

Worst −1.459 −1.820 −1.650 —

Mean −1.813 −1.895 −1.860 —

Std 0.156 0.024 0.075 —

(Continued)
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TABLE 9.3 (Continued) Statistical Results on CEC2006 Cases (NFE = 200)—Part 2

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF

SR 100% 100% 100% 0%

W-t (≈) (≈) (+)

g18 Best −0.866 −0.866 −0.859 −0.447

Median −0.866 −0.608 −0.616 −0.355

Worst −0.864 −0.209 −0.239 −0.217

Mean −0.865 −0.584 −0.603 −0.343

Std 0.000 0.212 0.174 0.064

SR 100% 90% 75% 95%

W-t (+) (+) (+)

g19 Best 37.951 297.193 301.434 232.529

Median 44.020 518.120 722.746 490.591

Worst 73.471 986.840 1143.817 749.958

Mean 45.731 592.086 710.173 514.584

Std 7.596 212.263 214.210 152.950

SR 100% 100% 100% 100%

W-t (+) (+) (+)

g24 Best −5.508 −5.508 −5.508 −4.054

Median −5.508 −5.508 −5.507 −4.053

Worst −5.508 −5.507 −5.452 −4.049

Mean −5.508 −5.508 −5.499 −4.053

Std 0.000 0.000 0.017 0.001

SR 100% 100% 100% 100%

W-t (+) (+) (+)

performance on g10 and g18, since it may fail to find feasible solutions 

during 20 runs. It is easy to observe that MSSR has difficulties on g01, 

g07, g10 and g18. For instance, MSSR can only succeed twice on g01 dur-

ing the 20 runs. Compared with others, ConstrLMSRBF is a special algo-

rithm, because it requires at least one feasible solution in the initial sample 

set to drive the subsequent loop. Hence, a feasible solution of KTLBO is 

substituted into the initial samples of ConstrLMSRBF, to make it work. 

However, ConstrLMSRBF exhibits the worst performance on g04, g06, 

g10, g16 and g18.

In addition, KTLBO can get solutions closer to the true global optima 

in most cases. Intuitively, KTLBO stays ahead on g01, g04, g07, g10, g12, 

g18, g19 and g24, while SCGOSR gets first ranks on g06, g08, g09 and g16. 
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For g06 and g08, SCGOSR outperforms KTLBO, whereas their results 

are significantly close. MSSR exhibits acceptable performance, and it can 

approach the true global optima in most cases. However, compared with 

KTLBO and SCGOSR, MSSR exhibits relatively weaker convergence abil-

ity. For instance, the values of MSSR on g04, g06, g07, g09, g18 and g19 

are obviously lower than those of SCGOSR and KTLBO. Among the four 

algorithms, ConstrLMSRBF is indicated to encounter more difficulties in 

these cases. Tables 9.2 and 9.3 clearly show that ConstrLMSRBF can hardly 

achieve convergence during 200 FEs or even find feasible solutions in some 

cases. Though ConstrLMSRBF exhibits unstable performance, it some-

times achieves higher efficiency than MSSR. For instance, it can find more 

effective mean and median results on g01, g02, g07, g09, g12 and g19 than 

MSSR. For g02, ConstrLMSRBF outperforms the other three algorithms 

for the RBF’s superior ability to solve high-dimensional problems. In sum-

mary, among the four algorithms, KTLBO has more significant advantages 

in the 13 CEC2006 cases. Table 9.4 lists the comparison results of the four 

algorithms in the low-dimensional cases and engineering applications. 

KTLBO still performs efficiently and stably. KTLBO can reach the true 

global optima of SRD and SE for all the runs. Besides, it can easily approach 

the true global optima of SCBD, TSD and GO. In contrast, ConstrLMSRBF 

exhibits worse performance in the five benchmark cases. SCGOSR and 

MSSR achieve similar performance, while SCGOSR is indicated to be 

more robust. In summary, Tables 9.2–9.4 draw the same conclusion that 

KTLBO solves computationally expensive and black-box-constrained opti-

mization problems efficiently. Figure 9.9 illustrates the iterative results of 

KTLBO, which can reflect KTLBO’s average performance during the 20 

runs. Figure  9.9 plots the KTLBO history data generated during a com-

pleted search. For g01, g04, g07, g09, g12, g16, g18, g19, g24, SCBD, SE and 

SRD, clearer figures are also added. Intuitively, most of these figures show 

that the sample values generated by DoE fluctuate more significantly, while 

the points generated by the iterative process mainly focus on the feasible 

or global optimal area. For instance, no feasible samples are found on G7, 

G8 and G10 at first, whereas many pink feasible points are captured with 

iteration continuing. Besides, as impacted by KTLBO’s global exploration 

mechanism, the algorithm may still have some opportunities to search the 

unknown infeasible area. As indicated by many cases in Figure 9.9, though 

the global optimal area has been identified, KTLBO still samples some 

infeasible points far away from the present best point.
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TABLE 9.4 Statistical Results on GO, SE and Engineering Cases (NFE = 200)

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF

SRD Best 2,994.471 2,994.471 2,994.473 —

Median 2,994.471 2,994.536 2,996.901 —

Worst 2,994.471 3,009.420 3,019.273 —

Mean 2,994.471 2,995.991 3,000.715 —

Std 0.000 3.805 7.896 —

SR 100% 100% 100% 0%

W-t (+) (+) (+)

SCBD Best 62,791.528 62,791.491 65,798.689 —

Median 62,791.688 67,703.486 72,331.571 —

Worst 62,792.069 77,506.995 78,398.626 —

Mean 62,791.734 68,242.677 72,793.390 —

Std 0.151 4,160.120 5,563.921 —

SR 100% 100% 25% 0%

W-t (+) (+) (+)

TSD Best 0.012666 0.012666 0.012665 —

Median 0.012681 0.012697 0.012665 —

Worst 0.012792 0.012788 0.013306 —

Mean 0.012691 0.012705 0.012697 —

Std 0.000030 0.000035 0.000143 —

SR 100% 100% 100% 0%

W-t (≈) (−) (+)

GO Best −0.971 −0.971 −0.971 −0.743

Median −0.971 −0.971 −0.969 0.042

Worst −0.744 −0.871 −0.034 0.465

Mean −0.960 −0.938 −0.877 −0.076

Std 0.051 0.047 0.208 0.489

SR 100% 100% 100% 100%

W-t (+) (+) (+)

SE Best −1.174 −1.174 −1.174 −1.172

Median −1.174 −1.174 −1.174 −1.158

Worst −1.174 −1.174 −1.171 62.187

Mean −1.174 −1.174 −1.174 10.430

Std 0.000 0.000 0.001 22.570

SR 100% 100% 100% 100%

W-t (≈) (+) (+)
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(a)

(c)(b)

(d)

(e)

FIGURE 9.9 Iterative results of KTLBO on the 18 cases.

(Continued)
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(f) (g)

(h)

(i)

(j)

FIGURE 9.9 (Continued) Iterative results of KTLBO on the 18 cases.

(Continued)
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(l)

FIGURE 9.9 (Continued) Iterative results of KTLBO on the 18 cases.

(Continued)
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FIGURE 9.9 (Continued) Iterative results of KTLBO on the 18 cases.

(o)

(p)

(r)(q)

Since KTLBO complies with the metaheuristic search mechanism, 

KTLBO is further compared with three well-known metaheuristic- 

constrained optimization methods. Tables  9.5–9.7 present the compari-

son results of the four algorithms in 500 FEs. Undoubtedly, KTLBO using 

500 FEs can yield more accurate results than that in Tables 9.2–9.4. For 

many cases (e.g., g01, g04, g06, g07, g08, g09, g12, g18, g24, SE, GO, TSD, 

SRD and SCBD), KTLBO basically has reached the true global optima. 
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TLBO performs more robustly among the other three comparison algo-

rithms because it is more likely to find feasible solutions during 20 runs. 

CMODE and FROFI may always fail in some cases. For instance, FROFI 

can hardly process g01, g10 and g18, while CMODE cannot process g18. 

Moreover, CMODE achieves lower SR values on g01, g07 and g10. More 

function calls are required for CMODE and FROFI to identify the feasible 

area. Relatively, TLBO, CMODE and FROFI achieve better performance 

TABLE 9.5 Statistical Results on CEC2006 Cases (NFE = 500)—Part 1

Problem Criteria KTLBO TLBO CMODE FROFI

g01 Best −15.000 −9.041 −6.780 —

Median −15.000 −6.668 −5.526 —

Worst −15.000 −3.124 −3.431 —

Mean −15.000 −6.409 −5.298 —

Std 0.000 1.842 1.231 —

SR 100% 100% 30% 0%

W-t (+) (+) (+)

g02 Best −0.443 −0.344 −0.346 −0.356

Median −0.355 −0.267 −0.246 −0.245

Worst −0.289 −0.177 −0.182 −0.181

Mean −0.356 −0.268 −0.253 −0.257

Std 0.046 0.040 0.040 0.052

SR 100% 100% 100% 100%

W-t (+) (+) (+)

g04 Best −30,665.539 −30,657.709 −30,577.162 −30,422.543

Median −30,665.539 −30,527.893 −30,246.187 −30,207.457

Worst −30,665.539 −29,624.622 −29,630.264 −29,922.280

Mean −30,665.539 −30,376.660 −30,201.293 −30,219.223

Std 0.000 322.562 255.884 116.434

SR 100% 100% 100% 100%

W-t (+) (+) (+)

g06 Best −6,961.812 −6,616.246 −6,936.174 −6,809.207

Median −6,961.799 −6,123.592 −6,598.398 −6,439.650

Worst −6,961.778 −2,080.231 −1,767.477 −4,006.968

Mean −6,961.798 −5,283.219 −5,660.160 −6,145.102

Std 0.009 1,614.756 1,689.016 759.007

SR 100% 60% 85% 95%

W-t (+) (+) (+)

g07 Best 24.335 147.721 158.689 48.267

(Continued)
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TABLE 9.5 (Continued) Statistical Results on CEC2006 Cases (NFE = 500)—Part 1

Problem Criteria KTLBO TLBO CMODE FROFI

Median 24.362 1,000.305 315.775 107.470

Worst 24.447 1,549.875 707.693 325.735

Mean 24.370 869.814 374.483 137.090

Std 0.030 473.553 237.994 77.036

SR 100% 45% 20% 90%

W-t (+) (+) (+)

g08 Best −0.096 −0.096 −0.096 −0.096

Median −0.096 −0.096 −0.095 −0.096

Worst −0.096 −0.026 −0.029 −0.029

Mean −0.096 −0.092 −0.081 −0.092

Std 0.000 0.016 0.026 0.015

SR 100% 100% 90% 100%

W-t (+) (+) (+)

g09 Best 680.646 692.552 700.421 702.259

Median 680.736 737.429 818.555 744.267

Worst 681.581 829.155 1,345.010 882.689

Mean 680.826 742.725 888.289 759.905

Std 0.238 37.368 177.392 46.599

SR 100% 100% 100% 100%

W-t (+) (+) (+)

TABLE 9.6 Statistical Results on CEC2006 Cases (NFE = 500)—Part 2

Problem Criteria KTLBO TLBO CMODE FROFI

g10 Best 7,050.335 13,413.760 12,842.042 —

Median 7,054.236 17,768.095 13,343.482 —

Worst 7,068.933 22,506.365 14,506.941 –

Mean 7,056.459 18,159.266 13,564.155 —

Std 4.772 2,991.253 854.105 —

SR 100% 45% 15% 0%

W-t (+) (+) (+)

g12 Best −1.000 −0.999 −1.000 −1.000

Median −1.000 −0.987 −1.000 −1.000

Worst −1.000 −0.908 −0.964 −1.000

Mean −1.000 −0.979 −0.997 −1.000

Std 0.000 0.022 0.008 0.000

SR 100% 100% 100% 100%

(Continued)
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TABLE 9.6 (Continued) Statistical Results on CEC2006 Cases (NFE = 500)—Part 2

Problem Criteria KTLBO TLBO CMODE FROFI

W-t (+) (+) (+)

g16 Best −1.905 −1.855 −1.879 −1.702

Median −1.905 −1.542 −1.483 −1.437

Worst −1.723 −0.978 −1.167 −1.200

Mean −1.896 −1.508 −1.508 −1.429

Std 0.041 0.256 0.274 0.172

SR 100% 85% 40% 40%

W-t (+) (+) (+)

g18 Best −0.866 −0.652 — —

Median −0.866 −0.458 — —

Worst −0.866 −0.271 — —

Mean −0.866 −0.461 — —

Std 0.000 0.110 — —

SR 100% 100% 0% 0%

W-t (+) (+) (+)

g19 Best 32.923 84.283 342.126 264.017

Median 33.682 248.502 783.799 583.579

Worst 35.067 397.335 2,081.047 1,249.052

Mean 33.760 235.149 851.530 601.482

Std 0.520 87.032 464.958 269.384

SR 100% 100% 100% 55%

W-t (+) (+) (+)

g24 Best −5.508 −5.507 −5.507 −5.492

Median −5.508 −5.499 −5.490 −5.448

Worst −5.508 −5.377 −5.343 −5.292

Mean −5.508 −5.485 −5.472 −5.437

Std 0.000 0.035 0.045 0.048

SR 100% 100% 100% 100%

W-t (+) (+) (+)

on g02, g04, g08, g09, g12 and g24 because these cases have larger feasible 

space. Tables 9.2, 9.3, 9.5 and 9.6 summarize that SBO algorithms require 

fewer FEs than metaheuristic algorithms in most cases.

As indicated in Table 9.7, 500 FEs are good enough for KTLBO to find 

their global optimal solutions. Besides, TLBO always achieves higher 

SRs and outperforms CMODE and FROFI on SRD, SCBD, TSD and GO. 

Notably, metaheuristic algorithms are applied directly to computation-

ally expensive and black-box optimization problems, whereas they require 
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TABLE 9.7 Statistical Results on GO, SE and Engineering Cases (NFE = 500)

Problem Criteria KTLBO TLBO CMODE FROFI

SRD Best 2,994.471 3,003.273 3,025.246 3,036.176

Median 2,994.471 3,052.253 3,122.707 3,109.041

Worst 2,994.471 5,574.144 3,899.410 3,457.146

Mean 2,994.471 3,333.409 3,178.711 3,122.580

Std 0.000 615.210 229.481 91.311

SR 100% 100% 90% 100%

W-t (+) (+) (+)

SCBD Best 62,791.515 65,966.042 67,788.298 67,238.418

Median 62,791.584 73,772.591 70,641.883 73,076.280

Worst 62,791.738 83,818.265 74,480.140 77,374.617

Mean 62,791.598 73,285.578 71,485.513 72,318.792

Std 0.061 4,698.158 2,055.834 3,124.462

SR 100% 90% 65% 55%

W-t (+) (+) (+)

TSD Best 0.012665 0.012735 0.012742 0.012965

Median 0.012667 0.013006 0.013769 0.014361

Worst 0.012671 0.015140 0.230292 0.017988

Mean 0.012667 0.013410 0.026247 0.014682

Std 0.000002 0.000830 0.049545 0.001374

SR 100% 100% 95% 100%

W-t (+) (+) (+)

GO Best −0.971 −0.971 −0.971 −0.971

Median −0.971 −0.968 −0.970 −0.968

Worst −0.971 −0.867 −0.811 −0.858

Mean −0.971 −0.947 −0.928 −0.941

Std 0.000 0.036 0.060 0.046

SR 100% 100% 100% 100%

W-t (+) (+) (+)

SE Best −1.174 −1.174 −1.174 −1.172

Median −1.174 −1.171 −1.173 −1.165

Worst −1.174 −0.102 −0.580 −1.149

Mean −1.174 −1.090 −1.128 −1.164

Std 0.000 0.245 0.140 0.006

SR 100% 100% 100% 100%

W-t (+) (+) (+)
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more FEs to achieve convergence. SBO algorithms exploit the predicted 

information of surrogate models for search guidance, thereby decreasing 

the NFE. However, SBO methods may exhibit higher sensitivity to the pre-

diction accuracy of surrogate models. Once the surrogate models exhibit 

worse predicting performance in some cases, SBO may get inefficient 

immediately. Accordingly, KTLBO combining a metaheuristic search-

ing mechanism and Kriging’s predicted information can ensure a robust 

sampling process, and its results from Table 9.2–9.7 indicate its powerful 

functionality and significant advantages for EBCPs.

