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Preface

HE RAPID ADVANCEMENT OF computer technology and the growing

demand for high-precision industrial design have established simu-
lation as a cornerstone of modern engineering practices. In the fields of
mechanical and electronic systems, many complex and computationally
expensive black-box models are widely used. These models are character-
ized by their reliance on known input-output relationships without reveal-
ing internal operations. Expensive black-box models, such as automotive
crash simulations, aerodynamic calculations for aircraft design, under-
water vehicle shape optimization and structural stability analysis, often
require substantial computational resources. Each simulation run may
range from several minutes to several hours, and optimizing the design
parameters for these models can result in prohibitively high computa-
tional costs.

To overcome these challenges, data-driven optimization techniques
have emerged as a promising solution. By leveraging data and compu-
tational intelligence, these methods significantly enhance efficiency and
accuracy in optimization processes, offering transformative potential for
complex engineering design tasks. These techniques can be broadly cat-
egorized into offline and online data-driven optimization. Offline opti-
mization involves generating a large dataset at the outset, constructing
surrogate models with satisfactory accuracy, and keeping these mod-
els static throughout the optimization process. While this approach is
straightforward and easy to implement, especially for system optimiza-
tion, it has notable limitations: it lacks adaptability, heavily relies on ini-
tial sample points and often exhibits poor local approximation accuracy
near the optimum, making it less suitable for global optimization tasks.
In contrast, online optimization dynamically updates the database and
surrogate models during the iterative process. This adaptability enhances
prediction accuracy near the optimum, enabling precise solutions while

xxii



Preface m xxiii

significantly reducing computational costs. Online methods are particu-
larly well-suited for scenarios demanding high accuracy and efficiency in
global optimization.

Despite their advantages, existing data-driven optimization methods
often rely on single-point sampling strategies, which lead to a high num-
ber of iterations and hinder parallel computation. Future developments
in optimization should focus on enabling parallel execution of expensive
simulations during iterative processes, highlighting the critical role of
multi-point sampling strategies. Furthermore, single surrogate models,
while effective for specific problem types, may exhibit significant predic-
tion errors when applied to others. For example, polynomial response sur-
face models are well-suited for approximating polynomial-type problems
but struggle with trigonometric function-based problems. This under-
scores the need for hybrid surrogate modeling techniques or multi-source
prediction optimization strategies that combine the strengths of different
models to improve overall performance and robustness. In addition, given
the inherent error tolerances in real-world manufacturing processes, solu-
tions derived from discrete optimization often better align with actual pro-
duction requirements. As such, advancing global optimization techniques
tailored for discrete data-driven problems is a pressing research priority.

Given the current state of development and the challenges in this field,
the authors and their research team have undertaken extensive studies in
related areas. This book consolidates and presents the data-driven global
optimization methods developed by the team over recent years. The con-
tent is organized into the following chapters:

+ Chapter 1 introduces the development status of advanced data-driven
optimization methods.

« Chapter 2 provides background knowledge on data-driven optimi-
zation techniques.

« Chapter 3 presents commonly used test functions for validating
data-driven optimization methods.

« Chapter 4 introduces a multi-start space reduction method based on
Kriging models.

o Chapter 5 describes a global optimization method combining
Kriging and polynomial response surface models.
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« Chapter 6 presents a hybrid global optimization method combining
radial basis function and Kriging models.

 Chapter 7 introduces a score-based multi-surrogate global optimiza-
tion method.

 Chapter 8 describes a surrogate-based constrained global optimiza-
tion algorithm using space reduction.

« Chapter 9 presents a Kriging-assisted teaching-learning-based con-
strained optimization method.

+ Chapter 10 describes a Kriging-assisted discrete global optimization
method.

« Chapter 11 introduces a surrogate-assisted gray wolf optimization for
high-dimensional, computationally expensive black-box problems.

This research has been supported by several grants, including the
National Natural Science Foundation of China (Grant No. 52175251)
and the Postdoctoral Fellowship Program of CPSF under Grant Number
GZC20242194. The authors express their sincere gratitude for this sup-
port. Special thanks are extended to the Autonomous Underwater Vehicle
Team of Northwestern Polytechnical University, current doctoral students
Xiao-Yao Han, Wenxin Wang, Weibin Ma, Yunyi Zhang and Wenyi Long
as well as master’s candidates Jing Pan and Jingxue Shen for their assis-
tance in preparing this book.

Data-driven global optimization methods represent a relatively new
and rapidly evolving research field. The techniques introduced in this book
reflect cutting-edge developments from the past 5years, delivering high
optimization efficiency and robust performance. This book is designed as
a reference for researchers and engineers involved in the design of com-
plex electromechanical systems. To support comprehension and practi-
cal application, this book includes numerous mathematical examples and
engineering case studies, making it a valuable resource for both theoreti-
cal exploration and real-world problem-solving.

Given the authors’ limited expertise, errors and omissions may inevi-
tably occur in this book. The authors welcome feedback and constructive
criticism from readers to improve future editions and enhance the quality
of the work.



CHAPTER 1

Introduction

1.1 OVERVIEW

The rapid advancement of computer technology and the increasing demand
for high-precision industrial products have made simulation-based com-
putation an indispensable tool in modern engineering design. In the

field of mechanical and electronic engineering, there are numerous com-
plex and costly black-box models (Miller et al., 2011; Steer et al., 2002).
A black-box model is defined as a model where the input-output rela-
tionship is known, but the internal computational mechanisms remain
unknown (Bunge, 1963). Costly black-box models refer to those models in
which a set of inputs produces a set of outputs at the expense of significant
computational resources, such as in automotive crash simulations, aero-
dynamic calculations for aircraft shapes, underwater vehicle design and
structural stability analysis (Liebeck, 2004; Qin et al., 2004). Each simu-
lation can take anywhere from several minutes to several hours. When
designers seek a feasible set of design parameters within the design space
for costly black-box models, the computational cost is typically very high.
To address this issue, data-driven optimization (DDO) techniques have
emerged. Since DDO typically involves the use of surrogate models, this
approach is also referred to as surrogate-based optimization (SBO) in the
fields of mechanical design and aerospace engineering. Figure 1.1 illus-
trates the simulation system of the blend-wing-body underwater glider,
showcasing the computational time involved.
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FIGURE 1.1  Simulation system of a blend-wing-body underwater glider.

Over the past two decades, computer-aided design and engineering
(CAD/CAE) have experienced rapid development. Complex computa-
tional models and time-consuming simulations are frequently used to
model system behavior and improve design quality. It has been reported
that a single automotive crash simulation conducted by Ford can take
between 36 and 160 hours (Antoine & Kroo, 2005; Gu, 2001; Gur et al.,
2010; Zhang et al., 2006). Consider a two-dimensional optimization
problem where 50 iterations are required, with each iteration involv-
ing one crash simulation. The total computational time would then
range from 75days to 11 months. Consequently, traditional optimiza-
tion solvers become infeasible when applied to complex and time-con-
suming black-box models. Reducing the number of evaluations of the
complex black-box model is crucial for minimizing computational
costs. Traditional global optimization methods, like genetic algorithms
(GA), explore the design space randomly and update the population.
After hundreds or thousands of evaluations of the objective and con-
straint functions, an optimal solution can be found. However, the heavy
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FIGURE 1.2 Application process of DACE in engineering design.

reliance on objective function analysis in methods like GA makes them
unsuitable for handling computationally expensive simulation-based
optimization problems.

In 1989, Sacks et al. (1989) introduced the concept of design and anal-
ysis of computer experiments (DACE). Figure 1.2 illustrates the applica-
tion process of DACE in engineering design. Typically, multiple sets of
computer experiments require repeated execution of computational codes,
and each execution is time-consuming, which is referred to as the “expen-
sive simulation” problem. A set of inputs undergoes expensive simulation
to produce a set of outputs, which serve as responses and can form the
objective or constraint functions in an optimization problem. As opti-
mization progresses, the computational cost increases significantly with
each iteration. To reduce this computational burden, the input and output
values obtained from the simulation experiments are used to construct
a “cheaper” surrogate model (also known as an approximation model),
which replaces the original complex system and predicts the output for
unknown inputs. To this day, many researchers continue to explore opti-
mization based on surrogate models.
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Wang and Shan (2006) pointed out that computationally intensive design
problems are becoming increasingly common in industry, with computa-
tional loads typically arising from expensive simulation analyses or complex
simulation procedures aimed at approximating real physical test results.
Simpson et al. (2008) noted that over the past two decades, surrogate model
techniques have achieved remarkable progress in the field of experimental
design analysis. Based on the performance of surrogate models, future efforts
should focus on multi-fidelity surrogate models and the feasibility of using
surrogate models in commercial software. Forrester and Keane (2009) high-
lighted that aerospace design calculations require long runtimes and expen-
sive computer simulations, thereby driving the need for efficient applications
of surrogate models in aerospace design optimization. Younis and Dong
(2010a) stated that computationally intensive simulation analyses support
modern engineering design, and surrogate models can effectively reduce the
number of evaluations required for expensive objective and constraint simu-
lations. Tabatabaei et al. (2015) emphasized that obtaining objective and con-
straint function values through real computational experiments incurs high
computational costs, such as in thermodynamic analysis, structural analy-
sis, fluid dynamics analysis, or complex simulations involving differential
equations. The basic idea to address this time-consuming issue is to build a
computationally inexpensive surrogate model to replace the real experiment.
Bartz-Beielstein and Zaefferer (2017) noted that SBO plays an increasingly
important role in today’s modeling, simulation and optimization processes.
Additionally, surrogate model optimization techniques can effectively solve
complex optimization problems with discrete design domains in the real
world. Liu et al. (2018) pointed out that surrogate models, as a widely adopted
technique, can reduce the number of time-consuming simulation calcula-
tions and adaptive surrogate model techniques, which learn from existing
data and models, have gained considerable attention from researchers.

As shown in Figure 1.3, traditional optimization methods often directly
link complex black-box analysis models to optimization solvers for itera-
tive calculations. General optimization algorithms typically require
numerous iterations to achieve an optimal result, and if the analysis model
is an expensive black-box model, the computational burden increases sig-
nificantly. For example, if a GA calls the complex black-box model 1,000
times to obtain an optimal solution, with each iteration taking 1 minute to
compute the output, the total computational time would be 1,000 minutes.
The substantial increase in computational load necessitates a reduction in
the number of evaluations of the analysis model (Younis & Dong, 2010b).
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As shown in Figure 1.4, by systematically conducting multiple experi-
mental analyses, multiple sets of corresponding input-output pairs can
be obtained. By combining these input-output pairs, a “cheap predictive
model,” or surrogate model, can be constructed. Classical optimization
algorithms can then be directly applied to the surrogate model to itera-
tively obtain an optimal solution. However, the so-called optimal solution
is a predicted estimate of the “optimal solution,” and its accuracy depends
on the experimental analysis method and the number of tests conducted.
Achieving a balance between reducing computational costs and obtaining
satisfactory results requires intelligent strategies, which will be discussed
in detail in the following sections.

In summary, SBO is an optimization strategy based on surrogate mod-
els. Figure 1.4 simply illustrates the general relationships between com-
plex black-box analysis models, surrogate models, optimization solvers
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and their respective inputs and outputs. However, to obtain an optimal
solution to practical problems, the surrogate model needs to be updated
iteratively to improve its predictive accuracy adaptively. Additionally,
algorithms need to intelligently select the best predictive results to balance
computational cost and accuracy.

1.2 APPLICATION OF DDO TECHNIQUES
IN SIMULATION SYSTEMS

With the development of simulation technologies and the increasing com-
plexity of modern product designs, simulation analysis has been frequently

applied in system design and optimization, providing precise analysis but
also resulting in high computational costs. Consequently, DDO tech-
niques have become a key solution for optimizing time-consuming simu-
lation systems. Common surrogate model methods used in DDO include
polynomial response surfaces (PRS), Kriging, radial basis functions (RBF)
and support vector regression (SVR) (Haftka et al., 2016).

NASA funded early research on response surface methods, which led to
the development of several key theories based on response surface meth-
odology (RSM) (Cox & John, 1992; Dennis & Torczon, 1997; Giunta et al.,
1997; Otto et al., 1997; Wujek et al., 1997). RSM typically utilizes polyno-
mials as basis functions and applies the least squares method to construct
a predictive model (Box & Wilson, 2018). Virginia Tech developed a vari-
able complexity response surface modeling (VCRSM) approach (Giunta
et al,, 1996), which uses information of varying fidelity to reduce the
design space, supplementing expensive samples only in the regions most
likely to contain the optimal solution, thus reducing the computational
cost. The University of Notre Dame developed a concurrent subspace opti-
mization (CSSO) method (Renaud & Gabriele, 1991; Renaud & Gabriele,
1994; Wujek et al., 1996) and applied it to multidisciplinary design optimi-
zation (MDO) to coordinate the optimization of various subspaces. Haftka
et al. (1998) and Hardy (1971) also conducted extensive research on RSM
in mechanical and aerospace engineering.

In the past decade, most researchers have shifted their focus from PRS
methods to a variety of surrogate model techniques, including RBF (Dyn
et al., 1986), Kriging (Cressie, 1988), SVR (Smola & lkopf, 2004) and
artificial neural networks (ANNs) (Paliwal & Kumar, 2009). Numerous
scholars both domestically and internationally have proposed optimi-
zation methods based on these surrogate models and applied them to
engineering design fields. In aerospace engineering, SBO has been used
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for designing high-speed civil transport aircraft (Booker et al., 1998),
wing shape optimization (Rai & Madavan, 2000), diffuser shape opti-
mization (Madsen et al., 2000) and supersonic turbines (Papila et al.,
2002). Iuliano and Pérez (2016) proposed an SVR-based SBO method to
optimize aerodynamic shapes. This method combines evolutionary algo-
rithms (EA) with an intelligent estimation search with sequential learn-
ing (IES-SL) sampling strategy to efficiently explore the design space.
The surrogate model constructed by SVR replaces computational fluid
dynamics (CFD) to calculate the objective function values, ultimately
achieving the globally optimal aerodynamic shape while reducing com-
putational costs. Iuliano and Pérez (2016) introduced a surrogate model
method that implements proper orthogonal decomposition (POD) of
aerodynamic flow fields and reconstructs aerodynamic flow fields at
unknown design points using RBF. Additionally, to achieve global opti-
mization, this method was coupled with EA and two sampling strategies
based on goal enhancement and prediction error reduction were pro-
posed. As a result, only 100 CFD calls were needed to obtain the global
optimal solution. Ulaganathan and Asproulis (2013) argued that a key
challenge in the development of aerospace systems lies in understanding
system behavior. While high-precision computations provide valuable
insights for high-specification designs and enhanced understanding of
system responses, their high computational cost limits their application
across the entire system. They suggested a surrogate-based analysis (SBA)
method based on Kriging and Hammersley sequence sampling for accu-
rate aerodynamic predictions, which was combined with a GA for global
optimization on the surrogate model. This approach achieved satisfac-
tory aerodynamic efficiency while significantly reducing computational
costs. Glaz et al. (2008) compared the prediction accuracy of Kriging,
RBF and RSM surrogate models in helicopter vibration problems. They
did not focus on how to search the design space to capture the global
optimum, but rather on the adaptability of the surrogate model meth-
ods to vibration reduction problems. They ultimately found that Kriging
provided the best average accuracy for this problem.

Based on the surrogate model methods, SBA techniques have gradually
been applied in engineering design. Today, due to their powerful predic-
tive capabilities, SBA has expanded into fields such as structural design,
aerodynamic shape design, multidisciplinary optimization design and
electronic system simulation design. Leading research institutions, includ-
ing Virginia Tech, the University of Notre Dame, Rensselaer Polytechnic
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Institute, Old Dominion University and NASA Langley Research Center,
have been at the forefront of developing SBA to address optimization design
problems in engineering (Balabanov & Venter, 2004; Schmit & Farshi,
1974; Stanford et al., 2013; Sun et al., 2011; Yamazaki, 2012; Yamazaki &
Mavriplis, 2013). Take finite element analysis (FEA) as an example, which
is commonly used for structural simulation design. Directly coupling FEA
with general optimization solvers to find an optimal solution can lead to
high computational costs. An earlier approach involved constructing an
approximate empirical formula using first-order sensitivity analysis (Sacks
et al., 1989), with the optimization process sequentially executed on this
formula. Pedersen (1981) employed sequential linear programming (SLP)
to solve structural optimization problems; Fleury and Braibant (1986) pro-
posed the convex linearization method (CONLIN); and Svanberg (1987)
introduced the method of moving asymptotes (MMA). These meth-
ods extracted the response and first-order sensitivity information from
the current design point, and therefore, they are collectively referred to
as single-point approximation methods. Later, Haftka et al. (1987) and
Fadel et al. (1990) developed a two-point approximation method using
both the current and previous points’ values and derivative informa-
tion. Rasmussen (1990) further proposed an accumulated approximation
technique that utilizes the values and gradients at the current point while
also incorporating all previously obtained points’ values and derivatives.
Finally, Toropov (1989) summarized the concept of multi-point approxi-
mations (MA), where regression analysis is used to predict the response at
the current point in each iteration. By leveraging information from previ-
ous solutions, optimization is carried out within a locally valid sub-region
to reduce the number of FEA evaluations.

Besides, DDO methods also have significant potential in system optimi-
zation design, particularly in reducing the number of calls to time-consum-
ing simulation units. For example, Mohammad Zadeh and Sadat Shirazi
(2017) employed a two-layer multidisciplinary optimization method to
design a complex satellite system, replacing time-consuming simulation
units with quadratic response surface (QRS) models that meet accuracy
requirements, thus reducing the number of calls. Similarly, Wang et al.
(2017b) proposed a novel system optimization method for lithium-ion bat-
tery thermal management system design, where surrogate models replace
costly responses such as temperature and pressure variations, greatly
improving computational efficiency. Wang et al. (2017b) introduced an
improved collaborative optimization algorithm for automotive structural
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design. By constructing QRS models, they effectively reduced the compu-
tational load caused by FEA, yielding satisfactory results. Although these
methods reduce the computational costs of optimizing time-consuming
simulation systems to varying degrees, they all employ offline DDO tech-
niques. Specifically, a surrogate model is constructed using a large number
of samples that meet accuracy requirements for optimization, but the sur-
rogate model is not updated during the optimization process. While this
approach is simple to implement and easy to apply in system optimization,
it lacks adaptability, heavily relies on initial sample points and does not
provide high local approximation accuracy at optimal locations, making it
unsuitable for global optimization.

Online DDO methods, on the other hand, involve using a sampling
strategy during the iteration process to collect samples and automatically
update the surrogate model. This dynamic process typically improves the
prediction accuracy near the optimal location, allowing for precise opti-
mal solutions with fewer computational costs. Recent studies have increas-
ingly applied online DDO methods in system optimization workflows.
For instance, Ollar et al. (2017) optimized the overall design of a wing
anti-collision system by constructing Kriging models for two time-con-
suming analysis units—linear static and explicit dynamics. The entire
optimization process was carried out using a local trust region method,
with Kriging models continuously updated during iterations, ultimately
determining the optimal solution with fewer computational costs. Pires
et al. (2013) employed an RBF-based EA to minimize the total cost of a
complex thermal system, constructing an RBF model for the time-con-
suming objective. In each iteration, the EA searches for the optimal sample
predicted by the RBF model and iteratively updates it until a satisfactory
solution is found. Yao et al. (2012) proposed a new method combining
multidisciplinary feasibility and collaborative subspace optimization
strategies. This method approximates time-consuming state variables,
objectives and constraints using surrogate models and updates the surro-
gate model by supplementing the dataset with predicted optimal solutions
obtained during each optimization step, facilitating rapid identification
of the real optimal target. While these online DDO methods can focus
samples in regions predicted to be optimal, they struggle with handling
large-scale, highly nonlinear simulation systems. To achieve global opti-
mization, more intelligent sampling strategies are required to adaptively
balance the “exploitation of surrogate models” and “effective exploration
of the design space” (Liu et al., 2018).
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1.3 DEVELOPMENT OF DATA-DRIVEN GLOBAL
OPTIMIZATION TECHNIQUES

A significant amount of research has been conducted by scholars on
data-driven global optimization (DDGO). Jones et al. (1998) first pro-
posed the efficient global optimization (EGO) algorithm, which con-
structs an expected improvement function using Kriging and updates
the sample points by maximizing this function. Regis and Shoemaker
(2007) introduced a stochastic response surface method that simultane-
ously considers space-filling and the prediction of optimal values to select
candidate points for supplementation. In recent years, domestic scholars
have also carried out extensive research on DDGO. For example, Long
etal. (2015) used a space intelligence exploration strategy to accelerate the
convergence speed of adaptive response surface optimization, which was
validated through various test functions and wing plate structural design.
Jie et al. (2015) proposed a multi-surrogate global optimization algorithm
that constructed a new model combining Kriging and RBF, adjusting
internal parameters adaptively to balance global and local exploration.
Gu et al. (2012) developed a hybrid adaptive optimization method using
three surrogate models, which divided candidate points into several sub-
sets and selected a different number of samples for updating the surrogate
model based on the importance of each subset, applied to an automotive
crash example.

Haftka et al. (2016) from the University of Florida pointed out that
improving the multi-point sampling capability (parallelism) is crucial
for DDGO. Collecting multiple sample points in each iteration and per-
forming simulation analyses in parallel can significantly shorten the
design cycle. Both domestic and international teams have since researched
multi-point sampling techniques for DDGO and published new methods.
For instance, the Shoemaker team at Cornell University (Krityakierne
etal., 2016) employed a non-dominated sorting method to find supplemen-
tal sample points for single-objective optimization problems; Zhan et al.
(2017) from Huazhong University of Science and Technology captured
multiple extreme points of the expected improvement function as supple-
mental sample sets; Li et al. (2016) from Dalian University of Technology
proposed a new domain decomposition technique to enhance multi-point
sampling capabilities based on the EGO algorithm.

Most existing DDO methods use single-point sampling strategies,
such as the classic expected improvement (EI) or minimize prediction
(MP). These sampling strategies often lead to numerous iterations during
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optimization, which is not conducive to parallel computation. As Professor
Haftka mentioned, the future development of optimization should involve
parallel execution of expensive simulations during iterations, making the
development of multi-point sampling strategies particularly important.
Additionally, a single surrogate model may perform well for certain prob-
lems but produce large prediction errors for others. For example, PRS mod-
els can provide accurate approximations for polynomial-type problems
but may struggle with precise expressions for problems involving trigono-
metric functions. Therefore, developing hybrid surrogate model optimi-
zation methods or multi-source prediction optimization techniques can
lead to more robust results. Furthermore, considering the error precision
in real-world structural manufacturing processes, the optimal solution
obtained from discrete optimization is often more consistent with actual
production conditions. Thus, developing discrete DDGO techniques is
also of significant importance.

1.4 CHAPTER SUMMARY

This chapter provides an overview of advanced DDO methods, highlight-
ing the historical development of DDO techniques and their application
in practical simulation systems. It demonstrates the significant advantages
of DDO approaches in addressing computationally expensive black-box
problems. These methods effectively learn from and mine historical data,
construct surrogate models, predict potentially beneficial samples, acceler-
ate the exploration of design space and greatly reduce the number of calls
to time-consuming simulation models, thus holding significant implica-
tions for simulation-based product design and optimization.
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CHAPTER 2

Data-Driven
Optimization Framework

2.1 SAMPLING METHODS

Data-driven optimization (DDO) begins with the use of experimental
design methods (design of experiment, DOE) to perform initial data sam-
pling. DOE is a mathematical and statistical approach for planning and
analyzing experiments (Myers et al., 2016), primarily aimed at obtaining
ideal experimental results with a minimal number of experiments, shorter
experimental duration and lower costs.

2.1.1 Traditional Design of Experiment Methods

Traditional DOE methods include full factorial design, fractional fac-
torial design, central composite design (CCD) (Chen, 1995) and Box-
Behnken design (BBD) (Box & Behnken, 1960). Full factorial design
considers all possible combinations of design factors and levels. Here,
factors refer to design parameters or variables, while levels represent spe-
cific values assigned to a given factor within the design space. The main
advantage of full factorial design is its ability to provide comprehensive
information, allowing for a robust estimation of both the main effects
of design variables on the response and the interaction effects between
variables. However, the primary drawback is the substantial increase in
the number of required experiments, which results in higher labor and
resource consumption. The goal of fractional factorial design is to select
a subset of valuable information from the full factorial design, making
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the experiment more efficient. A fractional factorial design can be viewed
as a subset of a full factorial experiment.

BBD was proposed by George in 1960 and is primarily applied in PRS
design. BBD is a standalone second-order design that does not include
embedded fractional factorial designs. It selects the midpoint of the
boundaries of the design space as well as the center point of the entire
design, typically choosing three design levels for each dimension. BBD is
particularly useful for problems where design variables have a nonlinear
relationship with the response values. Similarly, CCD is also applied to
nonlinear problems and is mainly used in PRS design. However, CCD
typically requires the inclusion of axial points. Figures 2.1 and 2.2 illus-
trate the sampling methods of BBD and CCD in three-dimensional
space, showing that both DOE methods provide good coverage of the
entire design space.

The GS method is similar to the previously described full factorial
design. GS divides each dimension of the design space into several equal
parts, and all grid points obtained by intersecting the divisions across
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FIGURE 2.1 BBD sampling method.
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FIGURE 2.2 CCD sampling method.

dimensions are considered as design points. It is important to note that at
least two nodes are selected for each dimension. Equation (2.1) provides the
relationship between the number of design points m and the dimensional-
ity n, where q(i) denotes the number of design nodes in the i-th dimension.

mqu(i) (2.1)

There are various experimental design methods, and choosing an appro-
priate one typically involves considering the following factors: (1) the cost
of a single experiment, (2) the size of the design space, and (3) the type of
surrogate model the designer needs to construct.

If the experimental cost is high, it is preferable to choose a DOE strategy
that generates fewer sample points. If the experimental cost is relatively low,
increasing the sample size can be considered, and even full factorial design or
GS may be viable options. If the design space is large (i.e., the design dimen-
sionality is high), DOE methods that correlate the number of sample points
with the number of dimensions should not be used. Different surrogate mod-
eling techniques are suited to different DOE strategies. For instance, PRSs are
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often combined with CCD sampling methods to construct approximation
models. In summary, experimental design is the first step in the DDO frame-
work, and its choice should be based on the overall design process.

2.1.2 Latin Hypercube Sampling

LHS is a widely used statistical sampling method (Iman, 2008). Figure 2.3
illustrates 25 sample points from an LHS process, while Figure 2.4 shows
25 sample points from a GS for comparison. In the statistical sampling
process, each row and column of the grid can contain only one sample
point. LHS refers to a square matrix in which no two elements in the same
row or column are identical. Figure 2.5 provides a visual representation of
the Latin hypercube and LHS.

Figure 2.5a shows one possible arrangement of the four letters ‘LHSD’
in a Latin hypercube. As seen in figure, each row and column contains a
unique permutation of the letters ‘LHSD,” ensuring that each letter occu-
pies a distinct row and column in the matrix. Figure 2.5b-d shows the
three random outcomes of LHS with four points.

By combining Figures 2.3 and 2.5, it is evident that LHS is random but
effectively covers the entire design space. For continuous design problems,
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FIGURE 2.3 LHS (25 samples).
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FIGURE 2.5 Explanation of Latin hypercube and Latin hypercube sampling. (a)
Permutation without repetition. (b) Random situation 1. (c) Random situation 2.
(d) Random situation 3.
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FIGURE 2.6  Grid sampling (225 samples obtained).

LHS divides each dimension of the space into m equal parts (consider-
ing a two-dimensional space), and the design points are randomly placed
within m x m grid areas.

As mentioned earlier, GS evenly covers the design space, but this
comes at the cost of a significant increase in the number of experiments.
Figure 2.6 shows 225 sample points obtained through GS, with 15 design
levels for each dimension. Executing all 225 sample points can lead to a
costly computation. A key focus of sampling strategy research is how to
effectively reduce the number of sample points while retaining valuable
information. Typically, when a large sample set is obtained in a practi-
cal problem, a selection strategy is needed to identify a smaller, more efhi-
cient subset. One such mature sampling strategy is the ‘max-min’ strategy,
where the ‘min’ refers to the smallest distance between any two sample
points, and the ‘max’ aims to maximize this minimum distance.

n-»]) 22)

max min(disij =
i#j

Equation (2.2) provides the calculation formula for the max-min strategy.
Figures 2.7-2.9 show the optimal results selected by the max-min criterion
for 100, 1,000 and 10,000 iterations, respectively.
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FIGURE 2.9 After 10* iterations using max—min criterion.

Suppose that 25 points are to be selected from 225 sample points, where
P; and P, represent any two distinct points from the 25 selected points.
The minimization process involves finding the smallest distance among
all pairwise combinations of the 25 points. The maximization process
involves selecting the 25 points from the 225 sample points in such a way
that the minimum distance between any two selected points is maximized.
To achieve this process, typically two nested loops are required: an inner
loop for minimization and an outer loop for maximization. It is evident
that as the number of iterations increases, the sample points become more
evenly distributed across the entire design space.

Currently, many SBO methods tend to employ modified LHS as the
DOE process to obtain initial samples. Modified LHS typically retains the
randomness of LHS while more evenly filling the design space. Symmetric
Latin hypercube sampling (SLHS) (Kenny et al., 2000) is a popular sam-
pling method, and it can be considered one of the best results produced by
LHS. The term ‘symmetric’ refers to any point in the space being symmet-
ric about the central position. For example, in a two-dimensional space,
suppose six design samples are needed. The first dimension is divided into
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six equal parts, with levels 1, 2, 3, 4, 5 and 6 assigned in order. The second
dimension randomly generates a sequence from 1 to 3, here given as 3, 1, 2.
The remaining numbers of three are calculated as (6+1-2), (6+1—1) and
(6+1-3). Additionally, there is a 50% chance that any of the first three
numbers in this sequence will be swapped with their corresponding coun-
terparts in the last three, and in this case, the second and fifth numbers are
exchanged. The final sequence for the second dimension becomes three,
(6+1-1), 2, (6+1-2), 1, (6+1-3). Figure 2.10a shows the final result of
SLHS in a two-dimensional space for six points. When an odd number of
points is required, the central point is selected, and the remaining points
are symmetrically distributed about the center. Figure 2.10b illustrates the
situation for seven sample points.

Similarly, the optimal Latin hypercube sampling (OLHS) algorithm
has been widely adopted for optimization purposes, such as genetic algo-
rithm-optimal Latin hypercube sampling (GA-OLHS) and enhanced
stochastic evolutionary algorithm-optimal Latin hypercube sampling
(ESEA-OLHS) (Jin et al.,, 2005). To ensure the sample points uniformly
fill the design space, OLHS typically utilizes a global optimization solver
to determine an optimal criterion, such as the aforementioned max-min
criterion, entropy principle or centered discrepancy criterion L,.

Shannon (1948) quantified information content using entropy, where a
lower entropy value indicates more precise information. Minimizing the
‘posterior entropy’ is equivalent to finding a set of experimental design
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FIGURE 2.10 Symmetric Latin hypercube sampling points for even and odd
cases. (a) Even case. (b) Odd case.
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points with the least amount of information. Koehler and Owen (1996)
further demonstrated that the entropy principle criterion is equivalent to
the following minimization expression:

—logy|R| (2.3)

where R is the correlation matrix with elements defined in Eq. (2.4).

Rij = exp(z ek
k=1

where 0, (k=1,...,m) is the correlation coefficient.

xik—xjktJ, 1<i, j<n; 1<t<2 (2.4)

The centered discrepancy criterion L, is a method for measuring the
difference between the empirical cumulative distribution function and
the uniform cumulative distribution function of an experimental design.
In other words, L, is used to express the non-uniformity of an experimen-
tal design. Hickernell (1998) proposed three formulas for L,, among which
the centered L, formula is the most expressive.

2 n m
ct¥)=( 2] 23T ](1+hme-05- 2057
12) né&d 2 2
I OO T 1 1 1
+n—222H(1+53€ik—0.5—EXjk—O.S—E

i=1 j=1 k=1

xik_xjk)

(2.5)

Minimizing Eq. (2.5) ensures that the experimental design’s non-unifor-
mity is minimized.

For comparison with other DOE methods, Figure 2.11 presents the
results of SLHS with 25 sample points, while Figure 2.12 shows the results
of OLHS with 25 sample points. It is evident that SLHS performs well, but
OLHS provides a more uniform spatial distribution. Compared to previ-
ous methods, it is clear that OLHS provides the best space-filling capabil-
ity while retaining the randomness characteristic of LHS.

2.2 SURROGATE MODEL CONSTRUCTION

Common surrogate models include PRS, RBF, Kriging, and SVR. All of
these methods generally incorporate interpolation and regression con-

cepts. RBF and Kriging are commonly used interpolation methods, PRS



Data-Driven Optimization Framework = 27

0.8- O |
0.6+ @

0.4F O i
02l @

@)
24 |. L I I L L L L

-1 08 -06 04 -02 0 0.2 0.4 0.6 0.8 1

FIGURE 2.11  SLHS with 25 samples.

uses polynomial least squares regression, and SVR is a regression analysis
method derived from machine learning for classification.

2.2.1 Polynomial Response Surface

PRS has been widely and effectively applied in numerous engineering
designs, as it can accurately represent convex function problems. The
approximate expression of PRS is obtained through least squares. The
first-order and second-order polynomial functions of PRS are shown in
Egs. (2.6) and (2.7).

$(x)=PBo+ Y B, (2.6)

}A’(x)z Bo +iﬁixi +2ﬁiixi2 +22ﬁijxix]~ 2.7)
i=1 i=1 i

1 3
Nsumpling >5d2 +Ed+1 (28)
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FIGURE 2.12  OLHS with 25 samples.

where n represents the number of design variables. 3, denotes the coeffi-
cients of univariate polynomials. f3; represents the coefficients of the qua-
dratic terms. §; indicates the coeflicients of the hinge terms between two
variables. y(x) is the true function, while y(x) is its approximate expres-
sion. N, denotes the number of samples. Generally, if N,,,;,, does
not satisfy the condition in Eq. (2.8), the PRS model will exhibit significant
prediction errors.

Given the sample points and corresponding response values, the poly-

nomial parameters can be determined based on Eq. (2.9):
B=[xX]" XYy 2.9)

where X represents the design matrix of the sample points. y contains the
response values for all the sample points. PRS is relatively easy to con-
struct, and its continuous and smooth nature aids in the rapid convergence
of optimization problems with noise. However, due to its simplicity, it is
often difficult for PRS to accurately predict and express nonlinear prob-
lems. PRS has a wide range of applications, including robust optimization,
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multidisciplinary optimization, adaptive strategies for global optimiza-
tion and manufacturing analysis.

2.2.2 Radial Basis Function

RBF was initially proposed by Hardy as an interpolation strategy. Then
Dyn made the RBF method more practical, smoothing the data while
retaining the interpolation function. RBF expresses the overall approxi-
mation function as a weighted sum of a series of basis functions, where the
basis functions are derived from the Euclidean distance between known
sample points or between known sample points and the points to be tested.

T
Given a set of sample points XZ{x(l),x(Z),...,x(”)} and the corre-

sponding real response values y={ y Oy y(”)}T, the approximate
expression is given by Eq. (2.10):

;(X)=WT1//=iwil//(x—c(” ) (2.10)
i=1

where c(i) represents the center of the i-th basis dunction, y (e) is the basis
function, x means a unobserved point; w; denotes the weight coeflicients.
There are various forms of basis functions commonly used in RBF inter-
polation, each defined by different mathematical expressions. Some of the
most widely used forms include

Linear function:

v(r)=r (2.11)
Cubic function:
y(r)=r’ (2.12)
Thin-plate splines:
y(r)=r’Inr (2.13)
Gaussian function:
y(r)=e " (2.14)

Multiquadric function:

y(r)=(r*+o?)" (2.15)
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Inverse multiquadric function:
=Y
l//(r)=(r2+(72) v (2.16)

The weight coefficients w in Eq. (2.10) can be obtained through the inter-
polation conditions.

j(x0)- iwiw(xm 0
i=1

In Egs. (2.10) and (2.17), n,=n and x(i) =c(i), then the Kram matrix can be
represented as:

)= Y, =1, (2.17)

wev{jr-)

Thus, the weight coeflicient matrix can be easily obtained:

1

By observing Egs. (2.10)-(2.19), it can be observed that RBF is highly simi-
lar to artificial neural networks. In fact, RBF is essentially a simple sin-
gle-layer neural network.