9.5 ENGINEERING APPLICATIONS

Blended-wing-body underwater gliders (BWBUGs) that play an important 

role in scientific and commercial fields have aroused huge attention over 

the past few years. In a BWBUG, the pressure shell is an extremely impor-

tant part that protects the expensive measuring instruments and equip-

ment in a deep-sea environment. In this chapter, to decrease the design cost 

and meanwhile increase the inner space volume of the BWBUG’s pressure 

shell, this study attempts to improve its buoyancy–weight ratio (BWR) and 

concurrently satisfy the stress and stability constraints. Figure 9.10 pres-

ents the geometric description and defines ten design variables including 

three thickness parameters (t1, t2 and t3), three radius parameters (R1, R2 

and R3), and four size parameters (l1, l2, l3 and l4).

Furthermore, the specific optimization formula is summarized below:

 

B

G

l l l l R R R t t t

m l l l l R R R t t t

s t l l l l R R R t t t

P P l l l l R R R t t t

l

R R R

t t t

s

cr

ρ

σ γσ

λ

( )
( )

( )
( )

≤

≤

≤ ≤ ≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤

≤ ≤ ≤ ≤ ≤ ≤


















max =
v , , , , , , , , ,

, , , , , , , , ,

. . , , , , , , , , ,

, , , , , , , , ,

375 390 225 l 235 200 l 210 150 l 160

65 85 80 100 20 30

5 12 5 12 5 12

1 2 3 4 1 2 3 1 2 3

1 2 3 4 1 2 3 1 2 3

max 1 2 3 4 1 2 3 1 2 3

j 1 2 3 4 1 2 3 1 2 3

1 2 3 4

1 2 3

1 2 3

(9.17)

where B denotes buoyancy, G refers to gravity,  is the density of sea water, v 

is the volume of the whole pressure shell, and m represents the total weight. 

In the first stress constraint, ρ is the maximal equivalent stress, σ max refers 

to the yield strength, and sσ  is a safety factor. In the second stability con-

straint, γ  is the computation pressure, P ≈10 MPaj  is the buckling critical 

load, and Pcr  is the first-order buckling factor. In this case, the depth of 
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water is defined as 1,000  m, λ, and γ = 0.8. Since the aluminum alloy is 

applied for the pressure shell, λ =1.5 is set to 280 MPa. In Eq. (9.17), there 

are three response values B/G, sσ  and σ max come from the time-consuming 

simulation model. One simulation analysis takes more than 5 minutes. As 

revealed from the comparison analyses, SCGOSR and KTLBO exhibit the 

best performance, so they are employed for this engineering application.

For a fair comparison, KTLBO and SCGOSR adopt the same DoE sam-

ples to drive the optimization loop. After 200 simulation analyses, KTLBO 

identifies a better solution than SCGOSR. Figures 9.11 and 9.12 show the 

iterative results where the stars represent feasible samples, dots refer to 

the infeasible ones. In Figure 9.11, the best feasible sample is obtained at 

the 189th NFE, while in Figure 9.12, the best feasible sample is obtained 

at the 97th NFE. Intuitively, KTLBO converges after 100 simulation 

analyses, while SCGOSR seems to get stuck in a local optimal area after 

90 calls to the simulation model. Tables 9.8 and 9.9 provide the detailed 

results. Compared with the best DoE sample, SCGOSR achieves a 21.89% 

improvement, while KTLBO achieves a 67.40% improvement. Moreover, 

Figures 9.13–9.15 illustrate the optimal simulation results of DoE, KTLBO 

and SCGOSR. Obviously, KTLBO is suggested to be more suitable for this 

engineering case. Table  9.9 and Figures  9.13–9.15 indicate that KTLBO 

converge to the second constraint bound while SCGOSR remains far away 

from this constraint bound.

To sum up, KTLBO cannot only deal with benchmark cases, but also 

efficiently solve simulation-based constrained optimization problems. It 

FIGURE 9.10 Illustration of BWBUG’s pressure shell.
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TABLE 9.8 Obtained Best Solutions of BWBUG’s Structure Design

l1 l2 l3 l4 R1 R2 R3 t1 t2 t3

DoE-opt 388.50 225.50 207.00 158.00 82.00 83.00 28.00 5.70 10.25 8.15

KTLBO-opt 376.55 227.82 200.00 153.27 85.00 93.41 30.00 5.00 5.00 12.00

SCGOSR-opt 385.66 229.14 202.00 159.78 84.63 84.72 26.27 5.55 8.19 6.01

FIGURE 9.12 Iterative results of SCGOSR.

FIGURE 9.11 Iterative results of KTLBO.

TABLE 9.9 Optimal Response Values for BWBUG’s Structure Design

v/m3 m/kg B/G σσ MPa/max MPa/crP

DoE-opt 0.0203 13.9904 1.7134 198.2197 69.6338

KTLBO-opt 0.0257 10.4483 2.8683 213.0277 15.6479

SCGOSR-opt 0.0223 12.6554 2.0885 215.4628 63.1093
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is noteworthy that when each analysis of the simulation model requires 

several hours or days, fewer calls to the simulation model are significantly 

critical. KTLBO requires fewer NFE to achieve convergence, which notice-

ably shortens the design cycle and yields a satisfactory solution for engi-

neers at the simulation phase.

9.6 CHAPTER SUMMARY

In this chapter, an efficient Kriging-assisted TLBO method is proposed to 

solve computationally expensive constrained optimization problems. By 

complying with TLBO’s two-phase search pattern, two Kriging-assisted 

sampling strategies are formulated, retaining TLBO’s search mechanism 

while reasonably balancing the exploitation of surrogates and exploration of 

FIGURE 9.14 Equivalent stress and first mode of KTLBO’s best sample.

FIGURE 9.13 Equivalent stress and buckling results of DoE’s best sample.

FIGURE 9.15 Equivalent stress and first mode of SCGOSR’s best sample.



KTLBO   ◾   259

unknown areas. In KATP, the neighborhoods around the present best solu-

tion are sufficiently exploited, and a constrained EI function considering the 

probability of feasibility is defined as a filter to pick up the promising indi-

viduals from the learners. In KALP, a constrained MSE function focusing on 

Kriging’s prediction uncertainty is proposed to choose the learners located 

at the sparsely sampled feasible region for global exploration. Initial DoE 

samples and newly generated expensive samples are iteratively sorted based 

on their penalty function values, and new teachers and brilliant learners are 

continuously updated until the algorithm identifies the true global optima.

NOTE
 1 Based on “Kriging-assisted Teaching-Learning-based Optimization 

(KTLBO) to Solve Computationally Expensive Constrained Problems,” 
published in [Information Sciences], [2021]. Permission obtained from 
[Elsevier].
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C H A P T E R  10

KDGO

Kriging-Assisted Discrete 
Global Optimization for 
Black-Box Problems with Costly 
Objective and Constraints1

10.1 INTRODUCTION

With the rapid progress of computer technology, high-fidelity simulation 

has become an indispensable tool in modern industry applications, which 

can effectively reduce design budgets and bring higher economic benefits 

(Dong et  al., 2017; Jiang et  al., 2019; Zhou et  al., 2018). Simultaneously, 

when the accuracy requirement continuously increases, the computa-

tion cost of simulation analysis may get huge, causing difficulty in opti-

mization design (Dong, Li, et al., 2018; H. Liu et al., 2018; Stander et al., 

2016). Besides, many real-world applications, such as management, sched-

uling, logistics, structure design and pattern recognition, involve dis-

crete domains (Ekel & Neto, 2006; Lawler, 1972; Sayadi et al., 2013) and 

time-demanding simulation analysis (Dede, 2014). Therefore, discrete and 

computationally intensive global optimization problems are challenging, 

and have begun to gain more attention in recent years.

For discrete optimization problems, the branch and bound (BB) algo-

rithm (Land & Doig, 2010) that recursively divides the solution set and eval-

uates the bound values can find the optimal combination of these discrete 

DOI: 10.1201/9781003636267-10

https://doi.org/10.1201/9781003636267‑10
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values. For example, Demeulemeester and Herroelen (1992) employed 

a BB procedure for multiple resource-constrained project scheduling. 

Nakariyakul and Casasent (2007) proposed an adaptive BB algorithm to 

select the optimal subsets of features in pattern recognition applications. 

However, BB appears inappropriate for computationally expensive global 

optimization problems, because it has to construct a relaxed problem 

whose global optimum must be found to identify the lower bound, which 

will cause many calls of the costly functions especially for multimodal 

problems. Variable neighborhood search (VNS) presented by Mladenović 

and Hansen is an effective tool for global combinatorial optimization 

problems (Mladenović & Hansen, 1997). VNS can systematically explore 

the possible neighborhood structures to identify the local optima, and 

further find the global optimum with the help of perturbation. VNS has 

been extensively applied in various fields like artificial intelligence, cluster-

ing analysis, scheduling and so on (Adibi et al., 2010; Kytöjoki et al., 2007; 

Polacek et  al., 2004). VNS was primarily developed for box-constrained 

integer optimization problems, but it cannot be directly used for nonlinear- 

constrained problems. Nonsmooth optimization by mesh adaptive direct 

search (NOMAD) (Abramson et al., 2009) was developed for computation-

ally expensive and black-box optimization problems. NOMAD is a deriv-

ative-free optimization method and is applicable for continuous, integer 

and mixed design domains. Moreover, NOMAD is also good at handling 

nonlinear-constrained optimization problems, making it suitable for most 

real-world applications. However, there are no extensive numerical stud-

ies on NOMAD’s capability that deal with computationally expensive 

optimization problems. It is worth mentioning that in the existing litera-

ture there is another type of algorithm to deal with discrete and black-box 

global optimization problems, that is, swarm intelligence and evolutionary 

computation (Anghinolfi & Paolucci, 2009; Guendouz et al., 2017; Zhang 

et al., 2015). Generally, swarm/evolution-based algorithms are inspired by 

some natural phenomenon and can generate a population in each cycle to 

randomly search the design space. With the population updated and the 

objective function evaluated many times, promising solutions can be grad-

ually acquired. Most of these discrete metaheuristic algorithms have been 

applied to real-world applications. For example, Li et al. (2019) proposed 

a discrete particle swarm optimization algorithm (DPSO-PDM) for com-

munity detection in complex networks. DPSO-PDM redefines the particle 

velocity and position, and adds the evolutionary operation in discretization 

to avoid getting trapped in local optima.
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Surrogate-assisted optimization (SAO) (Dong, Song, et  al., 2018; Shi 

et al., 2020; Zhou et al., 2021) plays an important role in simulation-based 

engineering applications, because it is rather efficient for computationally 

expensive problems. Surrogate modeling techniques like Kriging, radial 

basis functions (RBF) or polynomial response surface can effectively orga-

nize the obtained data to predict the potential solutions, considerably 

decreasing the number of costly function evaluations. However, most of 

the existing literature in this field emphasizes the methods for the con-

tinuous design domain and seldom focuses on discrete cases. Müller et al. 

(2013) presented a surrogate-based global optimization algorithm for 

mixed-integer black-box problems (SO-MI). SO-MI utilizes RBF to select 

candidate samples from discrete and continuous domains. In each cycle, 

four groups of cheap points are generated, where three of them are gen-

erated around the present best solution and one is randomly distributed 

in the design space. Thereafter, the most promising points are separately 

selected from the four sample sets to update the RBF model. It is worth 

noting that SO-MI needs at least one feasible point to drive the algorithm 

for constrained problems. Therefore, it is difficult for SO-MI to solve the 

constrained problems with a smaller feasible space. Furthermore, Müller 

et  al. (2014) introduced a surrogate-based algorithm SO-I for expensive 

nonlinear integer programming problems, in which the RBF value and the 

distance to the known samples are synthetically considered to evaluate a 

potential point. SO-I shows excellent ability when dealing problems with 

costly objective and constraints, and also has impressive performance 

on practical engineering applications like hydropower generation and 

throughput maximization. J. Liu et al. (2018) extended the multi-start space 

reduction (MSSR) (Dong et al., 2016) algorithm for a hybrid energy stor-

age system with integer and continuous design variables. In the extended 

MSSR, the discrete variables of those promising samples were rounded to 

integers for simulation analysis in each cycle and showed absolute advan-

tages over the genetic algorithm. Similarly, some other SAO algorithms 

have been improved or extended to solve computationally expensive and 

discrete/mixed-variable engineering applications (Holmström et al., 2008; 

Rashid et al., 2013). However, most of the above methods are developed 

for a certain type of actual problems (e.g. binary, integer, unimodal, mul-

timodal, box-constrained), and less literature has introduced widely appli-

cable algorithms.

Inspired by SO-I that combines the RBF’s prediction values and the 

distance between samples, we expect to develop a Kriging-based global 
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optimization method for computationally expensive problems with gen-

eralized discrete space that allows binary, integer, noninteger, uni/mul-

timodal and box/inequality-constrained types. To make KDGO widely 

applicable for most discrete cases, a data matrix with a discrete structure 

is proposed to reflect the original design domain. Besides, a multi-start 

knowledge mining process is carried out to acquire the promising samples 

in each cycle, specifically including four steps: optimization, projection, 

sampling and selection. First, a multi-start optimization is used to capture 

the promising solutions in the continuous design range. All these potential 

solutions are projected to the discrete matrix and a grid sampling method 

applicable for low- and high-dimensional space is proposed to get the 

promising discrete samples. Thereafter, the k-nearest neighbors (KNN) 

search strategy and expected improvement (EI) criterion are jointly used 

to select the supplementary samples. KDGO keeps running to update 

Kriging and find the most potential samples until a satisfactory solution 

is obtained. KDGO is mainly used to solve various discrete problems 

including binary, integer, noninteger, unimodal, multimodal, equality and 

inequality-constrained problems.

10.2 DISCRETE OPTIMIZATION CONSTRUCTION

More precisely, the problem this chapter concentrates on is described 

below:
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where f(x) denotes the computationally intensive black-box objective; 

gi(x) is the ith costly black-box constraint; m and d represent the num-

ber of constraints and design variables, respectively. Besides, xk is the kth 

discrete variable and kΓ is its corresponding discrete set. It is a remark-

able fact that kΓ 1  can be different from kΓ 2  if k k≠1 2. It is also assumed 

that k dk ∞ > Γ ≥ ∀ =2, 1, , . What is more, the values of each discrete 

set k dk Γ ∀ =, 1, ,  are allowed to have uneven distributions as well. 

Correspondingly, a 2d illustration is provided in Figure  10.1, and three 

representative cases with different characteristics are introduced to make 

it more intuitive.
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To mathematically express a generalized discrete space, a matrix D is 

created to save these discrete sets as the preprocessing step for the sub-

sequent surrogate-based optimization. This proposed matrix considers 

all the possible situations including even or uneven distributions and the 

same or different sizes of discrete sets at each dimension.
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where DM d
Init

×  denotes the initial D matrix that is assigned with M d×  infin-

ity values. Thereafter, the discrete sets k dk Γ ∀ =, 1, , are saved into this 

initial D matrix. rk
i  is the ith element of kΓ , and M refers to the maximal 

size of these discrete sets at different dimensions. Thereafter, the points 

generated using the design of experiments (DoE) method are correspond-

ingly approximated to their closest discrete values in D, and their objec-

tive and constraints values are calculated, respectively. Furthermore, the 

initial Kriging models of objective and constraints are separately built 

using these DoE samples. In the following Kriging-assisted optimization 

process, new samples selected from the continuous space will be projected 

into the defined matrix D to get the promising discrete samples.

FIGURE 10.1 Different discrete design spaces.
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10.2.1 Multi-Start Knowledge Mining on Kriging

As mentioned above, Kriging can build a continuous mathematical 

model to predict the landscape of the original discrete problem. Hence, 

efficient search or sampling strategies for continuous optimization prob-

lems can still be utilized to mine the useful discrete information from 

surrogate models. Generally, the conventional surrogate-based sampling 

strategies consider the most promising positions in the continuous space 

as candidate points, like the maximal “expectation of improvement (EI)” 

point or the minimal prediction (MP) point. For discrete optimization 

problems, these new samples from the continuous space can be approxi-

mated to be the discrete individuals of set Γ, to drive the subsequent 

optimization. However, the search may pay too much attention to the gap 

between two discrete values of set Γ, decreasing the optimization effi-

ciency, and sometimes no new discrete samples will be supplemented to 

update the surrogate models, making the program get stuck. Therefore, 

a multi-start knowledge mining approach is presented to capture the 

promising discrete samples, which involves four main steps: multi-start 

optimization, projection, grid sampling and selection. Correspondingly, 

Figures 10.2–10.5 give a 2d illustration to describe this process clearly.

As we all know, Kriging can approximate nonlinear problems and always 

generate multiple predicted local optima. Multi-start optimization can iden-

tify these potential local positions, realizing the global search. Mathematically, 

the predicted local optimal solutions can be expressed as below
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FIGURE 10.2 Step1: Multi-start optimization.
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FIGURE 10.3 Step2: Projection to matrix D.

FIGURE 10.4 Step3: Grid sampling.

FIGURE 10.5 Step4: Selection by EI.
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where ˆ x( )f lo
i  refers to the Kriging value at the ith predicted local optimal 

location xlo
i , Vi denotes the ith vicinity region around xlo

i , Ω is the variable 

range, and q is the number of local optimal locations. An efficient way to 

get these xlo is to assign a group of starting points that evenly cover the 

continuous design space and then run local optimization sequentially. The 

search from the starting points that are located in the same region proba-

bly converges to the same optimal solution. In other words, the number of 

optima is generally smaller than the number of starting points. Figure 10.2 

shows that ten starting points (small black dots) will converge to three local 

optimal solutions xlo (triangles). Additionally, a reduced space enclosing 

the present best solution is used to improve the computational efficiency of 

multi-start optimization.

 2
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where RS refers to a neighborhood of the present best solution xpbest, [a, b] 

represents the original design space, and ξ  is a coefficient defined as 0.1. 

When the number of iterations reaches an even number, the reduced space 

RS is used; otherwise, the original design range is used for the multi-start 

optimization. The specific pseudo-code of the multi-start optimization is 

shown in Algorithm 10.1(a).

Algorithm 10.1(a): Multi-start Knowledge 

Mining: Multi-start Optimization

Input: Kriging model, Original design space [a, b], Number of iteration iter

Output: Predicted local optimal solutions loX

(01)  If iter/2∈Z

(02) Range←Build the reduced space RS

(03) h ← Define the number of starting points as 3.

(04)  Else

(05) Range←[a, b].

(06) h ← Define the number of starting points as 10.

(07)  End if

(08)  SP ←Employ LHS to get h starting points in Range.



270   ◾   Data-Driven Global Optimization Methods and Applications

(09)  For i from 1 to h

(10) xlo
i
←Run local optimizer on Kriging to get the local optima in 

Range.

(11)  End for

(12) Xlo← Delete the repeated solutions and save q local optimal 

solutions.

(13)  Return Xlo

Intuitively, these Xlo locate in the continuous space, which cannot be cho-

sen as the candidate discrete samples directly. Therefore, projection is sug-

gested to obtain the promising discrete samples. As Eq. (10.2) describes, 

the D matrix has saved the discrete sets. Project xlo
i  to each column of D 

and then find its closest lower and upper discrete values lblo
i  and ublo

i  in 

k dk Γ ∀ =, 1, , . Thereafter, the discrete boundary values ,lb ub lo
i

lo
i  of 

each xlo
i  in D are identified as input for grid sampling. Algorithm 10.1(b) 

describes the projection process clearly.

Algorithm 10.1(b): Multi-start Knowledge Mining: Projection

Input: Predicted local optimal solutions , , ,1 2X x x x{ }=lo lo lo lo
q , D matrix

Output: Discrete boundary values ,, , , , , ,1 2 1 2lb lb lb ub ub ub    lo lo lo
q

lo lo lo
q

(01)  For i from 1 to q

(02) For k from 1 to d

(03)  Index← Employ KNN search to find the index of the nearest 

individual to x ( )klo
i  in the kth column kΓ  of D.

(04) If k
index

Γ >x ( )klo
i  /* the nearest discrete value is larger than x ( )klo

i
*/

(05)  lb ( )klo
i

← k
index

Γ( )-1 ; ub ( )klo
i

← k
index

Γ( ).

(06)  Else if k
index

Γ <x ( )klo
i  /* the nearest discrete value is smaller than

x ( )klo
i

*/

(07)  lb ( )klo
i

← k
index

Γ( ); ub ( )klo
i

← k
index

Γ
( )+1 .

(08) Else /* the nearest discrete value equals tox ( )klo
i

*/

(09)  If Index =1

(10)  lb ( )klo
i

← k
index

Γ( ); ub ( )klo
i

← k
index

Γ
( )+1 .

(11) Else

(12)  lb ( )klo
i

← k
index

Γ( )-1 ; ub ( )klo
i

← k
index

Γ( ).

(13) End if
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(14) End if

(15) End for

(16)  End for

(17)  Return ,, , , , , ,1 2 1 2lb lb lb ub ub ub    lo lo lo
q

lo lo lo
q

Figures 10.2 and 10.3 show the projection and grid sampling process in a 

two-dimensional space. When all the promising discrete grid samples are 

collected together, the repeated points are deleted and nine big darker dots 

are flagged as the candidate point set (see Figure 10.4). It is noteworthy that 

the number of grid sampling is 2d, which will dramatically increase when 

the dimension d gets larger. For example, if there is a 20-dimensional prob-

lem, it will generate 1,048,576 grid sampling points. It is time-consuming 

to call the 20-dimensional Kriging model 1,048,576 times in each cycle, 

which greatly decreases KDGO’s search efficiency. Therefore, a probabil-

ity-based grid sampling approach is proposed to get the high-dimensional 

(d > 8) candidate samples. Specifically, the mathematical expression is 

described below as:
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where P ki ( ) is the probability threshold value, x klo
i ( ) is the kth dimension 

of the ith local optimal solution, and its corresponding discrete boundary 

values are lb klo
i ( ) and ub klo

i ( ). Besides, a random variable R between [0, 1] 

is defined to be compared with P ki ( ) for selection. It will have a higher 

probability to select one of the boundary values lb klo
i ( ) or ub klo

i ( ) that is 

closer to the continuous point x klo
i ( ), and the selected discrete points are 

saved in a candidate sample set , , ,1 2C { }= c c cm . Equation (10.5) guaran-

tees that KDGO can extract the most potential points from the complete 

grid sampling sets and control the number of points to avoid generating a 

large computational cost in each cycle. The pseudo-code of grid sampling 

is summarized in Algorithm 10.1(c)
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Algorithm 10.1(c): Multi-start Knowledge Mining: Grid Sampling

Input:  Discrete boundary values ,, , , , , ,1 2 1 2lb lb lb ub ub ub    lo lo lo
q

lo lo lo
q ,  

Predicted local optimal solutions , , ,1 2X x x x{ }=lo lo lo lo
q , Search 

region Range

Output: Discrete candidate samples , , ,1 2C { }= c c cm

(01)  C←∅ /* Initialize the candidate sample set*/

(02)  If d < 8 /* if this is a lower dimensional problem*/

(03) Delete the repeated samples in ,, , , , , ,1 2 1 2lb lb lb ub ub ub    lo lo lo
q

lo lo lo
q .

(04) For i from 1 to q

(05) Temp←Generate the grid samples using ,lb ub lo
i

lo
i .

(06) C←C Temp /* Update C */

(07) End for

(08)  Else /* if this is a higher dimensional problem*/

(09) For i from 1to q

(10) For j from 1 to m /* m equals to 100d */

(11)  For k from 1 to d

(12)  Temp←Generate the grid samples based on Eq. (10.5).

(13)  C←C Temp /* Update C */

(14)  End for

(15) End for

(16) End for

(17)  End if

(18)  C←Delete the repeated grid samples and update C.

(19)  If C is ∅

(20) C← Generate 10d rounded samples in [a, b] by LHS

(21)  End if

(22)  Return , , ,1 2C { }= c c cm

As Figure 10.5 shows, the further mining is necessary to get the most valu-

able points (two light colored dots with a normal distribution) from C. In 

KDGO, the KNN search is used to check the conflict of the known sample 

pool S and the candidate points C. Specifically, the judgment conditions 

are summarized below as:
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where m refers to the number of candidate points, and ci is the ith candi-

date point. If a candidate is infeasible, this implies it has appeared in the 

expensive sample pool S, and it will not be considered here. Furthermore, 

the EI criterion is employed to sort the remaining feasible points in 

, , , ,1 2C { }= ≤c c c p mp , and the top n samples with larger EI values will 

be selected to update Kriging. According to the basic theory of Kriging, a 

candidate sample ci can be regarded as a random variable Yi(x) with mean 

value ˆ x( )yi  and variance ˆ2 x( )si . Naturally, the improvement of the new 

candidate sample beyond the present best sample ybest from the sample 

pool S can be expressed below as:

 max ,0x x( )( ) ( )= −I y Yi best i  (10.7)

Obviously, Ii(x) is a random variable, and its mathematical expectation is 

formulated as follows:
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where φ and Φ represent the probability density and cumulative density 

functions, respectively. More precisely, the detailed pseudo-code is given.

Algorithm10.1(d): Multi-start Knowledge Mining: Selection

Input:  Discrete candidate samples , , ,1 2C { }= c c cm , Expensive sample 

pool S, Kriging model, Number of sampling per cycle n

Output: Promising samples , , ,1 2PS { }= ps ps psn

(01)  PS←∅ /* Initialize the promising sample set*/

(02)  , , ,1 2C { }= c c cp ← Utilize Eq. (10.8) to update the candidate 

sample set.

(03)  For i from 1 to p

(04) EIi ← Utilize Eq. (10.8) to get the corresponding EI value.
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(05)  End for

(06)  If n < p

(07) PS← Sort C and Select the top n promising samples based on EI 

value from C

(08)  else

(09) PS← C

(10)  End if

(11)  Return , , ,1 2PS { }= ps ps psn

Additionally, when the reduced space is used to speed up the multi-start 

search, there is some possibility that the promising sample set PS may be 

empty. Once it happens, 100d cheap points are generated by LHS in the 

original design space, and their corresponding EI values are calculated. 

The point with the maximal EI value will be selected and approximated to 

the discrete values in matrix D, making the loop continue working.

10.2.2 Constraint Handling

Computationally intensive inequality constraints are also considered in 

KDGO. Each constraint function gi(x) is approximated by Kriging and 

will be updated with iteration continuing. In the multi-start optimization, 

the local search needs to meet the constraint conditions as follows:
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where m refers to the number of constraints and q is the number of local 

optima. Besides, the corresponding constraint information of each sample 

is supplemented to the expensive sample pool S and a penalty function is 

used to fuse the objective and constraints.

 + max ,0
1

x x x∑ ( )( ) ( ) ( )= ×

=

F f P g i

i

m

 (10.10)

where P is a penalty coefficient with a large value 1e10. F(x) will replace 

f(x) to identify the current best location and value in Eqs. (10.4) and (10.8). 

Moreover, the EI criterion has been modified for constrained problems.
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where ˆ x( )fp  is the penalty function of the predicted objective and con-

straints and Fbest is the current best value in sample pool S.

10.3 OVERALL OPTIMIZATION FRAMEWORK

In this chapter, the whole optimization flow and the detailed steps of 

KDGO are provided. Figure 10.6 shows the detailed optimization flow. It 

is clear that KDGO mainly includes two parts: one is the initialization, and 

the other one is the proposed multi-start knowledge mining. Specifically, 

the steps are summarized below as:

• Step  1: Initialize the Matrix D and some basic parameters includ-

ing design range [a, b], the dimension d, the number of DoE points 

NDoE, the maximal number of sampling in each cycle n, the number 

of starting points in local and global ranges h, the coefficient of local 

range ξ , and the number of iterations iter = 0.

• Step 2: Carry out OLHS sampling to get NDoE initial sample points 

and project these points to the Matrix D for the discrete samples.

• Step 3: Calculate their objective and constraint function values, sort 

them according to Eq. (10.10), and build the initial Kriging models 

for the objective and constraints.

• Step  4: As Algorithm 10.1(a) shows, carry out “Multi-start 

Optimization” and get the predicted local optimal solutions 

, , ,1 2X x x x{ }=lo lo lo lo
q .

• Step 5: As Algorithm 10.1(b) shows, carry out “Projection” and get 

the closest bounds ,, , , , , ,1 2 1 2lb lb lb ub ub ub    lo lo lo
q

lo lo lo
q  of these pre-

dicted local optimal solutions from D.
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• Step 6: As Algorithm 10.1(c) shows, carry out “Grid Sampling” and 

use these bounds to create grid points , , ,1 2C { }= c c cm  as the candi-

date sample points.

• Step 7: As Algorithm 10.1(d) shows, carry out “Selection” and select 

top n promising individuals , , ,1 2PS { }= ps ps psn  from the candi-

date sample points.

• Step 8: If PS is empty, generate 100d LHS points in the design range 

and select the best one with maximal EI value. Moreover, find its 

approximate solution in D.

FIGURE 10.6 Overall optimization flow of KDGO.
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• Step 9: Calculate the objective and constraint values of these promis-

ing points, and sort them.

• Step 10: Update the number of iterations iter = iter + 1, and update the 

Kriging models.