2.2.3 Kriging

In statistics, specifically in geostatistics, Kriging (also known as Gaussian
process regression) is an interpolation strategy that is fundamentally dif-
ferent from piecewise-polynomial spline methods. This strategy is mod-
eled through Gaussian process interpolation and is influenced by the
prior covariance. Under suitable prior assumptions, Kriging provides the
best linear unbiased prediction for the interpolated values, which has led
to its widespread application in statistical sciences. Another important
and rapidly developing application is in engineering, where determin-
istic computer simulation outputs are used as the interpolation targets.
In this context, Kriging is employed as a surrogate model tool to address
black-box problems. In many engineering design problems, a single simu-
lation analysis can take several hours or even days. Therefore, the Kriging
interpolation method can quickly predict the response to inputs, signifi-
cantly reducing the number of costly simulation runs.
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The Kriging surrogate model has been widely applied due to its excep-
tional ability to solve nonlinear problems. To construct a Kriging model
for a function f(x), where x is an n-dimensional vector, the function F(x) is
defined to represent the deterministic response of f(x), as expressed in the
following formula:

F(x)=u+27(x) (2.20)

where yis defined as a constant. Z(x) is a stochastic process with the fol-
lowing statistical behavior:

E[Z(x)]=0

Cov[Z(x),Z(x")]=0*R(O,x,x’) (2.21)

n
R©,x,x)= [ [R:(6,%,-x))
j=1
where o2 represents the process variance of the response value. R(0,x,x”)
is the correlation model between any two points xand x”.©=1{6,,0,,...,0,}
is the parameter of the correlation model, namely the correlation param-
eters. In this book, the Gaussian correlation function is used for modeling.

R(Oj,xj,x})=exp(—0j‘x]-—x]’-‘z) (2.22)

Next, assume there are N sample points xV x@ . x™ and the corre-

sponding response values for the function f(x) are calculated. According
to Eq. (2.20), the Kriging model is represented as:

F(x)=F(x")=p+2(x") (2.23)

In the Kriging model, the three parameters u, 6*,0 are obtained through
maximum likelihood estimation (MLE):

. 1'R'f

o1 R

AT e n
ézz(f_l.u) R (f—1u)

N (2.24)

In(®)= —%ln(2n)— %lné‘z - %ln |R|
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where fz[f(x(”),f(x(z)),...,f(x(N))]T. R is a covariance matrix of size
N x N, where the element in the i-th row and j-th column is R(©,x",x").
Finally, the mean square error (MSE) is minimized.

£ =Var| f(x)-F(x)| (2.25)

Meanwhile, the following non-Bayesian constraint needs to be satisfied:
E[ f(x) |= EF o)) (2.26)

The predicted function, f(x), obtained through the best linear unbiased
estimation, is expressed as:

A

F)=fi+r" OR(F ~1f2) (2.27)

where r(x) is a N-dimensional vector. The i-th element of (x) is R(©®, x,x").
x is any sample point for which prediction is required. The final form of
the estimated MSE is

(2.28)

s (x)=0" |:1 —r" (x)R7'r(x)+ (1—11TT1:;11‘1(9€))2]

Figure 2.13 illustrates the prediction diagram of Kriging in a one-dimen-
sional example. The circles represent the known samples, the curve indi-
cates the predicted function values, and the surrounding area represents
the prediction uncertainty. From the figure, it can be observed that the
uncertainty is close to 0 at the known sample points, and the uncertainty
increases as the distance from the known sample points grows.

2.3 DYNAMIC SAMPLING TECHNIQUES

In most cases, a surrogate model is constructed using known sample data.
However, if optimization is performed solely on the surrogate model to
obtain the optimal solution, this optimal solution may not correspond to
the true global optimum. This is because the surrogate model is constructed
based on available information, and while it has predictive capabilities, it
is not always perfectly accurate. To improve the accuracy of the surrogate
model, one approach is to increase the initial sample size—by adding more
samples during the experimental design phase—so that the model utilizes
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FIGURE 2.13  Illustration of Kriging prediction on a 1D example.

more real data. However, this typically results in a significant increase in
computational cost. Another approach is to construct a rough surrogate
model that captures the general trend of the original model. Such a model
typically requires fewer samples. Then, promising regions of the surrogate
model are identified to select new sample points. The previous samples are
stored in a database, and new samples are chosen iteratively to update the
database, with the surrogate model being updated accordingly. This itera-
tive process improves the accuracy of the model at certain preferred loca-
tions. This second approach avoids large-scale blind sampling in the early
stages and adopts a strategy of optimizing while incrementally adding new
samples, thus saving significant computational costs.

2.3.1 Minimizing the Predictor

Minimizing the predictor (MP), namely a constructed surrogate, to obtain
a new sample is a commonly used updating strategy (Hastie et al., 2004),
as illustrated in Figure 2.14. Suppose the surrogate model is sufficiently
accurate, and a robust optimization solver is used to find the minimum
of this surrogate model. After many iterations, the global optimum will
be reached. At this point, high-precision computational simulations are
performed at the predicted optimal solution, and the high-precision
response obtained will often differ from the response predicted by the
surrogate model. This set of high-precision results is then added to the
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A
@ Samples
e Kriging

ymmx

" Minimum Prediction

FIGURE 2.14 MP strategy.

original database, and the surrogate model is reconstructed. This process is
repeated, gradually reducing the deviation between the predicted and true
values, ultimately obtaining the true minimum. MP strategy is a relatively
simple and intuitive sample update strategy, where the predicted optimal
solution or a nearby solution is used as the update sample. However, a
drawback of this approach is that the optimization process may become
trapped in local optimum regions and fail to escape. After constructing
the surrogate models for the objective function and constraint functions,
the following optimization problem is solved, where 1 represents the num-
ber of constraint functions.

Minimize;/(X)
(2.29)
st g<0, i=L2,...,n

When the objective is a smooth and continuous function, the MP sampling
method will at least find a local optimal solution of the surrogate model.
However, the convergence rate depends on the properties of the function.

2.3.2 Maximum Improvement Probability Criterion

Maximum improvement probability criterion (MIPC) aims to find the next
sample point x that maximizes the probability of improving the current
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best observed value, y, ;.. Let Y ~ N[y(x),s*(x)] be a random variable fol-
lowing a normal distribution, and the improvement degree over y,, is
denoted as I =y, —Y(x). Therefore, the probability that the predicted
objective value is better than the current best observed value is given by:

P[Y <y | = | 2~ 20 () (2.30)

s(x)

P[ (25 )

(2.31)

Figure 2.15 provides a graphical interpretation of Eq. (2.30), along with a
Gaussian normal distribution in the vertical direction, where the mean
is (x) and the variance is s*(x). This Gaussian distribution represents the
uncertainty of the predicted result y(x). The area below the dashed line
indicates the probability of improvement over the current best value, and
the enclosed area represents the improvement probability.

@ Samples
===« Kriging

.‘ v MipC

lv{)”i(rg?: SE (.\'-2 ) }‘r_q_____

Y krg2

Yirgl -
s

Y

FIGURE 2.15 MIPC strategy.
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2.3.3 Maximum Improvement Expectation Criterion

Maximum improvement expectation criterion (MIEC) refers to the
expected improvement at an unobserved point x. Let Y ~ N[y(x),s*(x)] be
arandom variable following a normal distribution, y is the predicted value
from the surrogate model, s> is the estimated MSE. Given y and s, not
only can the probability of improvement be calculated, but the expected
improvement can also be estimated. The expected improvement calcula-
tion is shown in Eq. (2.32).

_ Fuin = ¥(x) i = Y(%)
E[I(x)]: ()/mm y(x))CD & (x) +s5¢ &(x) ,  $>0

0 s=0
(2.32)

where ®(:) and ¢(-) represent the cumulative distribution function and
the probability density function of the standard normal distribution,
respectively.

In Figure 2.16, the expected improvement can be intuitively understood
as the area below the current optimal value, which represents the average

@ Samples
Kriging

7YY MIEC

Nkrg1 5°(x1))

=

Xi

FIGURE 2.16  MIEC strategy.
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value of the integral of the probability density under the Gaussian distri-
bution function. When §*(x)=0, P[I(x)]= E[I(x)]=0.

Another classic update method is the trust-region method (TR).
Alexandrov et al. (1998) have rigorously proven that the TR method can
converge to a local optimum, regardless of the starting point, under the
condition that the gradient information of the real model at the interpola-
tion points is available. TR can also match the gradient of the objective
function using the first-order scaling method suggested by Haftka (1991)
or the second-order scaling method proposed by Eldred et al. (2004). In
general, both TR and MP belong to strategies that exploit the design space
through the use of surrogate models, often referred to as exploitation-based
infill criteria. While MP can easily miss the true global optimum when
dealing with highly nonlinear problems, TR guarantees the search for a
local optimum from any starting point, although it does not ensure find-
ing the global optimum.

To determine the global optimum, a new element, namely space explora-
tion, needs to be introduced. Pure design space exploration can essentially
be viewed as filling gaps between known design points with new samples.
The simplest approach is a sequential space sampling plan, such as Sobol
sequences or LP arrays, although these methods perform poorly when the
number of samples is small (Sobol, 1979; Statnikov & Matusov, 2012). New
sample points can also be determined by the max-min criterion. If the
residual estimate of the surrogate model is available, selecting the loca-
tion with the largest residual to add a new sample is also a viable strategy.
However, pure space exploration can sometimes be time-consuming, as
designers are typically less concerned with the overall accuracy of the sur-
rogate model and more focused on the precision at the global optimum
location.

2.4 CHAPTER SUMMARY

This chapter provides an overview of the DDO process, detailing the initial
sampling techniques, surrogate modeling methods and dynamic sampling
strategies employed in DDO. The initial sampling methods, as the founda-
tion of DDO, determine the distribution of the initial samples. Surrogate
modeling, as the key component of the process, ensures the accuracy of
the model predictions. Dynamic sampling strategies, as the core of DDO,
guarantee a thorough search of the design space.
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CHAPTER 3

Benchmark Functions
for Data-Driven
Optimization Methods

3.1 INTRODUCTION

In recent years, various optimization algorithms have rapidly developed,
addressing optimization problems that are challenging for traditional
numerical optimization methods. Benchmark function testing is one of the
most commonly used methods by researchers to assess the performance
and robustness of optimization algorithms. In the subsequent chapters of
this book, a wide range of benchmark functions is employed to validate
the accuracy and efliciency of various optimization methods. This chapter
provides a comprehensive summary and classification of these functions.
Specifically, it introduces single-objective optimization test functions
(Jamil & Yang, 2013; Surjanovic & Bingham, 2013), constrained and uncon-
strained optimization test functions (Adorio & Diliman, 2005; Akbari &
Kazerooni, 2020; Jamil & Yang, 2013; Liang et al., 2006; Liu et al., 2021;
Liu et al., 2017; Mezura-Montes & Cetina-Dominguez, 2012; Surjanovic &
Bingham, 2013), discrete optimization test functions (Dong et al., 2020; Li
etal., 2013; Miiller et al., 2013; Miiller et al., 2014; Pichitlamken et al., 2006)
and high-dimensional optimization test functions (Adorio & Diliman,
2005; Jamil & Yang, 2013; Surjanovic & Bingham, 2013).
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Besides, functions that possess multiple local optima are referred to as
multimodal functions. These functions are used to test an algorithm’s abil-
ity to escape local minima. If the exploration process of an algorithm is
poorly designed, it will fail to effectively search for the global optimum,
causing the algorithm to become trapped in local minima. For many algo-
rithms, escaping from multimodal functions with numerous local minima
represents a major challenge. Another difficulty is the search process for
plate-shaped functions, as the minimal variation in the function makes it
difficult for the algorithm to gather useful information to guide the search
process.

For any new optimization algorithm, it is essential to compare it with
other existing algorithms using a wide range of test functions to validate
its performance. If the problems are overly simplified and lack diversity,
the effectiveness of the algorithm in comparison to other methods may not
be accurately evaluated. Therefore, to assess the quality of an algorithm,
it is necessary to identify the specific problems on which it performs bet-
ter. This helps describe the types of problems the algorithm is suited for.
The results can be considered reliable only when the number of bench-
mark functions is sufficiently large and the types of problems covered are
diverse, such as unimodal, multimodal, discrete, and high-dimensional
problems. Without loss of generality, this book focuses on minimization
problems, as maximization problems can be transformed into minimiza-
tion problems by changing the sign of the objective function. The math-
ematical definitions of the test functions used in this book are provided
below.

3.2 UNCONSTRAINED OPTIMIZATION PROBLEMS
3.2.1 Unconstrained Low-Dimensional Problems

3.2.1.1 Generalized Polynomial Function
The generalized polynomial function, as shown in Figure 3.1, is defined by
the following mathematical expression:

F)=(15-x01-x)) +(225-x01-x3)) +(2625-x,(1-x))

n=2 —2<x <2, —2<x,<2
3.1

Design objective: Single objective

Function characteristics: Continuous, unimodal
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FIGURE 3.1  Generalized polynomial function.

Dimensions: 2-Dimensional
Optimal value: 0.523
3.2.1.2 Zakharov Function

The Zakharov function is shown in Figure 3.2, and its mathematical
expression is given by Eq. (3.2).

2 4

2 1 2 1 2
f(x)=2x,-2+ —Zix,- + —Zix,-
s 62

i= i=1
n=2 —-5<x, <10, -5<x,<10
Design objective: Single objective
Function characteristics: Continuous, unimodal
Dimensions: 2-Dimensional
Optimal value: 0
3.2.1.3 Beale Function

The Beale function is shown in Figure 3.3, and its mathematical expression
is given by Eq. (3.3).
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«10*

FIGURE 3.2 Zakharov function.

x10°
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FIGURE 3.3 Beale function.
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Fx)=(15—x; +x1%,)" +(2.25—x, + x,x7)* +(2.625—x; + x,x, )
n=2 —45<x, <45, —45<x,<45
(3.3)
Design objective: Single objective
Function characteristics: Continuous
Dimensions: 2-Dimensional
Optimal value: 0
3.2.1.4 Six-Hump Camel-Back Function

The six-hump camel-back function is shown in Figure 3.4, and its math-
ematical expression is given by Eq. (3.4).

1
f(x)= 4x} —2.1x) +—xF +x,%, —4x5 +4x)
3 (3.4)

n=2 —-2<x;<2, i=1,2

Design objective: Single objective

Function characteristics: Continuous

-2
-1
E —— / 0
—
2 45 =) -0.57 07———7-_.__7____7____ 1

0.5 1 15 2 == 2

FIGURE 3.4  Six-hump camel-back function.
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Dimensions: 2-Dimensional
Optimal value: —1.0320

3.2.1.5 Branin Function
The mathematical expression of the Branin function is given as follows:

f(x)=(x, —5.1(x;/21)* +5x, /T —6)> +10(1—1/8m)cos(x, ) +10
n=2 —5<x;<10, i=1 (3.5)
0<x; <15, i=2
Design objective: Single objective
Function characteristics: Continuous
Dimensions: 2-Dimensional
Optimal value: 0.397
3.2.1.6 Leon Function

The Leon function is shown in Figure 3.5, and its mathematical expression
is given by Eq. (3.6).

%107
12 -

FIGURE 3.5 Leon function.
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f(x)=100(x; — x7)* + (x; —1)°

(3.6)
n=2 —-10<x; <10, i=1,2
Design objective: Single objective
Function characteristics: Continuous, unimodal
Dimensions: 2-Dimensional
Optimal value: 0
3.2.1.7 Griewank Function
The mathematical expression is given as follows:
2 xz 2
f(x)= 2 ! +Hcos(x1/\ﬁ)+1
ed 700 AL (3.7)
i=1 i=1 .

n=2 —100<x; <100, i=1,2
Design objective: Single objective
Function characteristics: Continuous
Dimensions: 2-Dimensional
Optimal value: 0
3.2.1.8 Ackley Function

The Ackley function is shown in Figure 3.6, and its mathematical expres-
sion is given by Eq. (3.8).

—é %zn*‘xlz —%icos(an,‘)
f(x)=20+e—20e =g el

n=2 -30<x;<30, i=1,...,n

(3.8)

Design objective: Single objective

Function characteristics: Continuous, multimodal
Dimensions: 2-Dimensional

Optimal value: 0

Description: The Ackley function features an almost flat outer region
with alarge hole at its center. This function possesses numerous local
minima.
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FIGURE 3.6  Ackley function.

3.2.1.9 Griewank Function
The Griewank function (GW/GW2/GW10) is shown in Figure 3.7, and its
mathematical expression is given by Eq. (3.9).

f(x)= i 4)?00 - lﬁ[cos(\xf;)+l

n=2 —-10<x; <10, i=1,...,n (3.9

n=10 —-600<x; <600, i=1,...,n
Design objective: Single objective
Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional
version, and this book uses both two-dimensional and ten-dimen-
sional versions)

Optimal value: 0

Description: The GW function possesses several local minima.
Although there is only one global optimum, the nearby peaks are
extremely close, posing a significant challenge to the algorithm’s
ability to escape from local minima.
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FIGURE 3.7 Griewank function.

3.2.1.10 Peaks Function
The Peaks function is shown in Figure 3.8, and its mathematical expres-
sion is given by Eq. (3.10).

2 2

Flx)=3(1—x,)Pe 0 _ 10(};1 -xi — x5 )e"‘lz_"z - %e‘("”l)z"‘z

n=2 —-3<x,<3, —4<x,<4 (3.10)

Design objective: Single objective
Function characteristics: Continuous, multimodal
Dimensions: 2-Dimensional
Optimal value: —6.551
3.2.1.11 Styblinski-Tang Function

The graph of the Styblinski-Tang function (ST/ST5) is shown in Figure 3.9,
and its mathematical expression is given in Eq. (3.11).
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FIGURE 3.8 Peaks function.