• Step  11: If the number of function evaluations (NFE) reaches 

maxNFE, KDGO stops. Otherwise, the algorithm goes back to Step 4 

and continues this loop.

10.4 ALGORITHMIC TEST
10.4.1 Mathematical Example Tests

To sufficiently verify the KDGO’s ability, 20 representative benchmark 

cases with different characteristics are used for test runs, including five 

box-constrained problems, eight inequality-constrained problems and 

seven black-box engineering applications. All these mathematical func-

tions are regarded as black-box models, meaning that only input and 

output data are extracted to complete the optimization search. Table 10.1 

shows the specific information of these test cases, where dim refers to the 

number of design variables. Moreover, LO, UMO, MMO and BBO indi-

vidually represent linear, unimodal, multimodal and black-box objectives, 

and LC and NLC are linear and nonlinear constraints, respectively. In 

engineering applications, H1p1, H1p2, H1p3, H2p1, H2p2 and H2p3 are six 

subproblems about optimization design of hydropower generation. Since 

large hydropower facilities are designed using different generators, the 

goal of these applications is to maximize the power output during 1 day 

for hydropower plants with five types of generating units. More details can 

be found in the reference (Li et al., 2013). Besides, The three-stage buffer 

allocation problem (TP) is an application problem of throughput maximi-

zation (Pichitlamken et al., 2006), where the total buffer size and service 

rate are restricted. The goal of TP is to maximize the average output rate 

in a flow line with 12 stations that will generate 11 variables about buffer 

storage and 12 variables about service rate.

Furthermore, six algorithms including genetic algorithm (GA), 

NOMAD, SO-I, local-SO-I, SO-MI, and VNS are used as comparisons to 

demonstrate KDGO’s powerful ability. Tables 10.2–10.6 directly come from 

Müller’s work (Müller et al., 2014). For a fair comparison, KDGO uses the 

same termination criterion that the algorithm will stop after 400 function 
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evaluations, and the mean of the best values and the standard errors of the 

means (SEM) after 30 runs are recorded in Tables 10.2–10.6. It is worth 

noting that there are two versions of VNS for inequality-constrained prob-

lems. VNS-i uses a similar strategy as SO-I that minimizes the constraint 

violation function to find the first feasible point, while VNS-ii directly uses 

SO-I to find the feasible solutions as the starting points. Moreover, the 

rank in Tables 10.2–10.6 lists the ranks of all the algorithms and NF refers 

to the number of test runs that cannot get the feasible solutions. NF is 

the first priority to determine the performance of one algorithm, mean 

and SEM are the second and third, respectively. If the algorithm A has a 

smaller NF value than the algorithm B, it indicates A is better than B. If 

NF values of A and B are the same and the mean of A is smaller than B, it 

suggests that A is better than B. Similarly, if the NF and mean values of A 

and B are the same, the better algorithm should have a smaller SEM.

Table 10.2 provides the comparison results on box-constrained cases. 

For the two unimodal problems Cf and Nvs, all seven algorithms can find 

TABLE 10.1 Specific Information about the Test Cases

Types ID Cases dim Design Space Description

Box- 
constrained 
problems

1 Cf 8 [−10, 10]8 UMO

2 Nvs 10 [3, 9]10 UMO

3 Anvs 10 [3, 99]10 MMO

4 Rast01 12 [−1, 3]12 MMO

5 Rast02 12 [−10, 30]12 MMO

Inequality- 
constrained 
problems

6 G6 2 [13, 100] × [0, 100] MMO, 2NLC

7 Ex 5 [0, 10]3 × [0, 1]2 LO, 2NLC, 3LC

8 G4 5 [78, 102] × [33, 
45] × [27, 45]3

UMO, 6NLC

9 Aex 5 [0, 10]3 × [0, 1]2 LO, 3LC

10 G9 7 [−10, 10]7 UMO, 4NLC

11 G1 13 [0, 1]10 × [0, 100]3 MMO, 9LC

12 G1m 13 [0, 100]13 MMO, 9LC

13 Hmi 16 [0, 1]16 MMO, 7NLC

Engineering 
applications

14 H1p1 5 [0, 10]5 BBO, 1NLC

15 H1p2 5 [0, 10]5 BBO, 1NLC

16 H1p3 5 [0, 10]5 BBO, 1NLC

17 H2p1 5 [0, 10]5 BBO, 2NLC

18 H2p2 5 [0, 10]5 BBO, 2NLC

19 H2p3 5 [0, 10]5 BBO, 2NLC

20 TP 23 [1, 20]23 BBO, 2LC
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the global optimal solutions within 400 function evaluations except GA 

on Cf. Besides, GA and VNS seem to have difficulty in dealing with Anvs, 

while others can successfully find its global optimum. Rast02, an extended 

version of Rast01, has a larger design space, increasing the search difficulty 

TABLE 10.2 Comparison Results on Box-Constrained Cases

Cases Algorithms #NF Mean(SEM) Rank

Cf KDGO 0 0.00 (0.00) 1

GA 0 2.72 (0.95) 7

SO-I 0 0.00 (0.00) 1

local-SO-I 0 0.00 (0.00) 1

SO-MI 0 0.00 (0.00) 1

NOMAD 0 0.00 (0.00) 1

VNS-i/ VNS-ii 0 0.00 (0.00) 1

Nvs KDGO 0 −43.13 (0.00) 1

GA 0 −43.13 (0.00) 1

SO-I 0 −43.13 (0.00) 1

local-SO-I 0 −43.13 (0.00) 1

SO-MI 0 −43.13 (0.00) 1

NOMAD 0 −43.13 (0.00) 1

VNS-i/VNS-ii 0 −43.13 (0.00) 1

Anvs KDGO 0 −9,591.72 (0.00) 1

GA 0 −9,289.87 (81.24) 6

SO-I 0 −9,591.72 (0.00) 1

local-SO-I 0 −9,591.72 (0.00) 1

SO-MI 0 −9,591.72 (0.00) 1

NOMAD 0 −9,591.72 (0.00) 1

VNS-i/VNS-ii 0 −5,448.97 (358.19) 7

Rast01 KDGO 0 −12.00 (0.00) 1

GA 0 −10.87 (0.19) 6

SO-I 0 −12.00 (0.00) 1

local-SO-I 0 −10.03 (0.77) 7

SO-MI 0 −12.00 (0.00) 1

NOMAD 0 −12.00 (0.00) 1

VNS-i/VNS-ii 0 −12.00 (0.00) 1

Rast02 KDGO 0 −12.00 (0.00) 1

GA 0  33.83 (4.52) 7

SO-I 0 −12.00 (0.00) 1

local-SO-I 0 −12.00 (0.00) 1

SO-MI 0 −12.00 (0.00) 1

NOMAD 0 −10.67 (1.33) 5

VNS-i/VNS-ii 0    16.47 (22.67) 6
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TABLE 10.3 Comparison Results on Inequality-Constrained 
Cases-Part1

Cases Algorithms #NF Mean(SEM) Rank

G6 KDGO 0 −3,971.00 (0.00) 1

GA 2 −3,971.00 (0.00) 5

SO-I 0 −3,971.00 (0.00) 1

local-SO-I 19 −3,971.00 (0.00) 7

SO-MI 0 −3,971.00 (0.00) 1

NOMAD 30 NA 8

VNS-i 14 −3,971.00 (0.00) 6

VNS-ii 0 −3,971.00 (0.00) 1

Ex KDGO 0 0.00 (0.00) 1

GA 0 0.72 (0.14) 7

SO-I 0 0.00 (0.00) 1

local-SO-I 0 0.00 (0.00) 1

SO-MI 0 0.00 (0.00) 1

NOMAD 0 0.00 (0.00) 1

VNS-i 10 0.00 (0.00) 8

VNS-ii 0 0.03 (0.03) 6

G4 KDGO 0 −30,456.91 (2.76) 1

GA 0 −30,073.77 (43.30) 5

SO-I 0 −30,303.66 (31.17) 2

local-SO-I 0 −29,069.70 (106.61) 8

SO-MI 0 −30,075.73 (53.15) 4

NOMAD 0 −30,192.67 (35.29) 3

VNS-i 0 −29,574.12 (92.80) 6

VNS-ii 0 −29,486.62 (68.83) 7

Aex KDGO 0 −8.00 (0.00) 1

GA 0 −7.10 (0.16) 5

SO-I 0 −8.00 (0.00) 1

local-SO-I 0 −6.88 (0.21) 6

SO-MI 0 −8.00 (0.00) 1

NOMAD 8 −8.00 (0.00) 7

VNS-i 16 −7.75 (0.11) 8

VNS-ii 0 −7.93 (0.04) 4

of GA, NOMAD and VNS. Intuitively, the three surrogate-based algo-

rithms KDGO, SO-I and SO-MI almost have the same performance on 

these box-constrained cases, and outperform the other four algorithms.

For inequality-constrained problems, NF is an important indicator to 

evaluate the performance of these algorithms. For example, local-SO-I, 

NOMAD and VNS-i have worse Rank on G6, because they frequently get 
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TABLE 10.4 Comparison Results on Inequality-Constrained 
Cases-Part2

Cases Algorithms #NF Mean (SEM) Rank

G9 KDGO 0 744.80 (8.93) 1

GA 0 896.53 (29.21) 4

SO-I 0 771.40 (14.97) 2

local-SO-I 0 997.10 (246.89) 5

SO-MI 0 812.17 (12.46) 3

NOMAD 0 1,770.50 (462.58) 6

VNS-i 4 8,906.35 (6,161.61) 8

VNS-ii 0 2,097.17 (1,367.02) 7

G1 KDGO 0 −14.57 (0.15) 2

GA 0 −6.07 (0.59) 6

SO-I 0 −14.83 (0.10) 1

local-SO-I 0 −12.00 (0.00) 4

SO-MI 0 −12.00 (0.32) 5

NOMAD 0 −5.97 (0.03) 7

VNS-i 30 NA 8

VNS-ii 0 −14.37 (0.24) 3

G1m KDGO 0 −50,197.70 (1.34) 1

GA 1 −40,105.07 (3,175.53) 7

SO-I 0 −40,687.10 (3,145.90) 5

local-SO-I 0 −42,185.67 (1,966.68) 4

SO-MI 0 −50,024.17 (36.40) 2

NOMAD 0 −48,363.03 (1,197.02) 3

VNS-i 30 NA 8

VNS-ii 0 −35,687.03 (3,252.89) 6

Hmi KDGO 0 13.20 (0.14) 1

GA 8 17.73 (0.86) 3

SO-I 14 14.00 (0.68) 7

local-SO-I 8 20.96 (3.11) 4

SO-MI 14 13.50 (0.50) 6

NOMAD 22 13.00 (0.00) 8

VNS-i 4 13.73 (0.44) 2

VNS-ii 14 13.00 (0.00) 5

stuck in infeasible regions. In particular, NOMAD cannot succeed once on 

G6, thus gets Rank 8. Compared with Aex, Ex has two additional nonlinear 

constraints. However, most algorithms can find satisfactory solutions on 

Ex, while having difficulty on Aex. VNS-i and VNS-ii use different man-

ners to find feasible solutions, thus they have different search efficiency. 

Intuitively, VNS-ii seems better than VNS-i, because VNS-i always has 
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larger NF values on Ex and Aex. G4 has a larger feasible space ratio, thus 

all eight algorithms can successfully identify the feasible area and go close 

to the global optimum. It is obvious that KDGO has the best mean value 

−30,456.91 on G4 and is much better than others. Similarly, KDGO still 

gets rank 1 on G9 and SO-I has satisfactory performance as well. However, 

VNS-i, VNS-ii and NOMAD perform so badly on G9 that their mean val-

ues are much larger than 1,000. Although GA sometimes may fail to get 

feasible solutions, it has better global exploration ability and can always 

obtain acceptable results. For example, GA gets the mean value 896.53 on 

G9, much better than local-SO-I.

G1m is an extended version of G1 and has a larger search space. There 

is no doubt that SO-I outperforms others on G1 and gets the best mean 

value −14.83. Relatively, KDGO finds the true global optimum −15 for 

TABLE 10.5 Comparison Results on Engineering 
Applications-Part1

Cases Algorithms #NF Mean(SEM) Rank

H1p1 KDGO 0 758.25 (0.00) 1

GA 0 735.34 (6.75) 7

SO-I 0 758.25 (0.00) 1

local-SO-I 0 681.38 (10.25) 8

SO-MI 0 754.38 (0.88) 4

NOMAD 0 744.00 (0.96) 6

VNS-i 0 753.83 (1.54) 5

VNS-ii 0 755.04 (1.12) 3

H1p2 KDGO 0 2,021.67 (0.22) 1

GA 0 2,008.83 (4.68) 5

SO-I 0 2,020.67 (1.33) 2

local-SO-I 0 1,835.14 (24.94) 8

SO-MI 0 2,015.46 (1.51) 3

NOMAD 0 2,003.83 (5.01) 7

VNS-i 0 2,010.83 (3.81) 4

VNS-ii 0 2,006.46 (6.91) 6

H1p3 KDGO 0 4,116.39 (4.31) 3

GA 0 4,108.84 (4.49) 5

SO-I 0 4,114.63 (2.50) 4

local-SO-I 0 3,890.61 (20.74) 8

SO-MI 0 4,117.98 (2.58) 2

NOMAD 0 4,125.75 (12.06) 1

VNS-i 0 4,075.42 (10.44) 7

VNS-ii 0 4,099.17 (6.69) 6
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TABLE 10.6 Comparison Results on Engineering 
Applications-Part2

Cases Algorithms #NF Mean(SEM) Rank

H2p1 KDGO 0 1,679.05 (1.91) 1

GA 0 1,560.36 (25.96) 6

SO-I 0 1,677.17 (2.10) 2

local-SO-I 0 1,443.12 (46.42) 7

SO-MI 0 1,657.08 (3.75) 4

NOMAD 0 1,626.18 (19.64) 5

VNS-i 4 1,653.65 (13.92) 8

VNS-ii 0 1,671.50 (2.92) 3

H2p2 KDGO 0 4,124.70 (7.08) 1

GA 0 4,016.17 (23.14) 5

SO-I 0 4,097.40 (11.86) 2

local-SO-I 0 3,668.60 (50.60) 7

SO-MI 0 4,095.50 (6.96) 3

NOMAD 0 3,899.40 (25.57) 6

VNS-i 2 4,000.93 (28.66) 8

VNS-ii 0 4,070.83 (16.29) 4

H2p3 KDGO 0 8,302.33 (7.99) 1

GA 0 8,220.67 (22.22) 4

SO-I 0 8,299.00 (12.84) 2

local-SO-I 0 7,550.17 (73.20) 8

SO-MI 0 8,253.17 (9.62) 3

NOMAD 0 8,122.33 (32.05) 5

VNS-i 0 8,055.83 (49.83) 6

VNS-ii 0 7,996.33 (64.34) 7

TP KDGO 0 4.18 (0.19) 1

GA 0 3.10 (0.17) 4

SO-I 0 3.15 (0.20) 3

local-SO-I 0 2.07 (0.22) 6

SO-MI 0 3.82 (0.13) 2

NOMAD 0 0.89 (0.06) 7

VNS-i 26 1.74 (0.39) 8

VNS-ii 0 2.52 (0.20) 5

22 times and also gets a satisfactory mean −14.57. On the other hand, 

KDGO becomes the only method that can obtain a mean result smaller 

than -−50,000 on G1m. Furthermore, according to the statistical results, 

KDGO successfully reaches the global optimum −50,200 for 21 times on 

G1m, showing its superior robustness. When it comes to Hmi, all the algo-

rithms except KDGO seem to encounter some troubles. This is because 
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Hmi is a binary problem with high dimension and seven nonlinear con-

straints. However, KDGO can accurately find the global optimum 13 for 

28 times and get the impressive mean 13.20, once again demonstrating its 

high efficiency.

For the constrained engineering cases, it seems that all the algorithms 

except VNS-i can easily find feasible solutions but they have different con-

vergence abilities. KDGO and SO-I can always find the global optimum 

758.25 on H1p1. Besides, KDGO maintains the first on H1p2, H2p1, H2p2 

and H2p3. And SO-I follows KDGO closely in most cases. According to 

the results in Tables 10.5 and 10.6, it can be found that KDGO not only 

has a better mean but also has a smaller SEM, demonstrating its excel-

lent stability. For H1p3, NOMAD wins the competition and SO-MI has 

impressive results as well.

It is clear from Table 10.1 that TP is a high-dimensional case that gen-

erally needs more function evaluations to explore the design space. After 

30 test runs, KDGO undoubtedly acquires the biggest mean 4.18 that has 

a 9% improvement over SO-MI. In the 20 test cases, KDGO gets 18 Rank 

1, 1 Rank 2 and 1 Rank 3; SO-I gets 10 Rank 1, 6 Rank 2 and 1 Rank 3; 

SO-MI acquires 8 Rank 1, 3 Rank 2 and 4 Rank 3. To sum it up, KDGO is 

not only good at dealing with mathematical benchmark cases, but also has 

extraordinary ability to solve actual engineering applications. The results 

in Tables 10.2–10.6 verify KDGO’s functionality and demonstrate its supe-

rior performance.

10.4.2 Practical Engineering Application

In this chapter, the presented KDGO is used for structure optimization 

of a blended-wing-body underwater glider (BWBUG). When the BWBUG 

is lifted from the water, stress concentration may arise in the skeleton 

structure because of the vertical downward force on the two wings, which 

involves the gravities of skeleton, equipment and buoyancy material. For 

the equipment, the total gravity is defined as 1,500N that depends on the 

specific tasks and functions of this BWBUG. On the other hand, for the 

buoyancy material, the density buoyancyρ  is 500 kg/m3, the occupied vol-

ume is Vairfoil ≈ 0.11 m3, and the weight of the material is 55 kg. Therefore, 

the total gravity of the buoyancy material is G W g Nbuoyancy buoyancy= ≈ 550 . To 

get the lightest weight and meanwhile satisfy the stress and deformation 

constraints, the specific design parameters and optimization formula are 

summarized below.
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Figure 10.7 shows the ten design variables including: four thickness param-

eters t1, t2, t3 and t4; six relative position parameters l1, l2, l3, l4, l5 and l6. The 

total length and width of this BWBUG are 1,000 and 3,000 mm, respectively. 

Besides, the numbers of transverse and longitudinal beams in the body are 

constants 4 and 2, and those in the wings are constants 3 and 5, respectively. 

The design objective is to minimize the skeleton weight and meanwhile need 

to be subject to the equivalent stress and total deformation constraints.
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FIGURE 10.7 Structure parameters and illustration.
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FIGURE 10.8 Illustration of mesh generation.
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FIGURE 10.9 Iterative process of KDGO on structure design.

where Wskeleton is the weight of the skeleton structure, σ max is the maximal 

equivalent stress, sσ  is the tensile/compressive yield strength, γ  refers to 

safety factor and dmax  denotes the maximal total deformation. In this exper-

iment, the structure material is aluminum alloy with density 2,770 kg/m3, 

Young’s modulus 71,000 MPa, and Poisson’s ratio 0.33. Besides, the safety 

factor is 1.6 and sσ  is 280 MPa. The finite element analysis is used to simu-

late this actual case, and Figure 10.8 shows the specific structure mesh.

Furthermore, Figure 10.9 shows the detailed iterative process, where the 

stars refer to the feasible solutions, the dots represent infeasible designs, 

and the best feasible solution is located at the 89th NFE. From Figure 10.9, 

it is clear that the initial samples from the DoE phase have a wide distribu-

tion in the design space, while the efficient infilling strategy makes KDGO 

find the feasible and optimal regions rapidly. After several iterations, the 

search focuses on the boundary of the deformation constraint. Intuitively, 
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KDGO begins to converge after 80 simulations and finally identifies the 

best objective value after 88 simulations.

Additionally, the best results obtained in different phases (the DoE 

phase and the final phase) are summarized in Tables 10.7 and 10.8. Here, 

DoE-opt refers to the best result obtained after DoE and Final-opt denotes 

the final best result. The final weight has an 18% improvement after the 

iterative infilling process. Correspondingly, the equivalent stress and total 

deformation diagrams are provided in Figures 10.10 and 10.11. In sum-

mary, KDGO cannot only deal with complex mathematical cases but can 

also efficiently tackle the actual engineering application.

FIGURE 10.10 Equivalent stress diagram. (a) DoE-opt. (b) Final-opt.

TABLE 10.7 Best Solutions in Different Phases

Solutions 1t 2t 3t 4t 1l 2l 3l 4l 5l 6l

DoE-opt 5.15 4 5.2 6.75 278 72.5 263.5 0.15 0.47 0.77

Final-opt 4 4 3 4.7 255 120 250 0.17 0.51 0.65

TABLE 10.8 Best Response Values in Different 
Phases

Response (kg)Wskeleton (mm)maxd (MPa)maxσσ

DoE-opt 5.8822 45.6150 114.3651

Final-opt 4.8245 49.9857 110.3534
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10.5 CHAPTER SUMMARY

In this chapter, a novel discrete global optimization method named 

KDGO is presented, which can effectively solve computationally expensive 

black-box problems. In KDGO, an efficient infilling criterion is proposed to 

iteratively supplement new expensive samples, which involves a multi-start 

knowledge mining process. The new samples are generated by four steps: 

optimization, projection, sampling and selection. And the greatest advan-

tage of this method is its ability to solve a wide range of discrete problems, 

including binary, integer and discrete number set black-box problems. In 

addition, its strong stability is demonstrated through its application in a 

wide range of engineering problems.

NOTE
 1 Based on “Kriging-assisted Discrete Global Optimization (KDGO) for 

black-box problems with costly objective and constraints,” published in 
[Applied Soft Computing], [2020]. Permission obtained from [Elsevier].
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SAGWO

Surrogate-Assisted Gray Wolf 
Optimization for High-Dimensional, 
Computationally Expensive 
Black-Box Problems1

11.1 INTRODUCTION

In searching for the optimal solution, surrogate models are commonly 

employed to approximate the objective function, thereby replacing expen-

sive simulations and significantly reducing the number of evaluations of 

costly functions (Dong et al., 2016; Forrester & Keane, 2009). Two types of 

surrogate-based optimization strategies are typically utilized during the 

optimization search process. The first is the direct offline optimization 

approach (Goel et  al., 2007; Guo et  al., 2018; Hajikolaei & Gary Wang, 

2014), which focuses on constructing an accurate surrogate model using a 

set of well-distributed expensive sample points. Subsequent evolutionary 

computation (EC) or swarm intelligence (SI) searches are then performed 

on the surrogate model without further evaluations of the expensive 

objective function. However, it is challenging to construct a globally 

accurate surrogate model with a limited number of samples, especially 

for multimodal or high-dimensional optimization problems. The sec-

ond is the dynamic or online optimization approach (Dong et al., 2018a; 

Liu et al., 2017; Long et al., 2015; Müller et al., 2014; Regis & Shoemaker, 

2013), which begins with a coarse surrogate model and adaptively refines 
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it by adding new expensive samples according to certain infill strategies 

during each iteration of the search process. The key challenges in online 

optimization lie in designing effective infill strategies and balancing the 

exploration of unknown regions with the exploitation of the current 

model (Haftka et al., 2016).

These stated search methods could sufficiently utilize the predic-

tive information of surrogate models and perform well on lower dimen-

sional (D < 10) problems, but the algorithms also encountered challenges 

in the higher dimensional (D ≥ 10), computationally expensive optimi-

zations. One reason is that the high-dimensional problems have much 

larger exploration space and more local optima, leading to the difficulty 

in global optimization search. The other contributing factor is that the 

current approximation techniques generate huge errors in search of a 

high-dimensional problem, mistakenly guiding the search and wasting a 

large amount of computational effort. Too much dependence on surrogate 

models makes the search method inefficient, ineffective and even infea-

sible for solving high-dimensional optimization problems (Dong et  al., 

2018b; Shan & Wang, 2010).

Surrogate-assisted EC or SI algorithms (SAEC/SIAs) are different 

from the methods discussed above. Although the SAEC/SIAs still need 

intelligent infill sampling to update new individuals and the generation 

of points, they do not overly rely on the prediction information com-

ing from the surrogates. SAEC/SIAs retain the metaheuristic character-

istics that stochastically capture new samples around the present best 

solution or go to the unknown area for global exploration. Generally, 

SAEC/SIAs utilize the surrogate models as the prescreening tools to 

select promising individuals, which makes SAEC/SIAs more suitable for 

high-dimensional, computationally expensive global optimization. The 

strategies for managing surrogates in SAEC/SIAs can be classified into 

generation-based, individual-based and population-based methods. In 

the generation-based methods, the points of some generations are created 

using surrogates, while the others are still produced by evaluating the 

expensive fitness/objective function. In the individual-based strategies, 

surrogates are used to evaluate the fitness of some individual points in 

each generation. In the population-based methods, each subpopulation 

has its surrogate, and some of the subpopulations can use surrogates for 

fitness evaluations to reduce computation costs. Recently, considerable 

progress has been made in improving the SAEC/SIAs search schemes. 

Lim et al. (2009) used an ensemble model composed of several different 
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surrogates to mitigate prediction error and applied polynomial response 

surface (PRS) to acquire a smooth function with fewer local minima. 

Training data for building the surrogates is chosen in the vicinity of each 

individual, and initial individuals are gradually replaced by higher qual-

ity solutions from the proposed surrogates. Liu et  al. (2013) developed 

a surrogate-based evolutionary algorithm (GPEME) for expensive opti-

mization problems with 20–50 design variables. The Gaussian process 

surrogate model assisted evolutionary algorithm for medium-scale com-

putationally expensive optimization problems (GPEME) utilizes GP to 

build surrogates and adaptively coordinates the exploitation of surrogates 

and evolutionary search. Besides, Sammon mapping is used to reduce the 

design dimension so that GP can generate more accurate surrogates in 

a low-dimensional space. Regis (2014) introduced an RBF (radial basis 

function)-assisted particle swarm optimization (PSO) algorithm for 

30–36 dimensional problems, where RBF is used to identify the best trial 

in each swarm, and the present best trial needs to be redefined by a pos-

sible trial in its vicinity. Sun et al. (2017) presented the surrogate-assisted 

cooperative swarm optimization (SA-COSO) method for 50–100 dimen-

sional, expensive optimization problems, in which the surrogate-assisted 

PSO and social learning-based PSO (SL-PSO) schemes are cooperatively 

used to search for the global optimum. In SA-COSO, a fitness estima-

tion strategy was also presented to assist the PSO search to generate more 

promising individuals. Furthermore, Yu et al. (2018) developed a surro-

gate-assisted hierarchical PSO algorithm (SHPSO) that also combines 

PSO and SL-PSO to enhance the global and local search, and SHPSO 

had an impressive performance on 30-, 50- and 100-dimensional cases. 

Recently, Wang et al. (2019) introduced the novel evolutionary sampling 

assisted optimization (ESAO) algorithm that builds two surrogate models 

for global and local searches, respectively. Expensive samples were used 

to build the global model, while several better individuals were collected 

to construct the local model. The ESAO has shown excellent performance 

in the tests using 20–200 dimensional benchmark cases.

This chapter introduces a new search method, called surro-

gate-assisted gray wolf optimization (SAGWO), which uses RBF to assist 

the gray wolf optimization (GWO) (Mirjalili et  al., 2014) algorithm in 

solving high-dimensional computationally expensive black-box prob-

lems. SAGWO operates in three phases: initial exploration, RBF-assisted 

metaheuristic exploration and knowledge mining on the RBF model. 

In the initial exploration phase, a group of well-distributed samples is 
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generated using the design of experiments (DoE) to roughly approxi-

mate the high-dimensional design space, and the original wolf pack and 

leaders are sequentially identified. Furthermore, knowledge mining on 

the RBF model combines global search using GWO and multi-start local 

search around promising regions. During the RBF-assisted metaheuris-

tic exploration phase, the predictive information from the RBF model 

is utilized to guide the generation of wolf leaders in each iteration, and 

the positions of the wolf pack dynamically change following the wolf 

leaders, thus achieving a balance between global exploration and local 

exploitation.

11.2 GRAY WOLF OPTIMIZATION

Since GWO was presented by Mirjalili et al. (2014), the method has received 

considerable attention and has been successfully applied in various engi-

neering applications. For example, Sánchez et al. (2017) proposed a gray 

wolf optimizer for modular granular neural network (MGNN) that was 

applied to human recognition. Compared with other algorithms, GWO 

could find the optimal architecture parameters of MGNN more efficiently. 

Rodríguez et al. (2017) proposed a new hierarchical transformation opera-

tor with five variants in the hunting process of GWO. Through a large 

amount of tests, they proved that the fuzzy hierarchical operator can 

maximize the improvement of GWO’s performance. Moreover, Majumder 

and Eldho (2020) utilized an artificial neural network (ANN) to build the 

surrogate model for the groundwater flow and solute transport processes. 

The comparative study demonstrated that GWO could successfully iden-

tify the optimal solution of the ANN model and had better stability and 

convergence behavior. In recent years, how to improve GWO and how to 

apply GWO to solve certain problems have become research hotspots. Due 

to GWO’s high efficiency and strong stability, this chapter expects to draw 

support from GWO’s search mechanism to solve high-dimensional expen-

sive black-box optimization problems.

GWO is a nature-inspired GO algorithm, mathematically describing 

the gray wolves’ social hierarchy and hunting mechanism. In GWO, the 

wolf pack mainly includes four hierarchies: the fittest solution alpha (α), 

the second and third best solutions beta (β) and delta (δ), and the others 

omega (ω). Alpha, beta and delta will guide omega to hunt the prey that is 

the global optimal solution. Generally, gray wolves will track and encircle 

the prey before the attack, and the general formulation of the approach is 

summarized below:
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 ( ) ( )+ = − ⋅X X A D1t tp  (11.2)

 = ⋅ − = ⋅A r C r2 , 21 2a a  (11.3)

where Xp(t) refers to the prey’s position in the present iteration, r1 and r2 

are two random vectors, and a is a parameter that linearly decrease from 

2 to 0. It is worth noting that A and C are two random factors for exploi-

tation and exploration, respectively. To simulate the hunting behavior 

mathematically, all the wolves update their positions with the guidance of 

alpha, beta and delta. The formulas are summarized as follows:
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where X(t) is the position of a wolf in the current iteration, X(t + 1) is the 

corresponding new position in the next iteration. X1, X2 and X3 are three 

updated positions based on the wolf leaders alpha, beta and delta. The ran-

dom factors Ci and Ai in Eqs. (11.4)–(11.6) are independent.