5 5

FIGURE 3.9  Styblinski-Tang function.

1N e
f(x)=22(x,~ —16x; +5x,~) G

n=2 —-5<x;<5, i=1,...,n
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Design objective: Single objective
Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional
version, and this book uses both two-dimensional and five-dimen-
sional versions)

Optimal value: —78.332 (two-dimensional); —195.831 (five-dimensional)
3.2.1.12 Alpine Function

The graph of the Alpine function is shown in Figure 3.10, and its math-
ematical expression is given in Eq. (3.12).

f@ =] [ sintx)

n=2 0<x,<10, 0<x,<10

(3.12)

Design objective: Single objective

Function characteristics: Continuous, multimodal

FIGURE 3.10  Alpine function.
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Dimensions: 2-Dimensional
Optimal value: —6.130
3.2.1.13 F1 Function

The graph of the F1 function is shown in Figure 3.11, and its mathematical
expression is given in Eq. (3.13).

f(x)=x{ +x3 —cos(18x,)—(18x,)
(3.13)
n=2 —1<x <1, —1<x,<1
Design objective: Single objective
Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: -2
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FIGURE 3.11 F1 function.
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3.2.1.14 Himmelblau Function
The graph of the Himmelblau function is shown in Figure 3.12, and its
mathematical expression is given in Eq. (3.14).

Fx)=3(1—x, e 0 10(% —xi — X )e_"lz_x% - %e"(”“’z—’cg

n=2 —3<x <3, —4<x,<4
(3.14)

Design objective: Single objective

Function characteristics: Continuous, multimodal
Dimensions: 2-Dimensional

Optimal value: 0

Description: The function has four extrema, all of which are global
optimal points.

<10 6

FIGURE 3.12 Himmelblau function.
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3.2.1.15 Shubert Function
The graph of the Shubert function is shown in Figure 3.13, and its math-
ematical expression is given in Eq. (3.15).

(x)= cos((i+1)x, +1) icos((i+1)x, +1)
f(x ;zcosz X, +i thcosz X, +i 615

n=2 —2<x <2, —2<x,<2

Design objective: Single objective
Function characteristics: Continuous, multimodal
Dimensions: 2-Dimensional
Optimal value: —186.7309
3.2.1.16 Banana Function

The graph of the Banana function (BA/Rosenbrock) is shown in Figure 3.14,
and its mathematical expression is given in Eq. (3.16).

= 100(x;4; — ,~22 i—12
f(x) Z[ (i1 =270+ (1) ] -

n=2 —2<x;<2, i=1,...,n

300

200

100

-100

-200 — -2
-2 -1 0

FIGURE 3.13  Shubert function.
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-2

FIGURE 3.14 Banana function.
Design objective: Single objective
Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional
version, and this book uses its two-dimensional version)

Optimal value: 0
3.2.1.17 Sasena Function
The graph of the Sasena function is shown in Figure 3.15, and its math-
ematical expression is given in Eq. (3.17).
F(x)=240.01(x, —x7)* +(1—x,)* +2(2— x,)* +75sin(0.5x, ) sin(0.7x,x,)

n=2 0<x;<5 0<x,<5
(3.17)

Design objective: Single objective
Function characteristics: Continuous
Dimensions: 2-Dimensional

Optimal value: —1.457
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FIGURE 3.15 Sasena function.

3.2.1.18 Goldstein—Price Function
The Goldstein-Price function is shown in Figure 3.16, and its mathemati-
cal expression is given in Eq. (3.18).

F)=[1+(x +x, +1)° (19— 14, +3x] — 14, +6x,%, +3%3) |

X[ 30+ (2x, = 3x,)” (18— 32, +12x7 +48x, — 36x,x, +27x7 |

n=2 —-2<x;<2, -2<x,<2
(3.18)

Design objective: Single objective
Function characteristics: Continuous, multimodal
Dimensions: 2-Dimensional
Optimal value: 3
3.2.1.19 Rastrigin Function

The Rastrigin function is shown in Figure 3.17, and its mathematical
expression is given in Eq. (3.19).



Benchmark Functions for Data-Driven Optimization Methods = 55

%10°
12

10

] -2

FIGURE 3.16 Goldstein-Price function.

FIGURE 3.17 Rastrigin function.
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2

=20 2 —10cos(2mx;
f(x) +;(x cos(2mx )) 6.19)

n=2 =512<x, <512, -512<x,<5.12
Design objective: Single objective
Function characteristics: Continuous, multimodal
Dimensions: 2-Dimensional
Optimal value: 0
3.2.1.20 Alpinel Function

The Alpinel function is shown in Figure 3.18, and its mathematical expres-
sion is given in Eq. (3.20).

(x)= i sin(x; ) +0.1x;
f(x g‘x sin(x xil 620

n=2 —-10<x, <10, -10<x,<10

FIGURE 3.18  Alpinel function.
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Design objective: Single objective
Function characteristics: Continuous, multimodal
Dimensions: 2-Dimensional
Optimal value: 0
3.2.1.21 Alpine2 Function

The Alpine2 function is shown in Figure 3.19, and its mathematical expres-
sion is given in Eq. (3.21).

f) =] i sintx)

n=2 0<x <10, 0<x,<10

(3.21)

Design objective: Single objective
Function characteristics: Continuous, multimodal
Dimensions: 2-Dimensional

Optimal value: —6.13

FIGURE 3.19  Alpine2 function.
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3.2.1.22 Bird Function
The Bird function is shown in Figure 3.20, and its mathematical expres-
sion is given in Eq. (3.22).

f(x)=sin(x, e "> P 4 cos(xy )e D () — x, )2
(3.22)
n=2 —2n<x;<2W, —2n<x,<2W
Design objective: Single objective
Function characteristics: Continuous, multimodal

Dimensions: 2-Dimensional

Optimal value: —106.76

3.2.1.23 Easom Function

The Easom function is shown in Figure 3.21, and its mathematical expres-
sion is given in Eq. (3.23).

(=G ~(x2-m)%)

f(x)=—cos(x,)cos(x; e (3.23)

n=2 —-10<x, <10, —-10<x, <10

200 -

150 -

FIGURE 3.20 Bird function.
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-0.4 .
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-0.8

FIGURE 3.21 Easom function.
Design objective: Single objective
Function characteristics: Continuous, unimodal
Dimensions: 2-Dimensional
Optimal value: —1
3.2.1.24 Schaffer?2 Function
The Schaffer2 function is shown in Figure 3.22, and its mathematical
expression is given in Eq. (3.24).
sin®(x{ —x3)—0.5

f(x)=0.5+ P
[1+0.001(x7 +x3)] (3.24)

n=2 —2<x <2, —2<x,<2

Design objective: Single objective
Function characteristics: Continuous, multimodal
Dimensions: 2-Dimensional

Optimal value: 0
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FIGURE 3.22 Schaffer2 function.

3.2.1.25 Levy Function
The Levy function is shown in Figure 3.23, and its mathematical expres-

sion is given in Eq. (3.25).

n—1

f@)=sin(my)+ Y [(7 =11 +10sin(my, +1))]

i=1

x,-—l

+(y, —1)*(1+10sin*(2my,)) y;, =1+ (3.25)

n=4 —-10<x;<10, i=1,...,n

Design objective: Single objective
Function characteristics: Continuous, multimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional
version, and this book uses its four-dimensional version)

Optimal value: 0
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FIGURE 3.23 Levy function.

3.2.1.26 Dixon—Price Function
The Dixon-Price function is shown in Figure 3.24, and its mathematical
expression is given in Eq. (3.26).

n

= 1—12 '21'2—,'—12
flx)=(x )+;1( X —xi) )

n=4 —-10<x; <10, i=1,...,n

Design objective: Single objective
Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (the figure displays its two-dimensional
version, and this book uses its four-dimensional version)

Optimal value: 0

3.2.1.27 Shekel Function
The mathematical expression is given in Eq. (3.27).
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FIGURE 3.24 Dixon-Price function.

fw=-3a+ Z(xf a)

i=1

(4186325867
41867951236

4186323867

41867931236

=[0.10.20.20.40.4 0.6 0.3 0.7 0.5 0.5]

0<x;<10, i=1,2,3,4

Design objective: Single objective
Function characteristics: Continuous, multimodal
Dimensions: 4-Dimensional

Optimal value: —10.1532

(3.27)
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3.2.1.28 Hartman6 Function
The mathematical expression is given in Eq. (3.28).

fx)= —iai exp —iBij(xj -Q;)
i=1 =1

(10 3 17 35 17 8

. 005 10 17 01 8 14
a=[1,12,3,32] , B=
3 3517 10 17 8

17 8 005 10 0.1 14| (3.28)

1,312 1,696 5,569 124 8,283 5,886 |

2329 4135 8307 3,736 1,004 9,991
Q=10
2,348 1451 3,522 2,883 3,047 6,650

| 4,047 8,828 8,732 5,743 1,091 381

n=6 0<x;<1, i=1,...,n

Design objective: Single objective
Function characteristics: Continuous
Dimensions: 6-Dimensional
Optimal value: —3.322
3.2.2 Unconstrained High-Dimensional Problems

3.2.2.1 Schwefel3 Function

The Schwefel3 function is shown in Figure 3.25, and its mathematical
expression is given in Eq. (3.29).

(x)= ) (x; =1 +(x; —x7)
/ Z; (3.29)

n=8 0<x<5, i=1,..,n

Design objective: Single objective
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1000 -
800 ~
600
400

200

FIGURE 3.25 Schwefel3 function.
Function characteristics: Continuous, unimodal
Dimensions: n-Dimensional (this book uses its eight-dimensional version)
Optimal value: 0
3.2.2.2 Convex Function
The mathematical expression is given in Eq. (3.30).
min f(x)=3.1x{ +7.6x3 +6.9x3 +0.004x5 +19x3 +3x5 +x7 +4x;
st. x;€{-10,9,...,9,10}, i=1,...,8
(3.30)
Design objective: Single objective
Function characteristics: Discrete
Dimensions: 8-Dimensional
3.2.2.3 Nvs09 Function
The mathematical expression is given in Eq. (3.31).
min f(x)=3.1x{ +7.6x3 +6.9x3 +0.004x; +19x2 +3x¢ + x5 +4x3

st. x;€{-10,9,...,9,10}, i=1,...,8
(3.31)
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Design objective: Single objective
Function characteristics: Discrete
Dimensions: 10-Dimensional

3.2.2.4 AlteredNvs09 Function
The mathematical expression is given in Eq. (3.32).

min f(x)= Z(log(xi -2)* +log(10 - x;)* )_ [Hxi ] (3.32)

i=1 i=1

st. x;€{3,4,...,99}, i=1,...,10
Design objective: Single objective
Function characteristics: Discrete
Dimensions: 10-Dimensional

3.2.2.5 Paviani Function
The mathematical expression is given in Eq. (3.33).

flx)= Z(log(xi ~2)* +log(10~x; f)‘{Hx ’J (3.33)

i=1 i=1
n=10 2.1<x;<99, i=1,...,n
Design objective: Single objective
Function characteristics: Discrete
Dimensions: 10-Dimensional
Optimal value: —45.8
3.2.2.6 Trid Function

The Trid function (Trid/Trid6/Trid10) is shown in Figure 3.26, and its
mathematical expression is given in Eq. (3.34).
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FIGURE 3.26 Trid function.

f(x)= i(xi —1)2 _ixixi—l

i=2
n=10 —n*<x;<n?, i=1,...n (3.34)

2 2 .
n=6 —n"<x;<n°, i=1,...,n

Design objective: Single objective
Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (this book uses its six- and ten-dimensional
versions)

Optimal value: —50 (six-dimensional); —210 (ten-dimensional)

3.2.2.7 RastriginOT1 Function
The mathematical expression is given in Eq. (3.35).

min f(x)= ) x/—cos(2mx;)
; (3.35)

st. x€{-1,0,1,2,3}, i=1,..,12
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Design objective: Single objective
Function characteristics: Discrete
Dimensions: 12-Dimensional

3.2.2.8 Rastrigin02 Function
The mathematical expression is given in Eq. (3.36).

min f(x)= Y x? —cos(2mx;)
/ Z‘ (3.36)

st. x;€{-10,-9,...,29,30}, i=1,...,12
Design objective: Single objective
Function characteristics: Discrete

Dimensions: 12-Dimensional

3.2.2.9 Sum Squares Function
The sum squares function is shown in Figure 3.27, and its mathematical
expression is given in Eq. (3.37).

80 -,

FIGURE 3.27 Sum squares function.
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flx)= zn:ix?

n=15 —-5<x;<5, i=1,...,n (3.37)

n=20 —-10<x;<10, i=1,...,n

Design objective: Single objective
Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (this book uses its 15- and 20-dimensional
versions)

Optimal value: 0
3.2.2.10 Sphere Function

The sphere function is shown in Figure 3.28, and its mathematical expres-
sion is given in Eq. (3.38).

FIGURE 3.28 Sphere function.
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f(x)=2x?

n=20 —-5.12<x;<5.12,
n=15 —-512<x;<5.12,
n=10 -5.12<x;<5.12,

Design objective: Single objective

i=1,...,n (3.38)
i=1,...,n
i=1,...,n

Function characteristics: Continuous, unimodal

Dimensions: n-Dimensional (this book uses its 10-, 15- and 20-

dimensional versions)

Optimal value: 0

3.2.2.11 F16 Function

The mathematical expression is given in Eq. (3.39).

16 16

=3

i=1 j=1
[1001001100000001]
0110001001000000
0010001011000100

0001001000100010

Aij(row1-8) = Aij(row9-16)

0000110001010001
0000010100000010
0000001000101000

[0000000101000010]
n=16 —-1<x;<1,
Design objective: Single objective

Function characteristics: Continuous

i=1,..

a,-j(x,-2 +x; +1)(x]2 +x;+1)

[0000000010010001 |
0000000001000100
0000000000101000
0000000000010100
0000000000001100
0000000000000100
0000000000000010

[0000000000000001 |

N

(3.39)
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Dimensions: 16-Dimensional

Optimal value: 25.875

3.3 CONSTRAINED OPTIMIZATION PROBLEMS
3.3.1 Constrained Low-Dimensional Problems

3.3.1.1 g06
The mathematical expression of g06 is given in Eq. (3.40).

f(x)=(x, =10)> +(x, — 20)°
subject :
g1(x)=—(x; =5)* = (x, —5)*+100<0 (3.40)
g2(x)=(x; =5)* +(x, —5)* —82.81<0
n=2 13<x;<100(i=1)
0<x; <£100(i=2)
Design objective: Single objective
Function characteristics: Continuous or discrete
Dimensions: 2-Dimensional
Optimal value: —6,961.8138 (when the functions are continuous)
Active constraints: g, g,
Description: In the discrete case, the range of values for design vari-

ables is x, € {13, 14, ..., 100}, x, € {0, 1, 2, ..., 100}.

3.3.1.2 g08
The mathematical expression of g08 (G8) is given in Eq. (3.41).

sin’ (27x; ) sin(2mx;, )
f(x) == 3
x7 (% +x,)
subject:
gi(x)=x7—x,+1<0 (3.41)

g (x)=1—2x,+(x, —4)* <0
n=2 0<x <10(i=1,2)
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Design objective: Single objective
Function characteristics: Continuous
Dimensions: 2-Dimensional

Optimal value: —0.0958

3.3.1.3 g24
The mathematical expression of g24 is given in Eq. (3.42).
f (x)=—x;—x,
subject:
x)=-2x +8x; —8x{ +x, —2<0
F4!1 ( ) 1 1 1 2 (342)
g2 (x)=—4x] +32x7 —88x{ +96x, +x, —36<0
n=2 0<x;<3(i=1)
0<x; <4(i=2)
Design objective: Single objective
Function characteristics: Continuous
Dimensions: 2-Dimensional
Optimal value: —5.5080
3.3.1.4 Gomez
The mathematical expression of Gomez is given in Eq. (3.43).
1
f(x)= (4 —2.1x + gxf )xf +x120, + (—4+4x2)x3
subject:
—sin(47x,; )+ 2sin*(2mx,) <0 (3.43)

n=2 —05<x <05(i=1)

—1<x,<0(i=2)

Design objective: Single objective

Function characteristics: Continuous
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Dimensions: 2-Dimensional

Optimal value: —0.9711

3.3.1.5 Sasena
The mathematical expression of Sasena is given in Eq. (3.44).

F(x)=240.01(x, —x7)* +(1—x,)* +2(2—x,)* +7sin(0.5x; )sin(0.7x,x,)

subject:

—sin(x,;

—Xz—TC/S)SO

n=2 0<x;<5(i=1,2)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: —1.1743

3.3.1.6 Brianin
The mathematical expression of Brianin is given in Eq. (3.45).

f(x)—(x —S—'Ix2+§x —6)2+10(1—1)cos(x )+10
2 47'[2 1 - 1 87-5 1
subject:

5.1 5 1
a=lib=—-;c=——;d=6;h=10; ff =—

4’ T i 8w

a(x, —bxi —cx; —d)+h(1— ff)cosx; —5+h<0
n=2 —-5<x;<10(i=1)
0<x, <15(i=2)

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 2-Dimensional

Optimal value: 0.3979

(3.44)

(3.45)
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3.3.1.7 gI2
The mathematical expression of gl2 is given in Eq. (3.46).
f(x)=~(100~(x, =5) = (x, =5)* = (x; = 5)*)/100
subject :
(3.46)
(%)= (x1 = p)* +(x2 —q)* +(x; =)’ —0.0625<0

n=3 0<x;<10(i=12,3); p,q,r=12,...,9

Design objective: Single objective
Function characteristics: Continuous
Dimensions: 3-Dimensional
Optimal value: -1

3.3.1.8 g04
The mathematical expression of g04 (g04/G4/Him) is given in Eq. (3.47).
f(x)=5.3578547x2 +0.8356891x, x5 +37.293239x, —40792.141
subject:
g1(x)=85.334407 +0.0056858x, x5 +0.0006262x, x, —0.0022053x3x5 — 92 <0
2 (x) =—-85.334407 —0.0056858x,x5 — 0.0006262x,x, +0.0022053x3x5 <0
g5(%)=80.51249+0.0071317:x,X;5 +0.0029955x, x, +0.0021813x> —110 <0
g4(x)=—-80.51249—0.0071317x,x5 —0.0029955x, x, — 0.0021813x> + 90 < 0
gs (x) =9.300961+0.0047026x3x5 +0.0012547 x, x5 + 0.0019085x3x, —25<0
g6(x)=-9.300961—0.0047026x3x5 —0.0012547 x, x5 — 0.0019085x5x4 + 20 < 0
n=>5 78<x;<102(i=1)

33<x, <45(i=2)

27 <x; £45(i=3,4,5)

(3.47)
Design objective: Single objective

Function characteristics: Continuous or discrete
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Dimensions: 5-Dimensional
Optimal value: —30,665.5386 (when the functions are continuous)

Active constraints: g, g

3.3.1.9 Ex1221
The mathematical expression of Ex1221 is given in Eq. (3.48).
min f(x)=2x; +3x, +1.5x; + 2x, —0.5x5
st.  x>+x3<1.25, 1.333x,+x,<3
X515, <3, — x5 — x4 +%x5 <O (3-48)
X1 +x3<1.6,
x1,%2,%3 €{0,1,...,10}  x4,x5 €{0,1}

Design objective: Single objective
Function characteristics: Discrete
Dimensions: 5-Dimensional
3.3.1.10 Altered ex1221
The mathematical expression of Altered ex1221 is given in Eq. (3.49).
min f(x)=-2x; —3x, —1.5x; —2x4 +0.5x;

st.  x1+x3<1.6, 1.333x,+x,<3
(3.49)
—X3—X4+x5 <0

x1,%2%3 €{0,1,...,10} x4,x5 €{0,1}
Design objective: Single objective

Function characteristics: Discrete

Dimensions: 5-Dimensional

3.3.1.11 g6
The mathematical expression of g16 is given in Eq. (3.50).
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£(x)=0.000117 y;, +0.1365+0.00002358 y;5 +0.000001502 ;5 +0.0321 3,
+0.004323 5 +0.0001 % +37.48 7% —0.0000005843y,,
Ci6 C12
subject:

g(x)= %ys y4so,g2(x)=x3—1.5x2so,g3(x)=3,496£—12<0
0.72 C12

62,212

g4(x)=110.6+y, — <0, g5s(x)=213.1-y, <0, gs(x)= y, —405.23<0,

C17
g7(x)=17.505—y, 0, gs(x)= y, —1,053.6667 <0, go(x)=11.275— y;, <0,
g10(%)=y5—35.03<0,g1,(x)=214.228— y, <0, g1, (x)= y, — 665.585 <0,
gis(x
g16(x)=y6—265.916<0, g, (x)=1.612—y, <0, g15(x

(

g9 x) 0.146 - Vs <0, gzo( ) yg—0222S0,g21(x):107.99—y9 <0,

)=
)=7.458— y5 <0, g14(x)= y5s —584.463<0, g15(x)=0.961— y, <0,
)=y, —7.046 <0,

g22(%)=y9—273.366 <0, g,3(x)=922.693— y,, <0,

£24(%)=y10—-1,286.105<0, g,5(x)=926.832— y,, <0,
26(x)=y11 —1,444.046 <0, g, (x)=18.766— y1, <0,

Z2s(x)= y1, —537.141<0, g50(x)=1,072.163— y;5 <0,

Z30(x)=y15—3,247.039<0, g3, (x)=8,961.448— y,, <0,  (3.50)

g32(x)= y14 —26,844.086 <0, g33(x)=0.063— y;5 <0,

g34(x)= 15 —0.386 <0, g5(x)=71,084.33— y;5 <0,

g36 (%)= y16 — 140,000 <0, g3, (x)=2,802,713— y;; <0,

Z3s(x)=y1; —12,146,108 <0,
Design objective: Single objective
Function characteristics: Continuous

Dimensions: 5-Dimensional

Optimal value: —1.9051
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3.3.1.12 g09
The mathematical expression of g09 (G9) is given in Eq. (3.51).
F(x)=(x1 =10)? +5(x, =12)* + x5 +3(x, —11)* +10x5 +7x¢
+x7 —4xex7 —10x¢ — 8x;
subject:

&1 (x)=—=127+2x7 +3x; +x3 +4x; +5x5 <0

(3.51)
g2(x)=-282+7x, +3x, +10x3 + x4 —5x5 <0
g3(x)=—196+23x, + x5 +6x; —8x, <0

ga(%)=4x] + x5 —3x,%, +2x3 +5x, —11x; <0

n=7 —-10<x;<10(i=1,...,7)

Design objective: Single objective

Function characteristics: Continuous or discrete
Dimensions: 7-Dimensional

Optimal value: 680.6300 (when the functions are continuous)

Description: In the discrete case, the range of values for design vari-
ables is x, € {-10, -9, ..., 9, 10}, i=1, ..., 7.

3.3.2 Constrained High-Dimensional Problems
3.3.2.1 glo
The mathematical expression of gl0 is given in Eq. (3.52).
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f(x)=x1 +Xx, + X3

£1(x)=—1+0.0025(x, +x4) <0

(
£2(x)==1+0.0025(x5 + x; — x4) <0
g3(%)==1+0.01(x5 — x5) <0
g4 (x)=—2xx5 +833.33252x, +100x, —83,333.333<0  (3.52)
gs( =—X,x; +1,250x5 + x,x, —1,250x, <0
(

)
x)
g6(x)=—x3x5 +1,250,000 + x3x5 — 2,500x5 <0
n=8 100<x; <10,000(i=1)

1,000 < x; <10,000(i = 2,3)

10<x; £1,000(i =4,...,8)

Design objective: Single objective
Function characteristics: Continuous
Dimensions: 8-Dimensional
Optimal value: 7,049.248

3.3.2.2 gl8
The mathematical expression of g18 is given in Eq. (3.53).

£(x)=—0.5(x1%4 — X5%3 + X3X9 — X35 X9 + X5Xg — X6 X7)
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(x)=x3+x; -1<0, g,(x)=x5-1<0, gs5(x)=x3+x¢—1<0,

oq

x)=xf +(x—x0)" =150, gs(x)=(x1—x5 ) +(x; —x5)" =10,

oQ

(
a(x)=x
ge(x)=(x1—x )+(x2 )—1<0 g7 (x)=(x;— x5) +(x4—x6)2—1S0,
gs(x)=(x3—x, ) +(x5 —x5)" =150, go(x)=x%+(x5—x,)° —1<0,
g10(x)= 205 — x4 <0, g1 (x)=—x3% <0, g1,(x)=2x5%9 <0,
g13(x)=x62; — x5x4 0.

n=9 —-10<x; <10(i=1,...,8)

0<x; <20(i=9)
(3.53)

Design objective: Single objective
Function characteristics: Continuous
Dimensions: 9-Dimensional

Optimal value: —0.866

3.3.2.3 g07

The mathematical expression of g07 is given in Eq. (3.54).
F(x)=x+x7 +x1%, —14x; —16x, + (x5 —10)* + 4(x, —5)* + (x5 — 3)°
+2(x6 —1)* +5x7 +7(x5 —11)* +2(x9 —10)* + (0 = 7)* +45

subject:
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g5 (x)=5x, +8x, +(x3 —6)* —2x, —40<0
g6(x)=x7 +2(x, —2)% = 2%, +14x5 —6x <O
g7(x)=0.5(x; —8)* +2(x, —4)* +3x2 — x4 —30<0 (3.54)
gs(x)==3x, +6x, +12(xg —8)* = 7x30 <0
n=10 —-10<x; <10(i=1,...,n)
Design objective: Single objective
Function characteristics: Continuous

Dimensions: 10-Dimensional

Optimal value: 24.3062

3.3.2.4 go1
The mathematical expression of g01 (G1/Glm) is given in Eq. (3.55).

4 4 13
fR)=53 5 =53 5= D
i=1 i=1 i=5

subject:

gl(x)=2x1+2x2 + X190 +X11—10S0

22(%)=2x, +2x; + %0 + X%, —10<0
3(x)=2x, +2x;+x;, +x,, —10<0
g4(x)=-8x,+x,0 <0
gs(x)=-8x,+x,, <0 (3.55)
g6(x)=—8x;+x,, <0
g7(x)==2x, — x5+ %0 <0
gs(x)==2x5—x; +x,, <0
go(x)==2x5 — x5 +x1, <0

n=13 0<x <1(i=1,..,9)
0<x, <100(i=10,11,12)

0<x, <1(i=13)
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Design objective: Single objective
Function characteristics: Continuous or discrete
Dimensions: 13-Dimensional

Optimal value: —15 (when the functions are continuous)

Description: In the discrete case, the range of values for design variables is
x,€{0,1},i=1,...,9,13,and x, € {0, 1, ..., 100}, i=10, 11, 12. When x; € {0,
L,...,100},i=1, ..., 10, 13, the corresponding problem is denoted as G1m.

3.3.2.5 gl9
The mathematical expression of g19 is given in Eq. (3.56), and the param-
eters of g19 are given in Table 3.1.

5 5 5 10
3
f(x)= E E Cijx(10+i)x(10+j)+2§ dix(o+j) — E bix;
j=1 i=1

j=1 =1

subject: (3.56)

5 10

gj (x): _22Cijx(10+i) —3de(210+j) —ej +2al-jx,- <0 j: 1,...,5

i=1 i=1
where:
b=[-40,-2,-0.25,—4,—4,—1,-40,-60,5,1]
n=15 0<x; <10(i=1,...,15)

TABLE 3.1  Parameters for g19

j 1 2 3 4 5
€ -15 =27 -36 -18 =12
Cyj 30 =20 -10 32 -10
Coj =20 39 -6 =31 32
C3; -10 -6 10 -6 -10
Cyj 32 =31 -6 39 =20
Cs; -10 32 -10 =20 30
d; 4 8 10 6 2
aj; -16 2 0

ay 0 -2 0.4

as; =35 0 2

ay -2 0 —4 -1
as; -9 -2 1 -2.8
ag; 2 0 —4 0 0
az; -1 -1 -1 -1 -1
ag; -1 -2 -3 -2 -1
dg; 1 2 3 4 5

ay 1 2 1 1
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Design objective: Single objective
Function characteristics: Continuous
Dimensions: 15-Dimensional

Optimal value: 32.6555

3.3.2.6 Hmittelman
The mathematical expression of Hmittelman is given in Eq. (3.57).

min f(x)=10y, + 7y, + y; +12y, +8ys + 3y + y; +5y5 + 3y

st. 3 =12y, =8y3+ Ys =7y +2y,0 <2,
Y2 —10y3=5ys + ys+7y; + ys <—1,
SY1=3Y: = Y3 —2Ys+ Y0 <1,
—4y;3=2Y4—5ys+y; —9ys =2y <3,
9y, =12y, —7ys +6ys +2y5 =15y + 3y <7,
50, =8y +2y; =7y, —y¥s—5y; —10yy <1,

Y1 = Xs5X7X9X10X14X15X16 5 Y6 = X6X7X9X14X16>
Vo2 = X1X2X3X4X8X115 Y7 = X9X10X14X16 >
V3 = X3X4XeX7X3g, Vs = X5X10X14X15X16 >
Y4 = X3X4X8X115 Yo = X1X2X11X12,5

V5 = X6X7X8X125 Vio = X13X14X15X16-
x;€{0,1}, i=L...16

Design objective: Single objective
Function characteristics: Discrete

Dimensions: 16-Dimensional

3.3.2.7 g02
The mathematical expression of g02 is given in Eq. (3.58).

o Ztilcos4 (x;)— ZH ;COSZ (x;)
o) | = -
A }Z;ix,»z

m 81

(3.57)
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subject:

a(x)= 0.75—Hxi <0,
i=1

(3.58)

n

gz(x)=2xi -0.75 n<0

i=1

n=20 0<x; <10(i=1,...,n)
Design objective: Single objective
Function characteristics: Continuous
Dimensions: 20-Dimensional

Optimal value: —0.8036

3.4 ENGINEERING APPLICATION CASES
3.4.1 Tension/Compression Spring Design (TSD)

The design of tension/compression springs (TSD), as shown in Figure 3.29,
aims to minimize the spring’s weight while being constrained by minimum
deflection, shear force, frequency, outer diameter, and lateral constraints.

min f(x)=x7x,(x3 +2)

3
X5X3
s.t. x)=1-——7"—"7"—<0,
&%) 71,785x"
4x3 - 1
§2(x)= = 3x1x2 + ;—1=0,
12,5661 (X, —x;)  5,108x; (3.59)
140.45
g5(x)=1-—""<0,
X3X)
X1+ X,
x)="1T*2 1<,
g(x)="¢

0.05<x; <25 025<x,<13; 2=<x;<15

e i
1 7 e
R 1

FIGURE 3.29 TSD.
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Design objective: Single objective
Function characteristics: Continuous
Dimensions: 3-Dimensional

Optimal value: 0.01267

3.4.2 Welded Beam Design (WBD)

The welded beam design (WBD/WB4), as shown in Figure 3.30, aims to
minimize design cost while being constrained by shear force, bending
stress within the beam, buckling load on the bar, lateral constraints, and
deflection at the end of the beam.

min f(x)=1.10471x7x, +0.0481 1x3x, (14 + x, )

st. g1(x)=T(X) = Tpax <0,
£2(x)=0(x) = O pmax <0,
gs(x)=x1 —x4 <0,

24(x)=0.10471x7 +0.04811x;x, (14 +x,)—5<0,
g5(x)=0.125—x; <0,

26(x)=06(x) = Opmax <0,

g7(x)=P—-P.(x)<0,

FIGURE 3.30 WBD.
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where

P 7= MR
\/Exlxz ’ J ’

2 2
sz(uxzz), R x+(x+X) o(x)=SPL

2 >
4 2 X4X,

_4Pr x5 x+x)
o(x)= Exx, > ]—Z{ﬁxlxz[lz +( 5 > (3.60)

2.6
R(X):4.013E\/x3x4/36 |- % E G=12x10° psi,
2 4G p

L 2L

T(x) =, [(T') + 207" 2+ (17, 1=
(x) \/( ) or @)

P=6001b, L=14in, &ny =025in, E=30x10° psi,
Tmax = 13,600 psi, O e = 30,000 psi.
01<x,x,<2; 0.1<x,,x;<10

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 4-Dimensional

Optimal value: 1.7249

3.4.3 Pressure Vessel Design (PVD)

The pressure vessel design (PVD), as shown in Figure 3.31, aims to mini-
mize the design cost of a cylindrical vessel, including material cost,

T}x i L i -{s

FIGURE 3.31 PVD.
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forming cost, and welding cost. The four design variables are the thickness
of the pressure vessel, the thickness of the head, the internal radius of the
vessel, and the length of the vessel.

min f(x)=0.6224x,x3x, +1.7781x,x3 +3.1661x x, +19.84x7 x5

st. g(x)=-x+0.0193x; <0,
£2(x)=—x,+0.00954x; <0,

4 (3.61)
g3(x)=—Tx3x, — gnxg’ +1,296,000<0,

ga(x)=x,—-240<0.

1x0.0625<x;,x, £99%0.0625; 10<x;,x, <200

Design objective: Single objective
Function characteristics: Continuous
Dimensions: 4-Dimensional
Optimal value: 5,885.33

3.4.4 Speed Reducer Design (SRD/SR7)

The speed reducer design (SRD/SR7) aims to minimize the total weight
of the reducer while being subject to 11 constraints, including limits on
the bending stress of gear teeth, surface stress, and the lateral deflection
of the shaft.

min f(x) =0.7854x,x5(3.3333x3 +14.9334x; — 43.0934) — 1.508x, (x5 + x7)

+7.4777(x2 + x3)+0.7854(x,x2 + x5%2)

12
2 (745x5 /(x,%3))* +157.5%10°
st gi(x)= ZZ—ISO,g(,(x):[ 5/ (s . J ~1<0,
1X5 X5 85x7
397.5 XX 5x
$(x)=—"5"5-1<0, g;(x)="2-1<0, gg(x)="2-1<0,
X1X5 X5 40 X
1.93x; x 1.5x4+1.9
g3(x)= 1120, go(x)=-—""--1<0, gjo(x)="""""-1<0,
X2X3X, 12x, X4
1.93x3 1.1x,+1.9
ga(x)= > —1<0, g, (x)=—"""—--1<0,

X2X3X, X5
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[(745x,/(x,x:)) +169x10°
<0

X)= -1<50,

26<x <36; 07<x,<0.8; 17<x3<28; 73<x,, x5<8.3; (3.62)
29<x4<39; 50<x;<5.5.