11.3 SURROGATE-ASSISTED GWO

Surrogate-assisted EC and SI algorithms have shown a superior capability 

in dealing with higher dimensional, computation-expensive optimization 

problems, and GWO is a widely used, efficient swarm intelligent GO algo-

rithm. In this chapter, the RBF with a simple structure and very efficient 

model-building mechanism for high-dimensional problems is used as the 

surrogate model to assist the search in the GWO algorithm. The specific 

introduction and expression of RBF can be seen in Chapter 6. The new 
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SAGWO algorithm integrates RBF and GWO in the optimization loop to 

explore the high-dimensional design space, as shown in Figure 11.1.

Details of the new search SAGWO method are further illustrated using 

the following algorithm descriptions.

Algorithm 11.1 Surrogate-Assisted Gray Wolf Optimization

(01)   Design of Experiments: Employing Latin Hypercube Sampling (LHS) 

to choose m wolves S in the design space, evaluating their function 

values Y, and saving them in an archive DB.

(02)   Initialize Wolf Pack: Sorting S based on Y, and choose the top n 

wolves as the initial Wolf Pack WPinit.

(03)    Initial knowledge mining on RBF: Training an RBF model by DB, get-

ting the predicted best solution fpbest from RBF, and saving it into DB.

(04)   Generate three best wolves Alpha, Beta, Delta from WPinit.

(05)   iteration ← 1;

(06)   Repeat

(07)   Run Surrogate-assisted metaheuristic exploration

(08)   Run Knowledge mining on surrogate models

(09)   Update Alpha, Beta, Delta.

FIGURE 11.1 Surrogate-assisted gray wolf optimization.
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(10)  Sort DB based on function values and find the best sample Best  

in DB.

(11)  iteration ← iteration +1;

(12)   Until the termination criterion is satisfied.

(13)   Return Best.

In Algorithm 11.1, a database DB is created to store expensive samples. 

In the beginning, 2(d + 1) sample points are generated using LHS, where 

top n samples are selected as the initial positions of the wolf pack based 

on their function values. Here, d refers to the dimension, and n is the size 

of the wolf pack. The initial knowledge mining is carried out on the lin-

ear RBF model to get the predicted best solution and the corresponding 

function value is calculated to update DB. After the initial alpha, beta 

and delta are identified from the wolf pack, the entire optimization loop 

begins. Figure 11.2 shows how the first wolf pack is generated in the initial 

process. More details on the RBF-assisted metaheuristic exploration and 

knowledge mining on RBF are provided in the following sections.

11.3.1 Surrogate-Assisted Metaheuristic Exploration

Assume that an experienced wolf coming from other wolf packs or getting 

special training by more intelligent creatures. Naturally, this experienced 

wolf may better guide other wolves to hunt prey. As per the previous dis-

cussion, RBF can collect the hunting data of the wolf pack in each cycle, 

and provide an approximate prediction, to generate an “experienced wolf.” 

From Algorithm 11.1 and Figure  11.1, it is clear that the database DB 

includes two types of information: the iterative positions of the wolf pack 

and the predicted samples of RBF. Intuitively, one way to find experienced 

FIGURE 11.2 Generation of initial wolf pack.
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leaders for the wolf pack is to choose promising solutions from DB to 

update alpha, beta and delta. Equation (11.7) provides the formulation.
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where 1X ( )+α t , 1X ( )+β t  and 1X ( )+δ t  are the updated alpha, beta and 

delta, respectively. WP( )i  are the positions of the wolf pack in the ith itera-

tion, ( )jSrbf  are the predicted samples from RBF in the jth iteration, and 

f(x) is the objective function. From Eq. (11.7), it is easy to find that the new 

leaders of the wolf pack possess more knowledge that not only comes from 

the experience of the wolf pack, but also comes from the prediction by the 

RBF. After the wolf leaders are obtained by Eq. (11.7), Eqs. (11.4)–(11.6) are 

continuously used to update the whole wolf pack. To make it clearer, an 

illustration about the data flow of the proposed metaheuristic exploration 

is shown in Figure 11.3.

Moreover, another way to fuse the wolves’ experience and the predic-

tion of RBF is also presented for comparison. The method used in the sub-

sequent experiments is named SAGWO_M. Here, alpha, beta and delta are 

FIGURE 11.3 Data flow of the proposed metaheuristic exploration.
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updated using the original way, and the present best solution in DB is used 

to guide others, leading to the following formulations:

 S{ }( ) ( )= ∈arg min ,t f
x

X x x WPBest rbf  (11.8)

 ( ) ( )= ⋅ −4 t tD C X XBest Best  (11.9)
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where BestX ( )t  refers to the present best solution, and 4C  and 4A  are two 

independent random factors. To explain the search process of SAGWO, the 

search steps are listed in Algorithm 11.2. It is worth noting that SAGWO 

and SAGWO_M have the same optimization flow except that different 

equations to get 1X( )+t  and wolf leaders are used.

Algorithm 11.2 Surrogate-Assisted MetaHeuristic Exploration

(01)  Update Alpha, Beta and Delta based on (11).

(02)  for i ← 1 to n (Here, n refers to the wolf pack size)

(03)   for j ← 1 to dim (Here, dim refers to dimension)

(04)    Use (8) to (10);

(05)    On the jth dimension, Generate X1 based on the ith wolf 

and Alpha;

(06)    On the jth dimension, Generate X2 based on the ith wolf and 

Beta;

(07)    On the jth dimension, Generate X3 based on the ith wolf 

and Delta;

(08)    Update the jth dimension of the ith wolf ’s position by X1, X2, 

X3. (Using (11.6))

(09)   endfor

(10) Make sure the ith wolf ’s position inside the original range.

(11)  endfor

(12)  Evaluate the function values at the new positions of the wolf pack.

(13)  Save all the positions and function values of wolf pack into DB.

(14)  Update the RBF model using the samples in DB.

(15)  Return DB and an updated RBF model.
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11.3.2 Knowledge Mining on Surrogate Models

In general, it is difficult to build a globally accurate surrogate model and 

it is easier to make accurate predictions in a local trust region. Therefore, 

this work focuses on a small region around the present best solution using 

the following formulations:
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where Bestpos is the present best solution, Lb and Ub are the lower and upper 

bounds of the original design region, and w is a scaling factor. To acquire 

useful knowledge from the RBF model, a combination search of global 

optimization and multi-start local optimizations is conducted. The global 

optimizer is used to get the predicted best solutions Gbestglobal and Gbestlocal 

in the original space and in the local region, respectively. The multi-start 

optimization process is carried out in the local region to capture the pre-

dicted local optimal solutions Lbestlocal. In this algorithm, the gray wolf 

optimizer is employed as the global optimizer, and the sequential qua-

dratic programming (SQP) is used as the local optimizer.

In the multi-start optimization, several starting points are generated 

using LHS over the defined region, and local optimization is then con-

ducted using these starting points. After the predictive local optimal solu-

tions are obtained from RBF, a separation distance is used to avoid the 

obtained points getting too close to the known samples.

In Figure  11.4, the method of multi-start optimization is illustrated 

using a 1-D example graphically. In the diagram, the darkest black dots 

represent selected promising solutions, the lightest gray dots correspond 

to known samples in the database, and the medium gray dots indicate 

inappropriate local optima (including repeated points and those posi-

tioned too close to the known sample points). A multi-start optimization 

process can find several local optima of a surrogate model, but the method 

cannot determine which ones are appropriate to be retained. To extract 

the representative local optimal solutions, eliminate redundant points, 

and avoid increasing the number of function evaluations, the defined dis-

tance given in Eq. (11.13) is used in an iterative process to select promising 
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optimal solutions. The pseudo-codes for this knowledge mining search 

process are provided in Algorithm 11.3.

 ∑ε ( )= ⋅ −

=

U Li ib b

dim

( ) ( )
2

1

Dist

i

 (11.13)

where dim refers to dimension, and ε  is a scaling coefficient.

Algorithm 11.3 Knowledge Mining on Surrogate Models

(01)  Bestpos ← Acquire the best solution from the database DB;

(02)   Gbestglobal ← Search the original space to get the predicted best solu-

tion from RBF by a global optimizer;

(03)  Evaluate the function value of Gbestglobal and update DB and RBF;

(04)  Local_region ← Create the local search region based on (16);

(05)   Gbestlocal ← Search Local_region to get the predicted best solution 

from RBF by a global optimizer;

(06)  Evaluate the function value of Gbestlocal and update DB and RBF;

(07)  Dist ← Define the separation distance based on (17);

FIGURE 11.4 Demonstration of multi-start optimization search.
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(08)  Start_point ← Generate M sample points in Local_region by LHS;

(09)  for i ← 1 to M

(10)  Predict_bestlocal (i) ← At the starting point Start_point(i), call a 

local optimizer to get the ith local optimal solution from RBF in 

Local_region;

(11)  endfor

(12)   Temp ← Define a temporary variable that initially equals to the sam-

ple points in DB;

(13)  LocalPredict ← ∅;

(14)  for i ← 1 to M

(15)  Min_Dist ← Find the closest point to Predict_bestlocal(i) from Temp 

and calculate the minimum distance between them;

(16)  if Min_Dist > Dist

(17)   LocalPredict ← LocalPredict  Predict_bestlocal (i);

(18)  Temp ← Temp  Predict_bestlocal(i);

(19)  endif

(20)  endfor

(21)  Sort the samples in LocalPredict according their RBF values;

(22)  if |LocalPredict| > Local_sample_num

(23)  Lbestlocal ← Choose the top Local_sample_num samples from 

LocalPredict;

(24)   else

(25)  Lbestlocal ← LocalPredict;

(26)   endif

(27)   Evaluate the function values of Lbestlocal and update DB and RBF;

(28)   Return DB and an updated RBF.

Intuitively, the knowledge mining process includes global search and 

local search. In the global search (Algorithm 11.3, Lines 2–3) Gbestglobal 

is obtained, and in the local search (Algorithm 11.3, Lines 4–24) Gbestlocal 

and Lbestlocal are identified to refine the RBF model. Specifically, Lines 

7–18 of the algorithm describe how the multi-start optimization works, 

and Lines 19–23 explain how to select the promising samples. The scaling 

factor w is defined as 0.05, and the scaling coefficient ε  is set as 1e-5 in Eqs. 

(11.12) and (11.13). The algorithm returns the updated database DB and 

RBF model that have collected all valuable information.

11.3.3 Optimization Flow

The previous sections discussed the three contributing elements of the 

new SAGWO algorithm, initial exploration, RBF-assisted metaheuristic 
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exploration and knowledge mining on RBF. The database, DB, which stores 

all expensive sample points, plays as the link to each of these three parts. 

Initial exploration identifies the initial parameters and carries out an ini-

tial global search on the original RBF model. RBF-assisted metaheuris-

tic exploration gives SAGWO effective exploration capability. Knowledge 

mining on RBF sufficiently exploits the RBF to guide the metaheuristic 

exploration and accomplishes the balance between exploration and exploi-

tation. The flowchart of the SAGWO algorithm is shown in Figure 11.5.

11.4 EXPERIMENTS AND DISCUSSION

The new SAGWO algorithm is tested using 21 benchmark test cases with 

30, 50 and 100 design variables, which have been frequently used for eval-

uating computationally expensive high-dimensional optimization search 

algorithms. These include seven representative functions with different 

characteristics, as listed in Table  11.1. Besides, comparisons of search 

efficiency and robustness between the new SAGWO algorithm and three 

groups of other well-known advanced GO search algorithms have been 

made. The first group includes the well-known EC and SI algorithms, 

including the genetic algorithm (GA), differential evolution (DE) and 

FIGURE 11.5 Flow chart of SAGWO.
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GWO. The second group consists of the recently introduced SAEC/SIAs, 

including GPEME (Liu et al., 2013), SA-COSO (Sun et al., 2017), SHPSO 

(Yu et al., 2018) and ESAO (Wang et al., 2019). The last group covers the 

SAGWO method with different implementations, including SAGWO_M, 

SAGWO_G and RBFGWO.

As previously discussed, the SAGWO and SAGWO_M have the 

same search strategies, except that SAGWO uses Eqs. (11.4)–(11.7) and 

SAGWO_M uses Eqs. (11.4)–(11.5) and (11.8)–(11.11) to update the wolf 

leaders and the new positions. The SAGWO_G is nearly the same as 

SAGWO, but SAGWO_G does not conduct knowledge mining on RBF in 

its initial exploration and does not use a local search strategy in Algorithm 

11.3. The RBFGWO does not include metaheuristic exploration, and it just 

uses the GWO method to produce the best solution from RBF in each cycle.

During the test runs, the number of function evaluations (NFE) that 

represents the computational cost for a computation-expensive opti-

mization problem is monitored and set to be less than its maximum of 

1,000. The population sizes for GA, DE, GWO, SAGWO, SAGWO_M and 

SAGWO_G are set as 10. In the SAGWO, the number of starting points 

(M in Algorithm 11.3) and the number of sampling (Local_sample_num 

in Algorithm 11.3) in the multi-start optimization are defined as 5 and 2, 

respectively. Besides, the gray wolf optimizer uses the default parameters 

as its original paper, while the size of the population is 20 and the number 

of the generation is set as 500.

The statistical results come from 20 independent runs, and the Wilcoxon 

rank-sum tests (W-test) were calculated at a significance level of 5%. In 

the statistical tables, “≈” means no significant difference between the two 

groups of results, “+” indicates that SAGWO is relatively better, and “−” 

denotes that SAGWO is worse. Since the statistical results of GPEME, 

TABLE 11.1 Benchmark Test Functions

Cases Description Characteristics

Global 

Optimum

F1 Ellipsoid Unimodal 0

F2 Rosenbrock Multimodal with narrow valley 0

F3 Ackley Multimodal 0

F4 Griewank Multimodal 0

F5 Shifted rotated rastrigin (F10) Very complicated multimodal −330

F6 Rotated hybrid composition 
function (F16)

Very complicated multimodal 120

F7 Rotated hybrid composition 
function (F19)

Very complicated multimodal 
with narrow valley

10
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SA-COSO and SHPSO directly came from the original research references, 

“*” was used to indicate that their Wilcoxon test results cannot be provided.