Design objective: Single objective

Function characteristics: Continuous

Dimensions: 7-Dimensional

Optimal value: 2,994.4711

3.4.5 Stepped Cantilever Beam Design (SCBD)

The stepped cantilever beam design (SCBD), as shown in Figure 3.32, aims
to minimize the volume of a five-step cantilever beam with a total length
of L=500 cm. The material has an elastic modulus E of 200 GPa, and a con-
centrated load of 50,000 N is applied at the free end of the beam. There are
11 constraints in total, including 5 bending stress constraints, 1 displace-
ment constraint, and 5 length-to-width ratio constraints.

minV = D(bill, + b,h,1, + bshsl; + byhyly + bshsls)

s.t. gl(x)=%—l4,000S0, E=2ell D=1
bshs
gz(x)zw—lél,OOOSO,
b4h4

P=50000N

hi

NAASRN
TN

100 100 100 100 100

L=500cm

FIGURE 3.32 SCBD.
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gz(x)zw—m,oooso,
b4h4
go(x)=PETLTE) 1y g00<0,
bsh;
gur)= SPETLHLTR) 1y 009,
byh;
gs(x):6P(15+l4+l;+12+ll)_14,ooogo,
bhi
3
gé(x):Pl(1+7+19+37+61)—2.730,
3E\L; I, I, I, I (3.63)
hs bsh?
=—=_-20<0, [=—=
g7(x) b. 1 12
hy b,k
=1_20<0, I,=—*
gs(x) b, 2 1
hs bsh?
=—=-20<50, ;=—-
gg(x) b, 3 12
h, b,k
=—=-20<0, I,=—">
glo(x) b, 4 12
hy bk
=—-20<50, Ij=—-1
gu(x) b, 5 12

(xl ~ X10 ) = (bl >h1 )bZ )hz )b3 )h3 ab4 >h4 abS )hS )

Design objective: Single objective
Function characteristics: Continuous
Dimensions: 10-Dimensional
Optimal value: 62,791

3.5 CHAPTER SUMMARY

This chapter provides an overview of benchmark test functions for

data-driven optimization methods, covering unconstrained low-
dimensional cases, unconstrained high-dimensional cases, constrained
low-dimensional cases, constrained high-dimensional cases, and engi-
neering application cases. These benchmark test functions are suitable for
testing algorithms that solve constrained and unconstrained problems, as
well as discrete and high-dimensional problems. They can effectively help
researchers verify the efficiency and robustness of their algorithms.
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CHAPTER 4

MSSR

Multi-Start Space Reduction
Surrogate-Based Global
Optimization Method'

4.1 INTRODUCTION

Surrogate-based optimization (SBO) is a technique that leverages surro-
gate models to predict objective and constraint functions, significantly
reducing the need for direct evaluations (Edke & Chang, 2011; Queipo
et al., 2005). This chapter focuses on applying SBO methods to address
black-box optimization problems effectively.

Since surrogate models are typically smooth and continuous functions,
directly optimizing them canyieldlocally optimal solutions. However, these
solutions are based on predictions and may significantly deviate from the
true solutions. A critical research focus in recent years has been on select-
ing informative samples to enhance surrogate models and accurately iden-
tifying the global optimal region. Numerous scholars have advanced this
field, contributing to the ongoing development of surrogate-based global
optimization algorithms. Jones et al. (1998) presented a widely cited global
optimization algorithm for expensive black-box problems, which is known
as EGO. EGO constructs the surrogate model by Kriging and updates the
surrogate model by maximizing an expected improvement function. Gary
Wang et al. (2001) provided an adaptive response surface method (ARSM),

DOI: 10.1201/9781003636267-4 89
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which creates a quadratic approximation model for the expensive objec-
tive function in a reduced space. Gutmann (2001) introduced a global
optimization method based on RBF to solve problems with expensive
function evaluations. Jin et al. (2001) explored the accuracy of surrogate
models and how they affect the sampling strategies. Wang and Simpson
(2004) utilized a fuzzy clustering method to get a reduced search space,
which can efficiently find the global optimum on nonlinear constrained
optimization problems. A stochastic RBF method for the global optimiza-
tion of expensive functions was proposed by Regis and Shoemaker (2007),
who also improved the Gutmann-RBF method by varying the size of the
subdomain in different iterations. Younis and Dong (2010) developed a
kind of space reduction method called space exploration and unimodal
region elimination (SEUMRE), which establishes a unimodal region to
speed up the search. SEUMRE has successfully been used for black-box
engineering applications. Gu et al. (2012) invented the hybrid and adaptive
meta-model-based (HAM) method to divide the design space into sev-
eral subdomains with different weights. In every iteration, sample points
are obtained from these regions based on the size of the weights. At last,
HAM performed well on a crash simulation of vehicles. Long et al. (2015)
combined a kind of intelligent space exploration strategy with ARSM to
provide reduced regions for global optimization. As we can see, the space
reduction method is a high-efficiency way to realize global optimization of
computationally expensive problems.

In this chapter, a new multi-start space reduction (MSSR) surrogate-
based search algorithm is introduced for global optimization problems
with computationally expensive black-box objective functions and con-
straints. The algorithm divides the design space into three regions: global
space (GS), medium space (MS) and local space (LS). GS represents the
original design region, MS narrows the focus to a promising subset and LS
concentrates on the vicinity of the current best solution. The search pro-
cess employs a Kriging-based multi-start optimization method for local
optimization, sample selection and exploration. Latin hypercube sampling
is used to generate starting points, while sequential quadratic program-
ming (SQP) refines local solutions. A newly introduced selection strategy
identifies high-quality sample points to enhance the Kriging model, and
the estimated mean square error guides the exploration of unexplored
regions in the design space. The search alternates among GS, MS and LS
until the global optimum is located.
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FIGURE 4.1  Original Banana function.

4.2 KRIGING-BASED MODEL

To validate the accuracy of the surrogate model, this chapter uses the
Banana function as an example. Fifteen experimental design points are
generated using optimal Latin hypercube sampling (OLHS), and a Kriging
surrogate model is constructed. The detailed formulas of Kriging are pro-
vided in Section 2.2. As shown in Figures 4.1 and 4.2, the 15 triangular
markers represent the experimental design points. Overall, the Kriging
model closely aligns with the original function, though minor deviations
are observed in some regions.

4.3 THE PROPOSED MULTI-START OPTIMIZATION PROCESS

The proposed multi-start optimization process for the Kriging-based
model comprises three key components: local optimization using the sur-
rogate model, selection of high-potential sample points and exploration of
uncharted areas within the design space.

To ensure randomly selected starting points that adequately cover the
search space, Latin hypercube sampling (LHS) is employed. These selected
starting points are used iteratively during the search process. Sequential
quadratic programming (SQP) is applied to the Kriging surrogate model
to identify local optimal solutions, which are stored in a database of
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2.0
_I * Optimal Location
1.5+ DOE Samples

0.0 B ; \ 2.0
x1

FIGURE 4.2 Kriging prediction with 15 samples.

“Potential Sample Points.” However, SQP may converge to the same local
optimum from different starting points, resulting in duplicates in the
database. Additionally, local optima may coincide with existing sample
points. To mitigate these issues, new sample points are required to main-
tain a defined distance from previously obtained points. Furthermore, in
cases where no suitable local optima exist within the defined space, the
multi-start optimization process maximizes the Kriging model’s esti-
mated mean squared error (MSE) to explore uncharted areas. A special
selection strategy is employed to extract the most promising results from
the “Potential Sample Points.” The pseudo-codes summarizing the pro-
cesses of optimization, selection and exploration of unknown areas are
presented as follows.

4.1 Optimization:

(01) Begin

(02) Initialize Dimension n, Database “Potential Samples,” Design
Space, Kriging Predictor, MSE;

(03)  Acquire m starting points by LHS; (Here, it is suggested that m can
be defined in the range [20, 40] on two-dimensional problems, [6n,
8n] when the dimension of the problem is 2<n<10 and [50, 70] on
high-dimensional problems.)
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(04) fori=1:m
(05) Employ SQP algorithm;
(06) Optimize the Kriging Predictor from the ith starting point;

(07) Store the local optimal solutions and their predicted values in the
database “Potential Samples;”

(08) end

(09) “Potential Samples” is a matrix with m X (n+1) elements;

(10) end

/* The design space is selected among GS, MS and LS, which will change
with the iteration going on. The Kriging predictor and its estimated MSE
can be obtained by the DACE toolbox (Lophaven et al. 2002). The “fmin-
con” function of MATLAB® can be employed to realize the SQP algorithm
(The Mathworks 2015). */

4.2 Selection:

(01) Begin

(02)  Sort the predicted values in “Potential Samples” and get the maxi-
mum (Xpsmax Ypsmax) and minimum (Xpsmin, Ypsmin); (The
sample and the predicted value in “Potential Samples” are expressed
as (Xps, Yps))

(03) Initialize parameters k=1, flag repeat=0, flag stop=0, e_
error=0.00001 ( If n>= 10, e_error=0.0001), MAXK; /*MAXK is a
parameter that decides how many points can be sampled at most in
one iteration. Here, MAXK equals to 3 on two-dimensional prob-
lems and equals to 4 on higher-dimensional problems. For nonlin-
ear constrained optimization problems, MAXK equals to 3. */

(04) Acquire the size of the expensive samples set S as m_size;

(05)  While k < MAXK and flag _stop==0

(06) for i=1: m_size

(07) if square of the distance between Xpsmin and the sample S(i)
<=e_error

(08) flag_ repeat =1;

(09) end

(10) end

/* Here, the new promising samples that go much close to the existing
points will be flagged. */
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(11) if flag_ repeat ==0

(12) record the current sample Xpsmin; k=k+1;
(13) end

(14) for i=1: m

(15) if | Yps (i) ~Ypsmin | <=0.0001

(16) Yps (i) = Ypsmax+10;

17) end

(18) end

/* At each iteration, just one local optimal solution from the Kriging model
is selected and the same results are covered by a big value “Ypsmax+10.”
When the next iteration comes, the bigger values are ignored. */

(19 Sort the predicted values Yps in “Potential Samples” again and
update (Xpsmin, Ypsmin);
(20) If Ypsmin == Ypsmax+10

(21) flag_stop=1

(22) end

(23) flag_ repeat =0;

(24) end

(25) ifk>1

(26) Store the selected samples and evaluate the true function values.
(27) end

(28)end

4.3 Explore Unknown Area:

(01)Begin

(02) ifk==1

(03) Implement the above-mentioned Optimization method to get
the local maximums of the MSE function.

(04) Get two new samples and evaluate the true function values.

(05) end

(06) end

/* If the algorithm cannot find a satisfactory solution by the above-
mentioned selection process, the estimated MSE can be maximized to
acquire new samples which must be located in an unexplored area. */
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FIGURE 4.3  Estimated MSE of Kriging.

The estimated MSE function of the Kriging model is illustrated in
Figure 4.3, where local maxima of the MSE consistently appear in unex-
plored areas. The MSE value increases with distance from known sample
points and approaches zero at the locations of these points. Selecting one of
the locally maximal MSE solutions for sample updates typically enhances
space-filling. An optimization process that effectively leverages these
properties of the Kriging model can fully exploit its potential. Figure 4.4
demonstrates the multi-start optimization process on a Kriging model,
starting with 30 initial points. Eventually, two local optimal solutions are
selected, both situated in the valley of the Banana function—a region asso-
ciated with better solutions.

4.4 SPACE REDUCTION APPROACH

A sample set obtained using the design of experiments (DOE) method
is used to store the data from expensive evaluations. Based on the val-
ues of these samples, three spaces—GS, MS and LS—are defined for
the multi-start optimization process. GS represents the entire region
of the original design space. MS is based on the portion of design space
of the current better samples. LS is the neighborhood area of the best
current sample point. During the iterative search process, the sample set
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FIGURE 4.4 Multi-start process on Kriging.

is continuously updated with new samples, and the better-performing
samples are refined. MS and LS dynamically adjust as iterations progress

until the optimization process concludes. The detailed definitions of MS
and LS are provided below.

, i=1L2,...,n

i i

dis; =‘max(S(1 k) )—min(S(l :k) )

Shet _ dis;,  SP — dis; > min(mngei )
Lob; =4
min(range,» ), skt — dis; < min(range,»)

) 4.1)
Shet 4 dis;,  SP + dis, < max(rangei )

Ub,' =X

_max(mngei), Shet 4 dis; > max(range,-)
range _local; = [Lobi ,Ubi]
Lob; = min(S,»(l : p))

Ub, = max(;(1: p)) (4.2)

range _medium; = [Lobi,Ub,»], i=1,2,...n
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where # is the dimension of a problem. S(1:k); is the i-th dimension of the
top k samples selected from the ranked sample set. range, is the i-th dimen-
sion of the original design range. /' is the i-th dimension of the current
best sample. Equations (4.3) and (4.4) define the LS and MS, respectively.
If the distance of Lob; and Ub, in Eq. (4.3) or (4.4) is smaller than le-5, it is
suggested that setting a smaller space to search:

Lob; = Lob; —0.025 x (max(mnge,- ) - min(mnge,- ))
4.3)
Ub;, =Ub; +0.025 % (max(mngei ) - min(mngei ))

Meanwhile, the new range should also be the subset of the original design
range. Both of the two spaces change their scopes based on the better sam-
ples acquired from the design space. Here, k and p are two user-defined
parameters, which represent the number of the better samples. In MSSR,
we define k and p as follows:

[3,n<2 and CS<150
round(CS/30), n<2 and CS>150

k= (4.4)
5,n>2 and CS<150

| round(CS/30), n>2 and CS>150

round(CS/3), n<2
p=33n, n>2 and CS<60 (4.5)
round(CS/3), n>2 and CS>60

where CS is the number of current sample points. k will be smaller than p
with continuous iterations. According to Eq. (4.1) to (4.5), MS can give a
reduced region that may include several promising solutions and LS can
make the search focus on one of them quickly. In some cases, when LS
turns into a tiny space or the search in LS, MS or GS repeats around a local
optimal solution, there are no appropriate locations that can be selected
as new samples. Or if new samples cannot be found after optimization
and selection, the estimated MSE of Kriging can be used to explore the
unknown area. The ranges for getting the local maximums of MSE in
local, medium and global searches are defined as follows:
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, 1=1L2,...,n

dis; = ‘max(mngei )— min(range,- )

Skt —0.5xdis;,  SP —0.5% dis; > min(mnge,- )
Lob,- =
min(mnge,- ), Shet 0.5 dis; < min(range,» )

Sibesl + 0.5 X dls; N SibESt + 0.5 X dls, S maX(rangei ) (4 6)
Ub; |

max(mngei ), SPet +0.5 % dis; > max(mnge,- )

range_mse_local; = [Lobi ,Ub; ]
range _mse_medium; = range _medium;

range _mse_ global; = range;

The parameters in Eq. (4.6) share the same definitions as those in
Egs. (4.1) and (4.2). Intuitively, the defined ranges enclose the current
best solution and dynamically adjust as iterations progress. The algo-
rithm effectively combines GS, MS and LS to fully leverage the Kriging
predictor, accelerating convergence toward the global optimum.
Simultaneously, it explores unknown areas, enabling the current best
solution to escape potential local optima and improve the overall search
performance.

4.5 THE ENTIRE OPTIMIZATION PROCESS

The complete MSSR global optimization process is illustrated by the flow-
chartin Figure 4.5. The key steps in this process are summarized as follows:
/* The initial process */

1. Apply OLHS to generate DOE sample points over the entire design
space.

2. Evaluate the expensive function using the DOE sample points and
store the results in the sample set. (For nonlinear constrained prob-
lems, expensive functions include objective and constraint functions.)

3. Rank all expensive samples based on their function values. (Here, ifa
sample point does not satisfy the true constraints, the sample values
should add a large penalty factor of 1e6.)
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FIGURE 4.5 Flowchart of the MSSR optimization process.

/* The search loop */

4. Construct the Kriging-based surrogate model. (For nonlinear con-
strained problems, surrogate models of objective and constraint
functions are built, respectively. Here, sample values use the true
objective values without the additional penalty factor.)

5. Determine which space should be explored based on the present
number of iterations. The global search, medium-sized search and
local search will be implemented alternatively in the process.
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6. Define the size of the search space, according to the expensive sample
set.

7. Use the chosen multi-start optimization approach, SQP, to optimize
the Kriging-based surrogate model in the defined space.

8. Store the local optimal solutions in the database “Potential Sample
Points” and select the better samples. If there is not a better sample,
select two new samples from the unknown area.

9. Evaluate the expensive function value of the selected samples and
update the order of the expensive samples like step (3).

10. If the current best sample value satisfies the stopping criteria, termi-
nate the loop. Otherwise, update the surrogate model and repeat the
steps (4) to (9) until the global stopping criteria are satisfied.

The commonly used global stopping criteria are:

‘ybest - yoptimal .
Y <1% lfyoptimul #0

Yoptimal (47)

Viest <0.001 if Yoptimar =0

Figure 4.5 illustrates the overall design optimization process for MSSR:
To better demonstrate the MSSR search process, generations and
updates of the sample points during the global optimization on a Banana
function are graphically illustrated using Figure 4.6a—e. Each figure con-
tains three iterations which involve the GS, MS and LS. At the start, the
region of LS is larger than that of MS. As the iteration goes on and the
expensive sample points increase, LS quickly shrinks to focus on the region
around the global optimum. MS always provides a medium-sized region
that includes the current best solution. The MS and LS are getting smaller
and smaller when more and more points are supplemented. Intuitively, LS
can make the search concentrate on the current most promising region
and accelerate the convergence. MS can provide a promising region that
may include several true local optimal solutions. And GS can guarantee
that the multi-start optimization process will explore the entire design
space. As Figure 4.6a, ¢ shows, sometimes, LS may not include the true
global optimal position, but LS will eventually get close to it with the cur-
rent best sample point moving. Ultimately, 15 iterations and 37 expensive
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FIGURE 4.6  (a—e) MSSR optimization process on benchmark Banana function.

sample points are used to find a satisfactory global solution. Initially, with
only eight DOE samples, the basic shape of the surrogate model was quite
different from the real situation, but with the addition of new samples, the
surrogate model gradually approached the real function, especially near
the global optimum region.
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4.6 TEST CASES AND RESULTS

To verify the capabilities and demonstrate the advantages of the new MSSR
algorithm, various commonly used global optimization benchmarks
which encompass bound and nonlinear constrained problems were used
during the tests. The dimensions of these problems range from 2 to 16.
For bound-constrained problems, there are eight two-dimensional cases
(Banana, Peaks, GP, SC, Shub, GF, HM, Leon), two four-dimensional
cases (Shekel and Levy), two six-dimensional cases (HN6 and Trid6), two
ten-dimensional cases (Sphere and Trid10) and one 16-dimensional case
F16 (Wang & Simpson, 2004; Younis & Dong, 2010). All of these prob-
lems have their own structures and characteristics, and in combination
they can better represent many situations in engineering optimization.
The detailed forms of these functions are given in Table 4.1. For non-
linear constrained problems, two representative mathematical cases and
four commonly used benchmark engineering cases were employed. Ten
runs on each of these benchmark problems have been made using the
new MSSR search program. The obtained statistical results were com-
pared with the results from the other recently introduced space reduction
search methods for global optimization to judge their relative efficiency

and robustness.

TABLE 4.1 Bound-Constrained Benchmark Problems for Global Optimization

Analytic Global

Category Func. Number of Dims. Design Space Minimum
Low-dimensional Banana 2 -2, 2]? 0.0000
problems (n=2-6)  Peaks 2 [-3 3]x[—4 4] —6.5511
GP 2 (-2, 2)2 3.0000

sC 2 [-2, 2]2 -1.0320

Shub 2 [-10, 10] ~186.7309

GF 2 [-2, 2] 0.5233

HM 2 [-6, 6]2 0.0000

Leon 2 [-10, 10]? 0.0000

Shekel 4 [0, 10]* —10.1532

Levy 4 [-10, 10]* 0.0000

HN6 6 [0, 1]° —3.3220

Trid6 6 [-36, 36]° -50.0000

High-dimensional Sphere 10 [-5.12,5.12]1 0.0000
problems (n>=10)  Trid10 10 [~100, 100]'° —210.0000
F16 16 [-1, 1] 25.8750
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4.6.1 The Algorithmic Test

At first, Harmony Search (Yang, 2010) and Differential Evolution (Storn &
Price, 1997) algorithms were selected as reference cases to demonstrate
that nature-inspired global optimization methods commonly have larger
computation costs on expensive black-box problems. An effective space
reduction algorithm DIRECT (Bjorkman & Holmstrém, 1999), and a
widely cited surrogate-based space exploration method MPS (Wang et al.,
2004) were also employed for comparison. Meanwhile, EGO that uses the
Kriging model for expensive functions was compared to prove the advan-
tage of the proposed algorithm. Here, Mueller’s surrogate model toolbox
(Mueller, 2012) was used to realize the “Expected Improvement” strategy
in the EGO algorithm. Finally, a comparison with a multi-start optimiza-
tion algorithm that does not use a spatial reduction strategy is made to
demonstrate the importance of spatial reduction.

For MSSR, 3n + 2 DOE sample points have been generated to construct
the initial surrogate model. Seven representative functions from Table 4.1
were used as test cases, and the seven algorithms have been used to run the
tests for ten times. Table 4.2 shows the collected median values of the num-
ber of function evaluations (NFE) and obtained minimum values (Min).
The seven algorithms tried to get the values that satisty the condition of
Eq. (4.8). It is worth mentioning that EGO has much higher CPU time
than other algorithms when the samples and dimensions increase. Hence,

TABLE 4.2 Preliminary Comparison Results on Seven Representative Benchmark
Functions

Algorithms Banana GP SC Shub Shekel HN6 F16
HS NFE 09,122 512 310 450 10,000 698 915
Min 8.84e-4 3.0164 -1.0276 -185.6736 —2.6829 —3.3033 26.1207
DE NFE 1,390 830 450 3,070 3,730 3,660 3,690
Min 4.05e-4 3.0075 -1.0299 -185.3988 —10.0930 -3.3085 26.1022
DIRECT NFE 603 101 117 2,883 103 213 6,439
Min 3.0le-4 3.0073 -1.0248 -185.5823 -10.0934 -3.2975 26.0884
MPS NFE 145 134 35 545 680 783 3,319
Min 0.0358 3.0014 -1.0311 -186.7119 —5.0473 —3.3205 29.7177
EGO NFE 216 167 35 227 250 54 200
Min 9.67e-4 3.0323 -1.0297 -181.0324 —7.5345 -3.3152 27.4815
MS NFE 61 124 25 117 289 121 161
Min 2.5le-4 3.0065 -1.0299 -186.4286 —10.0863 —3.2973 26.1116
MSSR NFE 41 82 22 115 197 83 138

Min 3.45e-4 3.0049 -1.0303 -186.4203 -10.0829 —3.2967 26.1257




104 = Data-Driven Global Optimization Methods and Applications

a maximum allowable NFE (250 for low-dimensional problems. 200 for
high-dimensional problems) was given when EGO was tested. As shown
by the results listed in Table 4.2, HS and DE consistently had larger NFE
than the other algorithms. DIRECT performed well on most cases except
for the Banana, Shub and F16 functions. Basically, EGO and MPS could
easily get the approximate global optimal values on simpler cases like GP
and SC, but most of the time they needed larger NFE on complex cases like
Shub, Shekel and F16. From Table 4.2, it can be found that the proposed MS
and MSSR algorithms had better performance in all these cases. Moreover,
MSSR used fewer NFE than MS and has shown its advantage. Obviously,
the “Space Reduction” strategy improves the presented multi-start opti-
mization algorithm. In summary, nonsurrogate-based methods generally
have larger NFE, since they directly call the exact function when searching
the optimal solutions. Surrogate-based methods are guided by predictive
models to explore the design space, which effectively decrease NFE.

In summary, nonsurrogate-based methods generally have larger NFE,
since they directly call the exact function when searching the optimal
solutions. Surrogate-based methods are guided by predictive models to
explore the design space, which effectively decrease NFE. Upon compari-
son with nature-inspired global optimization methods as well as existing
optimization methods for classical agent models, it can be initially seen
that the MSSR algorithm proposed in this chapter has some superiority.

However, once these surrogate models focus on the same region, the
algorithm will converge to a local optimal location and can hardly explore
other promising areas. In this chapter, SEUMRE and HAM used Eq.
(4.8) as the termination criteria, and all the user-defined parameters were
assigned based on the two original papers (Gu et al., 2012; Younis & Dong,
2010). Since grid sampling can find the global optimal positions of GP and
Banana by luck before the iteration process of SEUMRE begins, the DOE
ranges of SEUMRE were changed as 95% of the original ranges on the
two problems. To deal with the randomness of these methods, each of the
experiment tests was done ten times.

Table 4.3 provides the mean values of NFE and the range of the obtained
best values. Table 4.4 shows the statistical results of NFE, which involve the
minimum NFE, maximum NFE and the median. The NFE values with the
“>” sign indicate that at least one of the tests could not satisfy the stopping
criteria within 500 function evaluations, and the numbers in the brackets
represent how many failures it had. As indicated by Tables 4.3 and 4.4,
the MSSR method has successfully found the global optimum in all cases
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TABLE 4.3 Mean Values of NFE and Ranges of Optimal Values Obtained by the Three

Algorithms
MSSR SEUMRE HAM
Func. NFE Obtained Value NFE Obtained Value NFE Obtained Value
Banana 42.8 [1.91e-5, 90.9 [4.75e-5, 68.3 [1.27e-5,
7.32e-4] 6.37e-4] 6.34e-4]
Peaks 28.1 [-6.5477, 42.7 [-6.5509, >228.5 [-6.5510,
—6.5007] —6.4868] —3.0498]
GP 87.1 [3.0001, 133.6 [3.0002, 122 [3.0001,
3.0273] 3.0191] 3.0227]
SC 22.5 [-1.0316, 48.8 [-1.0307, 33.9 [-1.0316,
—1.0274] —1.0241] —1.0259]
Shub 122.9 [-186.7259, >329.5 [-186.4404, 168.4 [-186.7209,
—184.9656] —-117.0721] —185.9839]
GF 34.2 [0.5233, >208.4 [0.5259, 94.1 [0.5238,
0.5277] 0.5350] 0.5283]
HM 40.3 [7.79e-5, >266.8 [1.04e-5, 120 [1.01e-4,
7.56e-4] 0.0028] 9.08e-4]
Leon 181.7 [8.88e-5, >253.9 [1.12e-4, 2394 [1.21e-4,
9.68e-4] 0.3207] 9.58e-4]
Shekel 207.1 [-10.1486, >471.7 [-10.0546, >458.1 [-10.1472,
—10.0716] —2.6303] —2.6166]
Levy 218.5 [3.96e-4, >358.1 [6.63¢-4, >341.7 [2.96e-5,
8.04e-4] 0.1103] 2.26e-2]
HN6 84.8 [-3.3119, >282.5 [-3.3009, 93.5 [-3.3194,
—3.2890] —3.1046] —3.2967]
Trid6 92.1 [—49.9021, >500 [-47.5255, 127.5 [-49.9614,
—49.5544] —7.9626] —49.6379]
Sphere 115.4 [4.57e-4, >500 [1.8147, >288.3 [4.20e-4,
9.98e-4] 17.2568] 0.1847]
Trid10 142.4 [-208.9614, >500 [—83.0087, >500 [-166.6914,
—208.0416] 990.0295] —48.9592]
Fle6 137.7 [26.1053, >500 [27.5243, >249.8 [26.0410,
26.1307] 29.5178] 26.6333]

within 500 function evaluations and used the least NFE. SEUMRE could
perform well on Banana, Peaks, GP and SC, but it had difficulties in solv-
ing the multimodal and high-dimensional problems. As Table 4.4 shows,
SEUMRE just succeeded one time on Shekel, four times on Levy and six
times on HNG®, but it failed all the ten runs on Trid6, Sphere, Trid10 and
F16. The best value SEUMRE obtained on F16 is 27.5243 with 500 function
evaluations, which is much larger than the results from MSSR and HAM.
HAM is an effective method that could perform better on Banana, GP, SC,
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TABLE 4.4  Specific Statistical Results of NFE Obtained by MSSR, SEUMRE and HAM

MSSR SEUMRE HAM
Func. Min Max Median Min Max Median  Min Max Median
Banana 24 66 41 72 114 86 45 104 62
Peaks 18 50 24 37 44 44 34 >500(4) 73
GP 51 141 82 79 359 93 82 195 117
SC 18 27 22 44 58 49 26 52 29
Shub 24 215 115 68 >500(3) 377 86 315 160
GF 15 64 29 65 >500(2) 100 46 281 76
HM 22 95 32 65 >500(4) 157 46 288 66
Leon 67 408 146 142 >500(2) 194 102 433 233
Shekel 68 415 197 217 >500(9) >500 269 >500(8) >500
Levy 89 376 181 119 >500(6) >500 104 >500(5) >370
HN6 52 117 83 125 >500(4) 149 87 108 91
Tridé 63 146 85 >500 >500(10) >500 106 144 130

Sphere 94 145 117  >500 >500(10) >500 180  >500(3) 198
Tridl0 125 162 139  >500 >500(10) >500 >500 >500(10) >500
F16 103 168 138  >500 >500(10) >500 136  >500(2) 201

Shub, GF, HM, Leon, HN6 and Trid6, but it had a poor performance on
Shekel and Trid10. For high-dimensional problems Sphere and F16, HAM
could get satisfactory solutions most of the time.

Figure 4.7a—f provide the main iterative results of the three methods
on the high-dimensional problems with the obtained best objective func-
tion value and increasing NFE. To improve the readability, two adjacent
iterative results have a small interval that is basically more than two units
of NFE. Figure 4.7a, c, e shows the entire search process within the 200
function evaluations, and Figure 4.7b, d, f gives a clearer comparison on
the results of HAM and MSSR from the NFE values of 100-200. It can be
found that MSSR got closer to the true global optimal solutions quicker
than HAM and SEUMRE. In addition, only MSSR could satisfy the stop-
ping criteria of Eq. (4.8) within 200 function evaluations. All these meth-
ods were run on a computer with a Core i7-4720HQ CPU (2.60 GHZ) and
16 GB memory. The execution time the three algorithms averagely spent
on these test functions has also been recorded. Figure 4.8 shows that MSSR
and HAM spent more time than SEUMRE on two-dimensional problems.
This is due to the fact that MSSR needs to call the SQP solver many times
in one loop and HAM needs to construct three surrogate models in each
iteration. Furthermore, the three methods have the common feature that
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FIGURE 4.7 (a—f) Iterative results on high-dimensional problems.

they will be more time-consuming on higher-dimensional and multi-
modal problems.

In summary, NFE is always the most important evaluation indicator
for the algorithm’s performance on expensive black-box problems. HAM
presents a good performance most of the time, but it may be trapped
around some local optima sometimes. SEUMRE can perform better on
low-dimensional problems, but it cannot work well on multimodal and
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high-dimensional problems. The new MSSR method satisfies the given
stopping criteria with the least NFE and has the highest robustness, pre-
senting to be the most promising black-box global optimization technique.

4.6.2 Engineering Case Testing

In this chapter, six classical nonlinear constrained problems were used
to test the MSSR method. One of the test problems (G6) comes from
the well-known constrained optimization problems that were used by
Coello Coello (2002), Abdel-Rahman (2004) and Egea (2008). Another
one comes from the widely used Himmelblau’s nonlinear problems (Gen
& Cheng, 1999; Himmelblau, 1972). Four structural engineering appli-
cations are Tension/Compression Spring Design (TSD), Welded Beam
Design (WBD), Pressure Vessel Design (PVD) and Speed Reducer Design
(SRD), respectively (Coello Coello, 2002; Gen & Cheng, 1999). All of these
six test problems’ objectives and constraints were regarded as expensive
black-box functions. The dimensions of these test cases (G6, TSD, WBD,
PVD, Him, SRD) range from 2 to 7, and their numbers of constraints are
2,4,7,4,6and 11.

Figure 4.9a, b, d, f shows that MSSR usually could not find the feasible
solutions at the beginning, but it would eventually acquire the global opti-
mum. According to the references in these test cases, the obtained values
in Table 4.5 and Figure 4.9 are sufficiently accurate and the corresponding
NFEs are much smaller.

To verify the robustness of MSSR in dealing with nonlinearly con-
strained optimization problems, the results of ten independent runs of the
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FIGURE 4.8 Execution time of MSSR, SEUMRE and HAM on benchmark
functions.



TABLE 4.5 Global Optimal Results Obtained by MSSR on Nonlinear Constrained Problems

Design Variables
Problems x1 x2 x3 x4 x5 x6 x7 fix)
G6 14.097149 0.847352 —6,956.8719
TSD 0.0516827 0.3565636 11.2980133 0.0126652
WBD 0.2056902 3.4683028 9.0445203 0.2056904 1.7256
PVD 0.778187 0.384658 40.320586 199.986548 5,885.3653
Him 78.000000 33.000000 27.072136 45.000000 44.967954 —31,025.3139
SRD 3.500177 0.700000 17.000000 7.332558 7.715387 3.350284 5.286657 2,994.8487

60L ®m }SSW
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FIGURE 4.9 (a-f) Iterative results obtained by MSSR on constrained optimiza-
tion problems.

computation are given in this chapter, and it is clear from Tables 4.6 and
4.7 that each time the results are very close to the true optimal solution
and the number of NFEs is sufficiently small.

Overall, MSSR can not only perform well on bound-constrained expen-
sive black-box optimization problems but also efficiently and robustly
obtain global optimal solutions on nonlinearly constrained problems.
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TABLE 4.6  Summary of Results Obtained by MSSR on G6, TSD and Him

G6 TSD Him

Exp. NFE Opt. Value NFE Opt. Value NFE Opt. Value

No.1 62 —6,957.3896 81 0.0126664 60 —31,025.5575
No.2 79 —6,958.4628 213 0.0126817 61 —31,025.2482
No.3 19 —6,955.8152 139 0.0126817 48 —31,025.5270
No.4 44 —6,958.2769 97 0.0126654 93 —31,025.0141
No.5 20 —6,958.2769 97 0.0126653 100 —31,021.3633
No.6 53 —6,957.8394 140 0.0126655 69 —31,023.6350
No.7 39 —6,958.0899 114 0.0126670 57 —31,023.9933
No.8 40 —6,961.2597 66 0.0126698 63 —31,025.5595
No.9 29 —6,955.2008 109 0.0126654 51 —31,025.5557
No.10 63 —6,955.2106 108 0.0126652 51 —31,023.2053

TABLE 4.7 Summary of Results Obtained by MSSR on WBD, PVD and SRD

WBD PVD SRD
Exp. NFE Opt. Value NFE Opt. Value NFE Opt. Value
No.1 110 1.7253 88 5,885.4051 131 2,994.8493
No.2 133 1.7253 87 5,885.3782 164 2,996.4051
No.3 99 1.7249 75 5,885.3427 189 2,995.5840
No.4 162 1.7253 125 5,885.3979 134 2,994.4745
No.5 167 1.7560 107 5,885.3576 102 2,997.4988
No.6 201 1.7535 97 5,885.3658 102 2,997.4988
No.7 113 1.7256 91 5,885.3778 111 2,994.6535
No.8 100 1.7256 112 5,885.4247 96 2,997.0597
No.9 153 1.7256 98 5,885.3408 69 2,995.4729
No.10 105 1.7254 73 5,885.3993 71 2,997.3088

4.7 CHAPTER SUMMARY

In this work, a new multi-start optimization strategy is introduced to
search the three spaces. This strategy applies OLHS to provide multiple
starting points and then employs an SQP solver to explore the surrogate
model using these starting points in the defined space. The other two vary-
ing spaces, namely, MS and LS, are two reduced regions that include the
promising solutions and adjust their positions and boundaries automati-
cally during the search. Each of the three spaces has its own functions.
GS ensures that the true global solution will not be missed. MS plays an
important role in providing a promising region that involves several cur-
rent best solutions. And LS is an accelerator to finish the search around
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a true local optimum quickly. In this work, a new multi-start optimiza-
tion strategy is introduced to search the three spaces. This strategy applies
LHS to provide multiple starting points and then employs an SQP solver
to explore the surrogate model using these starting points in the defined
space. In each of the iterative search loops, a new selection scheme is
used to obtain several promising samples. This selection scheme ensures
that the Kriging-based surrogate model is sufficiently exploited, and the
unknown area of the surrogate model can be gradually explored. The esti-
mated MSE of the Kriging-based surrogate model is used as an important
tool to explore the unknown area of the design space.

Thenewalgorithm hasbeenapplied to 15benchmarkbound-constrained
optimization examples, two nonlinear constrained optimization prob-
lems and four structural engineering applications. All the benchmark test
results showed MSSR’s superior performance and robustness in dealing
with expensive black-box optimization problems.