Table 11.2 presents the statistical optimization results of the ten algo-

rithms using the 30-variable test examples, and Figure  11.6 shows the 

TABLE 11.2 Statistical Results on 30-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F1 ESAO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

8.6562e-05
4.4782e-02
1.5500e-02
1.7420e+02
1.2174e+02
4.1835e-02
6.2568e+00
9.8207e-06
2.0920e-05
2.8334e-04

2.7820e-01
7.2024e-01
1.6470e-01
5.0388e+02
3.3717e+02
3.6898e-01
1.0768e+02
3.3038e-04
6.0433e-04
5.4808e-03

2.7470e-02
2.1199e-01
7.6200e-02
2.8109e+02
2.1891e+02
1.6522e-01
2.6374e+01
6.5846e-05

2.3151e-04
2.1042e-03

6.9640e-02
1.5229e-01
4.0100e-02
8.9302e+01
5.8507e+01
9.0830e-02
2.4171e+01
7.5113e-05
1.7282e-04
1.5143e-03

4
7
5

10
9
6
8
1
2
3

*

*

*

+

+

+

+

+

+

F2 ESAO

SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

2.2158e+01
2.7726e+01
2.6262e+01
3.7213e+02
2.0792e+02
2.8257e+01
8.9374e+01
2.6790e+01
2.7340e+01
2.7493e+01

2.9404e+01
2.9290e+01
8.8233e+01
1.1200e+03
5.5223e+02
3.0637e+01
1.7144e+02
2.8826e+01
2.8889e+01
3.0209e+01

2.5036e+01

2.8566e+01
4.6177e+01
6.5968e+02
3.7956e+02
2.9461e+01
1.2920e+02
2.8297e+01
2.8454e+01
2.8510e+01

1.5701e+00
4.0441e-01
2.5520e+01
2.0312e+02
1.1401e+02
6.9142e-01
2.5974e+01
5.1705e-01
4.4128e-01
6.4083e-01

1
5
7

10
9
6
8
2
3
4

*

*

*

+

+

+

+

≈

≈

F3 ESAO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

7.8000e-02
5.6091e-01
1.9491e+00
1.2686e+01
1.1868e+01
9.4736e-01
5.1997e-01
7.9048e-14
7.1114e-08
2.1652e-07

3.9096e+00
2.9574e+00
4.9640e+00
1.6785e+01
1.6831e+01
3.3947e+00
7.9820e+00
2.4603e-13
1.2881e-05
9.0396e-05

2.5213e+00
1.4418e+00
3.0105e+00
1.4571e+01
1.4546e+01
1.8725e+00
4.2738e+00
1.4371e-13

3.1803e-06
1.6106e-05

8.3960e-01
7.7404e-01
9.2500e-01
1.1448e+00
1.3243e+00
6.8009e-01
2.6978e+00
4.1280e-14
3.6527e-06
2.1110e-05

6
4
7

10
9
5
8
1
2
3

*

*

*

+

+

+

+

+

+

F4 ESAO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

7.8600e-01
7.0609e-01
7.3680e-01
3.2320e+01
4.3282e+01
7.4976e-01
1.9313e+00
1.3153e-06
5.9291e-05
2.5690e-04

1.0221e+00
1.0275e+00
1.0761e+00
9.6362e+01
1.3185e+02
1.2102e+00

9.9980e+00
1.3466e-01
1.7021e-01
5.8268e-02

9.5340e-01
9.2053e-01
9.9690e-01
6.3395e+01
7.1151e+01
1.0177e+00
3.8270e+00
1.5756e-02

2.7857e-02
1.6397e-02

5.0370e-02
8.8062e-02
1.0800e-01
1.9597e+01
2.3785e+01
9.5911e-02
1.8501e+00
3.1977e-02
4.4472e-02
1.7899e-02

5
4
6
9

10
7
8
1
3
2

*

*

*

+

+

+

+

+

+

(Continued)
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convergence of the programs at different iterations. In Table 11.2, “Rank” 

is made according to the “Mean” values of the results. The SAGWO out-

performed others on F1, F3, F4 and F5; and showed superior performance 

on F1 and F3, getting close to the global optima after 1,000 NFEs. SAGWO 

achieved satisfactory results, although the algorithm performed less well 

than SHPSO on F6 and F7. ESAO performed best on F2 and F7, while 

SAGWO showed similar capability in these two cases. The W-test showed 

that SAGWO and SAGWO_M performed similarly on F6, and SAGWO 

is superior to others on F7. For the pure metaheuristic algorithms, GWO 

outperforms GA and DE on F1 to F4; and GA showed better performance 

on F5 to F7. For the SAEC/SIAs, ESAO and SHPSO demonstrated excel-

lent performance on most test cases, but SAGWO outperformed others.

TABLE 11.2 (Continued ) Statistical Results on 30-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F5 ESAO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

−3.5780e+01
−1.3297e+02
−5.7068e+01
−7.1404e+01

8.5727e+01
−3.7374e+01
−1.5782e+02
−1.7600e+02
−1.5603e+02
−1.2844e+02

9.0332e+01
−5.9993e+01

1.8033e+01
1.4600e+02
3.3614e+02
1.4639e+02

−5.2813e+01
−5.8706e+01
−4.6490e+01
−2.7194e+01

6.3250e+00
−9.2830e+01
−2.1861e+01

1.7739e+01
1.7987e+02
5.3641e+01

−9.6542e+01
−1.2881e+02

−1.1389e+02
−7.1915e+01

2.6477e+01
2.2544e+01
3.6449e+01
5.9584e+01
6.3066e+01
5.6215e+01
2.5925e+01
3.0823e+01
2.5695e+01
2.5471e+01

7
4
6
8

10
9
3
1
2
5

*

*

*

+

+

+

+

≈

+

F6 SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M

SAGWO_G

3.2715e+02
—

4.4815e+02
5.7205e+02
3.9666e+02
4.1579e+02
3.4843e+02
3.5066e+02
3.7243e+02

6.4948e+02
—

1.1268e+03
9.7630e+02
7.8791e+02
8.0178e+02
6.7579e+02
6.6762e+02
7.1133e+02

4.6433e+02
—

5.9053e+02
7.0275e+02
6.2881e+02
6.3440e+02
4.8985e+02
4.3004e+02

5.1102e+02

8.5125e+01
—

1.6047e+02
9.9422e+01
1.2028e+02
1.2117e+02
1.2882e+02
7.4478e+01
1.1015e+02

2
—
5
8
6
7
3
1
4

*

*

+

+

+

+

≈

≈

F7 ESAO

SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

9.2335e+02
9.2248e+02
9.3316e+02
9.8180e+02
1.0485e+03
1.0118e+03
1.1028e+03
9.4251e+02
8.8750e+02
9.6278e+02

9.5389e+02
9.6363e+02
9.9286e+02
1.2008e+03
1.2358e+03
1.1926e+03
1.2123e+03
1.0158e+03
1.0190e+03
1.1059e+03

9.3167e+02

9.3961e+02
9.5859e+02
1.0565e+03
1.1345e+03
1.1048e+03
1.1541e+03
9.7323e+02
9.8662e+02
1.0407e+03

8.9417e+00
9.0177e+00
2.5695e+01
5.5053e+01
4.9333e+01
4.6367e+01
3.1691e+01
1.8469e+01
2.9923e+01
3.9036e+01

1
2
3
7
9
8

10
4
5
6

*

*

*

+

+

+

+

+

+
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FIGURE 11.6 Iteration graph on 30-dimensional cases. (a) F1 Ellipsoid function. 

(b) F2 Rosenbrock function. (c) F3 Ackley function. (d) F4 Griewank function. (e) 

F5 shifted rotated Rastrigin function. (f) F6 rotated hybrid composition function. 

(g) F7 rotated hybrid composition function.



308   ◾   Data-Driven Global Optimization Methods and Applications

These tests and results of RBFGWO also showed that pure exploitation 

of surrogates could not produce satisfactory performance. The combina-

tion of metaheuristic exploration and knowledge mining on RBF is more 

effective in producing an efficient and robust global optimization method. 

The comparisons of SAGWO and SAGWO_G showed that the introduced 

local search could improve search efficiency.

In short, based on the tests using the 30-dimensional benchmark exam-

ples, SAEC/SIAs could get better results within 1,000 function evaluations, 

and SAGWO demonstrated top performance among all tested algorithms. 

Figure 11.6 supports the same conclusion that SAGWO, SAGWO_M and 

SAGWO_G converge faster.

Table 11.3 presents the statistical optimization results of the 11 algo-

rithms using the 50-variable test examples, and Figure  11.7 shows the 

convergence of the programs at different iterations. The first group of algo-

rithms, GA, DE, GWO, showed poor performance and appeared to need 

more function evaluations to get close to the global optima. Among the 

recently published SAEC/SIAs, ESAO and SHPSO are more efficient and 

TABLE 11.3 Statistical Results on 50-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F1 ESAO
SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

1.6460e-01
—
—

1.3407e+02
9.3344e+02
6.0249e+02
1.5149e+00
5.8383e+00
6.8653e-04
9.1396e-04
1.3819e-02

2.2644e+00
—
—

3.7256e+02
2.2346e+03
1.4331e+03
6.0444e+00
3.1042e+01
1.5296e-02
3.9234e-02
1.5799e-01

7.3950e-01
5.1475e+01
4.0281e+00
2.2108e+02
1.5104e+03
1.0032e+03
3.4329e+00
1.3503e+01
4.0117e-03

1.0930e-02
5.0418e-02

5.5490e-01
1.6246e+01
2.0599e+00
8.1612e+01
2.8574e+02
2.2722e+02
1.1829e+00
5.9945e+00
3.5801e-03
9.5852e-03
3.7407e-02

4
8
6
9

11
10

5
7
1
2
3

*

*

*

*

+

+

+

+

+

+

F2 ESAO

SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

4.3122e+01
—
—

1.7235e+02
1.0121e+03
5.8820e+02
5.0603e+01
1.1727e+02
4.8349e+01
4.8011e+01
4.8368e+01

4.9249e+01
—
—

4.0142e+02
2.4886e+03
1.5955e+03
6.5986e+01
1.6160e+02
4.9936e+01
4.9356e+01
5.0528e+01

4.7391e+01

2.5258e+02
5.0800e+01
2.5828e+02
1.7525e+03
9.7703e+02
5.5470e+01
1.3764e+02
4.9055e+01
4.8813e+01
4.8983e+01

1.7118e+00
4.0744e+01
3.0305e+00
8.0188e+01
3.7181e+02
3.0630e+02
4.5469e+00
1.3016e+01
4.4925e-01
3.3765e-01
4.4391e-01

1
8
5
9

11
10

6
7
4
2
3

*

*

*

*

+

+

+

+

≈

≈

(Continued)
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TABLE 11.3 (Continued ) Statistical Results on 50-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F3 ESAO
SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

1.0571e+00
−

−

9.2524e+00
1.5595e+01
1.4801e+01
2.6962e+00
4.3642e-10
2.0735e-11
7.3469e-10
1.3714e-09

2.4326e+00
−

−

1.4934e+01
1.9068e+01
1.7466e+01
3.9506e+00
6.8794e+00
5.6329e-11
2.2275e-05
3.1482e-06

1.4311e+00
8.9318e+00
1.8389e+00
1.3233e+01
1.7102e+01
1.5737e+01
3.5012e+00
1.3882e+00
4.0079e-11

2.7050e-06
5.2386e-07

2.4910e-01
1.0668e+00
5.6370e-01
1.5846e+00
7.6469e-01
6.7673e-01
3.0424e-01
2.5183e+00
1.0122e-11
5.7588e-06
9.7825e-07

5
8
6
9

11
10

7
4
1
3
2

*

*

*

*

+

+

+

+

+

+

F4 ESAO
SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

8.5180e-01
—
—

2.2546e+01
1.5005e+02
1.0250e+02
1.2701e+00
1.6733e+00
3.4783e-05
1.9460e-03
7.1163e-03

1.0207e+00
—
—

6.4977e+01
2.7782e+02
2.3169e+02
3.5371e+00
4.1050e+00
2.2988e-01
7.6486e-01
7.6487e-01

9.4040e-01
6.0062e+00
9.4521e-01
3.6646e+01
2.1681e+02
1.6610e+02
1.7563e+00
2.4182e+00
2.5573e-02

9.2928e-02
2.7410e-01

4.2090e-02
1.1043e+00
6.1404e-02
1.3176e+01
2.8582e+01
3.6249e+01
5.3188e-01
7.3815e-01
5.8155e-02
1.6997e-01
2.4844e-01

4
8
5
9

11
10

6
7
1
2
3

*

*

*

*

+

+

+

+

+

+

F5 ESAO
SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

1.1625e+02
—
—
—

2.9296e+02
5.9319e+02
2.5640e+02
1.8959e+02
-1.6634e+01
3.4501e+01
1.1560e+02

2.8909e+02
—
—
—

5.6739e+02
9.4458e+02
5.6726e+02
3.2630e+02
1.6151e+02
1.8412e+02
2.5694e+02

1.9861e+02
1.9716e+02
1.3442e+02

—
4.3421e+02
7.7043e+02
4.0821e+02
2.5815e+02
9.8391e+01

1.0542e+02
2.0888e+02

4.5825e+01
3.0599e+01
3.2256e+01

—
7.6263e+01
1.1676e+02
8.6890e+01
3.2843e+01
4.6901e+01
3.8417e+01
3.2617e+01

5
4
3

—
9

10
8
7
1
2
6

*

*

*

*

+

+

+

+

≈

+

F6 SA-COSO
SHPSO

GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

—
—
—

5.5945e+02
6.4938e+02
5.7645e+02
5.5029e+02
4.3018e+02
3.9391e+02
5.0321e+02

—
—
—

7.2480e+02
1.0490e+03
1.0145e+03
8.2425e+02
5.6424e+02
6.0399e+02
7.5871e+02

1.0809e+03
4.7438e+02

—
6.5803e+02
8.8082e+02
7.3131e+02
6.6000e+02
5.0206e+02
5.1080e+02
5.8543e+02

3.2859e+01
4.2029e+01

—
5.0251e+01
1.1662e+02
1.1967e+02
6.6359e+01
4.5251e+01
6.0870e+01
5.7061e+01

9
1

—
5
8
7
6
2
3
4

*

*

*

+

+

+

+

≈

+

(Continued)
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TABLE 11.3 (Continued ) Statistical Results on 50-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F7 ESAO

SA-COSO
SHPSO
GPEME
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

9.4099e+02
—
—
—

1.0730e+03
1.1714e+03
1.1087e+03
9.1022e+02
9.1000e+02
1.0251e+03
1.0940e+03

1.0499e+03
—
—
—

1.2872e+03
1.3582e+03
1.2296e+03
1.2186e+03
1.1320e+03
1.0917e+03
1.1889e+03

9.7532e+02

—
9.9660e+02

—
1.1593e+03
1.2741e+03
1.1723e+03
1.1583e+03
1.0441e+03
1.0610e+03
1.1369e+03

3.7110e+01
—

2.2145e+01
—

5.2797e+01
4.9794e+01
3.4390e+01
8.2127e+01
4.0828e+01
1.5866e+01
2.2134e+01

1
—
2

—
7
9
8
6
3
4
5

*

*

*

*

+

+

+

+

+

+

performed best on F2, F6 and F7. RBFGWO with just knowledge mining 

showed slower convergence in most cases. On the other hand, SAGWO 

showed superior performance on F1, F3 and F4; and SAGWO achieved 

satisfactory results on all the seven cases. Although SAGWO is ranked 

second and third on F6 and F7, its results are much closer to the minimum. 

SAGWO_M also showed good performance, although it was not a match 

for SAGWO, especially in cases F1 and F3.

The results from SAGWO and SAGWO_G also indicated that the 

introduced local search strategy in Algorithm 3 played an important role 

in search efficiency. The iterative curves of SAGWO, SAGWO_M and 

SAGWO_G descended more quickly, as shown in Figure 11.7. According to 

the W-test results, SAGWO is good at solving these 50-dimensional cases.

Table 11.4 presents the statistical optimization results of the ten algo-

rithms using the 100-variable test examples, and Figure  11.8 shows the 

convergence of the programs at different iterations. Compared with DE 

and GA, GWO had performed better in cases F1–F4 and F7; and for F5 

and F6, GA performed better. SAEC/SIAs used fewer function evalua-

tions to get satisfactory results on these 100-dimensional problems. For 

F6, SHPSO and SAGWO had very close results. However, SAGWO per-

formed much better than SHPSO in all other cases. Similarly, ESAO out-

performed SAGWO on F5, but SAGWO was more robust, considering its 

overall performance.

In these tests, SAGWO_M and SAGWO_G could not be always as effi-

cient as SAGWO, and they showed advantages in some cases. For exam-

ple, SAGWO_M ranked first on F7, and SAGWO_G ranked first on F2. 
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FIGURE 11.7 Iteration graph on 50-dimensional cases. (a) F1 Ellipsoid function. 

(b) F2 Rosenbrock function. (c) F3 Ackley function. (d) F4 Griewank function. (e) 

F5 shifted rotated Rastrigin function. (f) F6 rotated hybrid composition function. 

(g) F7 rotated hybrid composition function.
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TABLE 11.4 Statistical Results on 100-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F1 ESAO
SA-COSO
SHPSO
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

1.1023e+03
—
—

9.6266e+03
4.3560e+03
7.8078e+01
9.9654e+00
1.6621e-02
2.5521e-01
5.7410e-01

1.5388e+03
—
—

1.3324e+04
7.7354e+03
2.4459e+02
2.8113e+01
3.7119e-01
1.4308e+00
2.1091e+00

1.2829e+03
1.0332e+03
7.6106e+01
1.1443e+04
5.9378e+03
1.4172e+02
1.4063e+01
1.3996e-01

6.4491e-01
1.3740e+00

1.3439e+02
3.1718e+02
2.1447e+01
1.1186e+03
9.7446e+02
4.7117e+01
4.0008e+00
9.6807e-02
2.7070e-01
5.4002e-01

8
7
5

10
9
6
4
1
2
3

*

*

*

+

+

+

+

+

+

F2 ESAO
SA-COSO
SHPSO
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

5.2120e+02
—
—

6.1550e+03
1.7335e+03
1.3736e+02
1.5642e+02
1.0490e+02
1.0097e+02
1.0000e+02

6.7324e+02
—
—

9.6522e+03
4.1449e+03
3.5146e+02
2.0095e+02
1.4481e+02
1.3276e+02
1.0658e+02

5.7884e+02
2.7142e+03
1.6559e+02
8.1846e+03
2.9532e+03
2.0982e+02
1.7642e+02
1.2338e+02
1.0981e+02
1.0228e+02

4.4767e+01
1.1702e+02
2.6366e+01
1.0429e+03
5.8400e+02
5.7589e+01
1.2410e+01
1.1021e+01
7.6818e+00
1.8874e+00

7
8
4

10
9
6
5
3
2
1

*

*

*

+

+

+

+

−

−

F3 ESAO
SA-COSO
SHPSO
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

9.9664e+00
—
—

1.8575e+01
1.5880e+01
4.8145e+00
3.7299e-07
3.0570e-08
1.6243e-07
5.2082e-07

1.0732e+01
—
—

1.9567e+01
1.7640e+01
7.5527e+00
7.1981e-07
7.4842e-08
1.8590e-06
1.1662e-06

1.0364e+01
1.5756e+01
4.1134e+00
1.9114e+01
1.6727e+01
5.7254e+00
5.6679e-07
5.4035e-08

6.1486e-07
7.7398e-07

2.1130e-01
5.0245e-01
5.9247e-01
2.5621e-01
5.0897e-01
6.6842e-01
8.1550e-08
1.2163e-08
3.8472e-07
1.9042e-07

7
8
5

10
9
6
2
1
3
4

*

*

*

+

+

+

+

+

+

F4 ESAO
SA-COSO
SHPSO
GA
DE
GWO
RBFGWO
SAGWO

SAGWO_M
SAGWO_G

4.7346e+01
—
—

6.8970e+02
3.3230e+02
6.0071e+00

1.3520e+00
2.0766e-04
4.1044e-01
9.7929e-01

6.9225e+01
—
—

1.0325e+03
5.2619e+02
1.7320e+01
1.9886e+00
2.2883e-01
1.0941e+00
1.0898e+00

5.7342e+01
6.3353e+01
1.0704e+00
8.6827e+02
4.1035e+02
1.1922e+01
1.5518e+00
2.3993e-02

8.8984e-01
1.0394e+00

5.8387e+00
1.9021e+01
2.0485e-02
1.0941e+02
5.3397e+01
2.7013e+00
1.5690e-01
5.1906e-02
1.9976e-01
3.6336e-02

7
8
4

10
9
6
5
1
2
3

*

*

*

+

+

+

+

+

+

F5 ESAO

SA-COSO
SHPSO
GA
DE
GWO

6.6263e+02
—
—

1.3010e+03
1.7739e+03
1.5030e+03

7.5881e+02
—
—

2.0001e+03
2.3571e+03
2.0142e+03

7.1347e+02

1.2731e+03
8.0173e+02
1.6525e+03
2.0889e+03
1.7658e+03

2.6454e+01
1.1719e+02
7.2252e+01
1.7493e+02
1.3163e+02
1.2086e+02

1
7
3
8

10
9

*

*

*

+

+

+

(Continued)
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Furthermore, the W-test results showed that SAGWO was more capable of 

solving these 100-dimensional problems.

To better illustrate the results from this comparative study, the perfor-

mances of all these GO algorithms on the 21 test cases are summarized 

in Tables 11.5 and 11.6. The SAGWO algorithm won the first place rank 

(rank 1) most frequently and had the best average rank value of 1.8095. 

The SAGWO_M algorithm obtained an average rank of 2.5238, a little 

bit behind the SAGWO, SAGWO_G, SHPSO and ESAO received much 

closer average ranks. The search methods that only used knowledge min-

ing, like RBFGWO, or only employed metaheuristic exploration, like 

GA, DE and GWO, had worse average rank values. SAGWO considerably 

outperformed the GPEME and SA_COSO algorithms in these test cases. 

Table 11.6 shows the average rank values of all the 11 algorithms on the 

three groups of test cases. The performance of GPEME declines when the 

dimension of the GO problem increases. Conversely, RBFGWO performed 

better regardless of the increase in the problem dimension. SHPSO, GWO, 

TABLE 11.4 (Continued ) Statistical Results on 100-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

RBFGWO
SAGWO
SAGWO_M
SAGWO_G

1.0018e+03
6.7665e+02
7.0889e+02
9.8444e+02

1.2626e+03
9.1895e+02
1.2225e+03
1.2294e+03

1.1238e+03
8.0016e+02
8.9599e+02
1.0976e+03

6.4233e+01
7.9265e+01
1.1499e+02
6.0589e+01

6
2
4
5

+

+

+

F6 SA-COSO
SHPSO

GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M
SAGWO_G

—
—

6.4216e+02
8.7437e+02
6.9914e+02
6.5325e+02
4.8201e+02
4.7606e+02
5.5642e+02

—
—

8.5115e+02
1.2478e+03
1.0099e+03
7.6724e+02
5.5528e+02
6.3633e+02
6.6950e+02

1.3657e+03
5.1619e+02

7.0946e+02
1.0626e+03
8.3791e+02
6.9796e+02
5.1866e+02
5.4038e+02
6.1328e+02

3.0867e+01
3.2060e+01
5.2281e+01
9.1659e+01
7.8673e+01
3.3667e+01
2.0540e+01
3.6162e+01
2.7442e+01

9
1
6
8
7
5
2
3
4

*

*

+

+

+

+

+

+

F7 ESAO
SA-COSO
SHPSO
GA
DE
GWO
RBFGWO
SAGWO
SAGWO_M

SAGWO_G

1.3218e+03
—
—

1.3964e+03
1.4037e+03
1.3729e+03
1.3339e+03
9.1015e+02
9.4134e+02
1.3236e+03

1.4271e+03
—
—

1.5606e+03
1.4734e+03
1.4896e+03
1.4079e+03
1.4372e+03
1.4302e+03
1.4273e+03

1.3724e+03
—

1.4198e+03
1.4760e+03
1.4400e+03
1.4306e+03
1.3761e+03
1.3500e+03
1.3326e+03

1.3634e+03

2.7539e+01
—

3.8238e+01
4.1399e+01
2.1206e+01
2.9696e+01
2.2113e+01
1.0747e+02
1.1856e+02
2.2508e+01

4
—
6
9
8
7
5
2
1
3

*

*

*

+

+

+

≈

≈

≈
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FIGURE 11.8 Iteration graph on 100-dimensional cases. (a) F1 Ellipsoid func-

tion. (b) F2 Rosenbrock function. (c) F3 Ackley function. (d) F4 Griewank func-

tion. (e) F5 shifted rotated Rastrigin function. (f) F6 rotated hybrid composition 

function. (g) F7 rotated hybrid composition function.
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SAGWO, SAGWO_M and SAGWO_G showed stable performance in all 

three groups of cases.

In the presented SAGWO, the computation complexity mainly con-

sists of five parts, that is, the computation time for initial search, sur-

rogate modeling, function evaluations, global search and local search. 

In this chapter, we empirically compare the computation time required 

by these algorithms on the benchmark case ellipsoid. Different num-

bers of function evaluations and variables are used to form nine cases 

for comparative study. All the algorithms were implemented on a com-

puter with two 2.40-GHz processors and 32-GB RAM, and the average 

computation time of 20 runs was summarized in Table  11.7. There is 

TABLE 11.6 Summary of Ranks on Different Cases

Algorithms Ave. Rank on 30 dim Ave. Rank on 50 dim Ave. Rank on 100 dim

ESAO 4.0000 3.3333 5.6667

SA-COSO NA 7.5000 7.8333

SHPSO 4.0000 4.0000 4.0000

GPEME 5.6667 9.0000 NA

GA 8.4286 9.2857 9.0000

DE 9.1429 9.5714 8.8571

GWO 6.7143 6.7143 6.7143

RBFGWO 7.4286 6.2857 4.5714

SAGWO 1.8571 1.8571 1.7143

SAGWO_M 2.5714 2.5714 2.4286

SAGWO_G 3.8571 3.7143 3.2857

TABLE 11.5 Summary of Ranks

Algorithms Cases No. Sum of Rank Rank 1 No. Ave. Rank

ESAO 18 78 5 4.3333

SA-COSO 12 92 0 7.6667

SHPSO 21 84 2 4.0000

GPEME 10 70 0 7.0000

GA 21 187 0 8.9048

DE 21 193 0 9.1905

GWO 21 141 0 6.7143

RBFGWO 21 128 0 6.0952

SAGWO 21 38 11 1.8095

SAGWO_M 21 53 2 2.5238

SAGWO_G 21 76 1 3.6190
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no doubt that the conventional metaheuristic algorithms GA, DE and 

GWO require less time than the surrogate-based algorithms RBFGWO, 

SAGWO, SAGWO_M and SAGWO_G. Moreover, when the dimension 

and NFE increase, the required computation time for GA, DE and GWO 

still stays at a lower level. On the contrary, these surrogate-based algo-

rithms are dramatically affected by the two factors NFE and dimension. 

This is because a higher dimension and larger NFE will greatly increase 

the computation time for surrogate modeling and optimization search on 

surrogate models. Among these surrogate-based algorithms, SAGWO has 

performed similar to SAGWO_M, SAGWO_G requires the least compu-

tation time and RBFGWO spends the most CPU time. Compared with 

SAGWO, SAGWO_G lacks the initial search and local search that increase 

the computation complexity, thus it can run faster. On the other side, since 

RBFGWO purely exploits RBF to capture new samples per cycle, it needs 

more calls to the surrogate models. Thus, RBFGWO runs slower and is 

more sensitive to dimension and NFE. It is worth noting that the com-

putation time for function evaluations can be ignored in this experiment 

because one run for the mathematical expression takes less than 1e-2 sec-

onds. However, the required time for an actual expensive problem may be 

several minutes, hours or even days. For the time-consuming engineering 

problems, the time for running the algorithm itself can be ignored and the 

total computation cost will mainly come from the NFEs.

In summary, the newly proposed SAGWO algorithm showed supe-

rior search efficiency and outstanding robustness on all 21 benchmark 

test cases; and the algorithm is able to solve high-dimensional, computa-

tion-expensive, black-box global optimization problems.

TABLE 11.7 Average Computation Time of Different Algorithms

Parameters CPU Time (s) of Different Algorithms

Dim. NFE GA DE GWO RBFGWO SAGWO SAGWO_G SAGWO_M

30d 300 0.555 0.043 0.013 91.34 27.67 9.02 28.73

600 0.508 0.038 0.014 311.23 87.78 31.28 89.97

1,000 0.644 0.063 0.018 821.56 226.72 87.78 233.53

50d 300 0.648 0.020 0.007 115.54 54.83 11.01 54.20

600 0.804 0.042 0.013 436.74 175.06 43.92 180.05

1,000 0.975 0.075 0.022 1,166.65 428.46 120.80 443.99

100d 300 1.267 0.023 0.010 112.49 80.15 10.89 74.52

600 1.515 0.047 0.019 660.65 420.17 66.54 419.12

1,000 1.876 0.078 0.033 1,912.84 1,099.27 195.49 1,125.28
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11.5 CHAPTER SUMMARY

In this chapter, a novel RBF-assisted, metaheuristic algorithm, surro-

gate-assisted gray wolf optimization (SAGWO), for solving high-dimen-

sional, computation-expensive, black-box global optimization problems 

is presented. The new algorithm conducts the search in three successive 

phases, initial exploration, RBF-assisted metaheuristic exploration and 

knowledge mining on RBF.

In the “initial exploration,” a group of DoE samples is generated and 

stored in a database, DB, to capture the overall feature of the design 

space. After that, the initial wolf pack with better fitness function val-

ues is selected from the DB, and the wolf leaders are identified. In the 

“knowledge mining on the surrogate,” the RBF model is dynamically 

updated and is sufficiently exploited by a dedicated optimization process 

consisting of a global optimization search and a multi-start optimiza-

tion search. A small region around the present best solution is also cre-

ated for the local search to speed up convergence. In the “RBF-assisted 

metaheuristic exploration,” the precious knowledge from RBF is used to 

assist the generation of wolf leaders that will guide the whole wolf pack 

to explore the design space.

Representative test cases and published data from four top-rated surro-

gate-assisted evolutionary algorithms are used for a comparative study in 

this work to test the functionality and verify the performance of the new 

SAGWO algorithm. The comparison experiments on 21 test cases, rang-

ing from 30 to 100 design variables showed that the SAGWO has superior 

computation efficiency and robustness.

For now, SAGWO can be directly used for computationally expensive 

constrained problems by the penalty-function method. However, when 

the number of expensive constraints increases, SAGWO may have diffi-

culty in finding feasible solutions by the penalty function. In future work, 

it is of interest to extend SAGWO’s capability to solve high-dimensional 

optimization problems with multiple costly inequality constraints that are 

another huge challenge in the engineering optimization field. Moreover, 

SAGWO will be used for the large-scale smart grid design and shape design 

of full-parameter blended-wing-body underwater gliders in the next stage.

NOTE
 1 Based on “Surrogate-assisted Grey wolf optimization for high-dimensional, 

computationally expensive black-box problems,” published in [Swarm and 
Evolutionary Computation], [2020]. Permission obtained from [Elsevier].
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