NOTE

1 Based on “Multi-start Space Reduction (MSSR) Surrogate-based Global
Optimization Method,” published in [Structural and Multidisciplinary
Optimization], [2016]. Permission obtained from [Springer].
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CHAPTER 5

SOCE

Surrogate-Based Optimization with
Clustering-Based Space Exploration
for Expensive Multimodal Problems’

5.1 INTRODUCTION

In complex multidisciplinary designs, there exist a large number of com-
putationally intensive black-box problems involving expensive hardware or
software resources (Zeng et al., 2016). Commonly, response outputs from
an expensive analyzer form the objective and/or constraint functions of an

EBOP. Intuitively, the total number of objective or constraint function eval-
uations (NFE) reflects the computation load in an EBOP. Especially, when
the EBOP is nonconvex (Deshmukh & Allison, 2016; Yin et al., 2016), that
is, the expensive black-box problem has multiple locally optimal solutions,
the NFE willbecomelarger (Alexandrovetal., 1998; Leifsson & Koziel, 2016;
Toropov et al., 1993). Traditional global optimization algorithms, such as
nature-inspired methods (Sadollah et al., 2015; Wang, 2010; Yang, 2009),
need to create a diverse population and meanwhile update generations to
explore the design space. In genetic algorithms (GA), the “promising par-
ents” have a bigger opportunity to pass their genetic information to the
children, which is inspired by evolutionary concepts. GA can find the opti-
mal fitness function value generation by generation with four main steps,
which are reproduction, crossover, mutation and selection (Al-Sultan &
Nizami, 1996). The particle swarm optimization (PSO) algorithm uses
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simple formulas to imitate the social behavior patterns of organisms like
swarms, bats, bees and ants that can work in a team (Shi & Eberhart, 1998).
Recently, a remarkable algorithm called GWO was presented by Mirjalili
et al. (2014), which was inspired by gray wolves’ leadership hierarchy and
hunting strategies. Due to its efficiency and robustness, GWO has been
widely used in engineering applications. These nature-inspired algorithms
can effectively solve highly nonlinear, discrete, nonconvex optimization
problems; therefore, considerable contributions have been made in this
field. However, all the above-mentioned algorithms have difficulties in
dealing with EBOPs, because stochastic search produces substantial func-
tion evaluation (Weise et al., 2016).

To control the NFE in an expensive black-box optimization process,
surrogate-assisted global optimization algorithms have been developed
(Haftka et al., 2016; Zadeh et al., 2009). Jones et al. (1998) introduced an
efficient global optimization algorithm called EGO, which has shown its
excellent performance in comparison with other classical algorithms.
EGO combines the prediction uncertainty of Kriging and the current
best value to create an “expected improvement (EI) function,” and
updates the sample set by maximizing the EI function. Gutmann (2001)
utilized the radial basis function (RBF) to construct a surrogate model
and measured the bumpiness of the surrogate model. This algorithm
updates the sample set by selecting a new position with a hypothetical
value that yields the “least bumpiness” of these surrogate models. Regis
and Shoemaker (2013) provided a quasi-multi-start response surface
framework (AQUARS) for global optimization of EBOPs. This proposed
framework not only focuses on the current best local optimal region of
the surrogate model but also explores the neighborhoods of the least
explored local optimum. Finally, AQUARS was employed to solve a
watershed calibration problem and had a remarkable performance. Jie
et al. (2015) provided an adaptive meta-model-based global optimiza-
tion algorithm (AMGO) for unconstrained EBOPs. AMGO employs
Kriging and augmented RBF for modeling, and their weight factors are
dynamically selected with iterations increasing. With tests on differ-
ent benchmark examples, AMGO showed satisfactory precision and low
computation cost.

When it comes to constrained EBOPs, the state of the art is rela-
tively weak (Zhou et al., 2016). A lot of work has been done for con-
strained evolutionary optimization algorithms (Coello Coello, 2002),
but the huge NFE makes them hard to deal with constrained EBOPs.
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The previously introduced surrogate-based algorithms had better per-
formances on unconstrained EBOPs, but they were not tested on bench-
mark constrained problems. Regis (2014) developed two algorithms
(COBRA and Extended ConstrLMSRBF) for constrained EBOPs. The
two algorithms follow a two-phase approach, in which the first one
guarantees the algorithm to find feasible solutions quickly and the sec-
ond one makes the feasible solution go close to the true global optimal
location. Cutbill and Wang (2016) introduced a probabilistic method
to reduce the redundant constraints for black-box optimization prob-
lems. They defined a series of rules to express the relationships among
constraints, but the accuracy of these rules depended on the number of
samples in a particular region.

In this chapter, a new surrogate-based global optimization algorithm
with clustering-based space exploration (SOCE) for multimodal and/or
constrained EBOPs is presented. This proposed algorithm uses QRS and
Kriging to construct two surrogate models. Based on the characteristics
of QRS and Kriging, two different optimizers (a multi-start local opti-
mizer and the GWO global optimizer) are connected to the two models,
respectively. In the employed multi-start local search, collected samples
need to keep a defined distance from each other to satisfy the diversity of
predicted local optima. Besides, SOCE suggests a local convergence cri-
terion to judge when to carry out space exploration. The presented space
exploration approach employs the k-means clustering algorithm to create
multiple subspaces and defines an iterative process to select the promis-
ing samples that are far away from the clustering centers. In addition, two
penalty function methods are proposed to make the algorithm applicable
to constrained optimization.

5.2 SOCE ALGORITHM
5.2.1 Surrogate Modeling and Optimization

In SOCE, Kriging and QRS models are constructed separately to approxi-
mate the true model. Each has distinct predictive characteristics. Kriging
is an interpolation method that commonly generates an approximation
model with multiple local optima. Owing to its remarkable capacity in
predicting nonconvex problems, Kriging has been widely used for com-
plex engineering applications. QRS belongs to one of the regression meth-
ods that generally can reflect the overall trend of a true model. Especially,
if it is a convex problem, QRS can accurately predict the global optimum.
However, it has difficulties in dealing with multimodal problems.
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Sequential quadratic programming (SQP) is a well-known local optimi-
zation algorithm that can search for the optimal solution from one given
starting point. The success rate that SQP finds the global optimum depends
on positions of starting points and the complexity of this problem. For a
multimodal function, it is hard for SQP to directly find the global opti-
mal solution. Hence, we utilized a multi-start SQP (MSSQP) algorithm to
realize the global optimization process. The MSSQP algorithm includes
two parts: the pre- and post-treatment parts. In the pre-treatment process,
Symmetric Latin Hypercube Sampling (SLHS) is employed to capture the
initial starting points. SLHS can make starting points have a random and
centro-symmetric distribution in a design space. On one hand, the random
nature increases the success rate of MSSQP to find the global optimum
when the main loop keeps running. On the other hand, a better coverage
rate can improve the probability of obtaining the global optimum in one
iteration. In the post-treatment process, the key point is how to get new
samples with diversity, which can avoid supplementing samples around
the same local optima. Here, we define an allowable minimum distance
between these promising local optimal locations as follows.

Dis= meax(Range) - min(Range)H (5.1)

In Eq. (5.1), Range is a vector representing the range of a design space. The
default value of the coefficient w is 0.005 in SOCE and it affects the length of Dis.

GWO is a recently presented nature-inspired global optimizer, which
has been widely used. GWO divides the gray wolves into four types (alpha,
beta, delta and omega) based on their leadership hierarchy. The four types
correspond to different fitness values. Additionally, GWO simulates the
gray wolves’ hunting mechanism that includes encircling prey, hunting and
attacking, to get new samples. In summary, GWO is appropriate for mul-
timodal problems and can explore the QRS model efficiently. It is worth
noting that global optimization on QRS sometimes may produce repeated
samples in multiple iterations, thus the algorithm needs to delete redun-
dant samples in time. Besides, QRS needs at least 0.517% + 1.51 + 1 samples
to guarantee the predictive accuracy. Here, n represents the design dimen-
sion. Equation (5.2) describes the optimization on surrogate models.

MSSQP — minj‘Krg (x) IW<x<ub 52)

GWO — min fors(x) Ib<x<ub
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where fKrg(x) and fQRS(x) represent the Kriging and QRS models of an
objective function, respectively.

5.2.2 Initialization and Loop of SOCE

The optimization flow of SOCE includes initialization and loop. In SOCE,
the initialization process mainly defines some basic parameters and car-
ries out the design of experiments (DOEs). After the expensive sample
values are evaluated at these DOE sample points, two initial surrogate
models (Kriging and QRS) are constructed, respectively. Furthermore,
the initial expensive samples are sorted to get the current best value
for the following loop. Algorithms 5.1(a) and (b) show the main details
of this process.

In the loop process, the Kriging and QRS models are optimized by the
MSSQP and GWO algorithms, respectively. After a series of detections and
selections, the new samples are added into the sample set. At this moment,
if the algorithm satisfies a local convergence criterion, it will go on explor-
ing the unknown space. Finally, sample ranks, two surrogate models and
the design range will be updated for the next iteration.

Algorithm 5.1(a) is shown below.

Algorithm 5.1(a) The Proposed Optimization Flow—Initialization

(01) Begin

(02) Initialize Kriging and quadratic polynomial parameters, and set
the population size and max iterations of the gray wolf optimizer.
(03) Carry on the initial DOE process, evaluate the expensive function

values and construct the initial surrogate models.
(04) Set the structure variables of the Kriging and QRS predictors as
global variables for the subsequent optimization.

(05) n < Get the dimension of design variables

(06) Iteration — Count the iteration number

(07) Current_NFE < Count the number of function evaluations
(08) Y_best < Sort the initial sample values

(09) Range_new « Set the new range as the initial space.

(10) End
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Algorithm 5.1(b) is shown below.

Algorithm 5.1(b) The Proposed Optimization Flow—Loop

(01) Begin

(02) whileY bestdoesnotreachthetargetvalueand Current_ NFE<300

(03) M < Carry on SLHS to obtain multiple starting points.

(04) A < Call SQP optimizer at M to obtain multiple locally opti-
mal solutions from the Kriging model.

(05) S_Kriging < Find two promising locations from A that keep
a defined distance with each other and meanwhile cannot go
close to existing samples. The distance is w|| Max (Range_
new) - Min (Range_new) ||.

(06) if Current_NFE>0.5n>+1.5n+1

(07) S_QRS « Call GWO optimizer to obtain the global optimal
location from the QRS model.

(08) end if

(09) S < Promise that §_Kriging and S_QRS are not repeated sam-
ples and store them into the sample set.

(10) Y < Evaluate the expensive objective function values.

(11) Local_error < Sort the current sample values Y and obtain the
local convergence error.

(12) if Local_error satisfies the local convergence criteria

(13) S_explore — Call Algorithm 5.2 to get several samples

from the unknown design space.

(14) Y_explore < Evaluate the expensive function values.

(15) end if

(16) if Iteration>3

17) if REM (Iteration, 2) ==0

(18) Range_new « Keep the new range for Kriging as the

original design range.

(19) else

(20) Range_new < The new range for Kriging is reduced to a

region that encloses the top 50% of samples. The minimum
and maximum X coordinates in each dimension are selected
to create this region. If this region focuses on a point or a
line, the new range is defined as the original design range.

(21) end if

(22) end if

(23) Update and obtain the algorithm parameters, Kriging and

QRS models.
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(24) Y_best < Get the current best function value
(25) end while
(26) End

5.2.3 Clustering-Based Space Exploration

As previously discussed, if the search falls into a local optimal region
for multiple iterations, the algorithm needs to jump out and explore the
sparsely sampled region. In the current work, the sparsely sampled regions
are defined based on the k-means clustering algorithm.

First, a local convergence criterion is proposed. In each iteration, the
mean value of the current top m samples is stored. When the iteration
number is more than 3, a local error is obtained by the difference of the
present and last mean values. If the error equals to zero, it means that
no better samples are added into the top m samples in this iteration. The
algorithm allows this case but it cannot continue for too many consec-
utive times. If this situation continues for the maximal times (here, the
threshold value is defined as 10), the algorithm will use Latin hypercube
sampling (LHS) to get new samples in a promising region. When the local
error drops below a user-defined small value, the clustering-based space
exploration is activated. In this work, a small value of 0.001 is defined as
the maximum error. The main steps are summarized below.

« Utilize the k-means clustering algorithm (Hartigan & Wong, 1979)
to produce multiple clustering centers.

o Evaluate the total length of the design range in each dimension and
set a small percentage. Create multiple small regions around these
clustering centers. The specific expressions can be found in Lines (14)
and (15) of Algorithm 5.2(a).

« Count the number of the samples being located in these created small
regions. If the proportion of the counted samples in the total samples
exceeds a user-defined value Ratio, the loop ends. Otherwise, the
percentage w gets increased and the loop continues.

 Generate new samples by LHS in the whole design range and delete
those samples located in the clustering-based regions.

o Finally, evaluate the expensive sample values and update the sample set.
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Algorithms 5.2(a) and (b) show the details of the clustering-based space
exploration.

Algorithm 5.2(a) Clustering-based Space Exploration—Search Strategy

(01) Begin

(02) if 0<Local_error<0.001

(03) S_explore_number «— Define the number of initial samples for
exploration.

(04) S_explore < Call LHS to obtain the initial samples for
exploration.

(05) S_ number «— Count the number of the current samples.

(06) w < Set the initial parameters for the size of clustering regions.

(07) Center_number < Define the number of clustering centers.

(08) Center — Employ the K-means algorithm to obtain clustering
centers.

(09) Ratio < The defined percentage of S_ number.

(10) Sum_ratio < 0

(11) dis_range < Get the distance between low and up bounds in
the design range.

(12) while Sum_ratio< Ratio

(13) for each clustering center i

(14) Range_clusters (i) <« [Center (i)-w*dis_range; Center

(i) +w*dis_range]

(15) Keep the Range_clusters enclosed by the original design space.

(16) end for

17) Call Algorithm 5.2(b) to sign the Samples of S located in
Range_clusters.

(18) Sum_in < Count the number of the samples of S in these
Range_clusters.

(19) Sum_ratio < Sum_in/ S_ number.

(20) w < w+0.025.

(21) end while

(22) Call Algorithm 5.2(b) to sign the Samples of S _explore located

in Range_clusters
(23) S_explore_save «— Save the S_explore samples outside the
Range_ clusters.
(24) Make sure that S_explore_save keeps a small distance with exist-

ing samples S.
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(25) Y_explore_save «— Evaluate the function values at samples S
_explore_save.

(26) [S, Y] < Update the expensive samples set.

(27) elseif Local_error == -1

(28) Range_promising < Utilize the top 50% of samples to create a
promising range.

(29) S_explore < Call LHS to obtain 3n+2 samples that cannot go
close to existing samples.

(30) Y_explore < Evaluate the function values at samples S _explore.
(31) [S, Y] < Update the expensive samples set.

(32) end if

(33) endif

(34) End

Algorithm 5.2(b) is a function of Algorithm 5.2(a). It describes how to
sign the samples in a particular region. Algorithm 5.2(b) will return a vec-
tor with logical values to identify whether the samples are in a particular
region. The details are as follows:

Algorithm 5.2(b) Check Samples in the Clustering Ranges or Not

(01) Begin

(02) S_Number < Input the number of samples.

(03) Range_clusters < Input the defined range.

(04) S _test < Create a zero vector with the length of S_ Number.

(05) for each clustering range k

(06) for each existing expensive samples i

(07) if S_test (i)==0

(08) IN < Check the § (i) in the Range_ clusters (k) or not.
(09) if IN==

(10) S _test (i) < 1

11) end if

(12) end if

(13) end for

(14) end for
(15) return S_test
(16) End
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FIGURE 5.1  (a-f) Clustering-based exploration on sparsely sampled regions.

To demonstrate it clearly, several graphic examples are provided. Figure 5.1
shows six groups of results with different parameters. The dots in Figure 5.1
are generated by LHS, among which light ones are located in these
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clustering regions and black ones are outside of these regions. There are
20 dots in each following figure. Besides, the dashed rectangles describe
the dynamic updates of these regions, and the solid-line rectangles are the
final boundaries of the clustering regions. According to the previous dis-
cussion, the number of dashed rectangles reflects the number of iterations
in Algorithm 5.2a. Figures 5.1a and b just have one clustering center and
their parameters Ratio are 0.7 and 0.9, respectively. It is clear that the final
region will get bigger and the number of iterations will increase if Ratio is
larger. What is more, one clustering center cannot describe the distribution
of samples well. Figures 5.1c and d show the results when there are five cen-
ters. Compared with Figures 5.1a and b, the clustering regions in Figures
5.1c and d can better cover the clustering samples and the new samples can
also fill the sparsely sampled space well. Figures 5.1e and f show a similar
phenomenon. As observed in Figure 5.1, the number of clustering centers
and Ratio affect the exploration process. Intuitively, more clustering cen-
ters can make this strategy more accurate. In summary, if the number of
clustering centers is too small, this strategy cannot explore the sparsely
sampled space accurately. On the contrary, too many clustering centers will
increase the number of loops in Algorithm 5.2(a) and the computational
cost will get larger.

5.3 OVERALL OPTIMIZATION FRAMEWORK OF SOCE
5.3.1 Overall Optimization Process

The previous section described the specific process of the algorithm, and
this section describes the optimization process of the SOCE algorithm as
a whole, as shown in Figure 5.2.

As Figure 5.2 shows, SOCE is mainly composed of two parts: one is the
exploitation on surrogates; the other one is an exploration in the sparsely
sampled area. On one hand, SOCE can quickly identify a local optimum
with the help of surrogate models. On the other hand, the clustering-based
space exploration can make SOCE jump out of a local optimal region and
begin a new optimization search in the unexplored area.

The termination criterion of SOCE is suggested as Eq. (5.3).

Doptimal = Yoest| 190 o NEE > 300, if Yoptimal #0

yoptimal (5 3)

Yrest <0.001 or NFE>300, if Yoptimar ==0
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FIGURE 5.2 Flowchart of SOCE.

Here, y,,/iq is the analytical global optimum, y,,, is the present best value
and NFE is the number of objective function evaluations.

To make SOCE easy to understand, a graphic example is shown to
demonstrate the capacity of the proposed algorithm. Figures 5.3 and 5.4
illustrate the search process of SOCE on a variety of nonlinear multi-peak
problems.

To increase difficulty, a group of DOE samples [-2, —0.857], [2, —0.286],
[0.286, 0.286], [0.857, —1.429], [1.429, 1.429], [-0.857, —2], [~1.429, 0.857],
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FIGURE 5.3 Optimization process of SOCE on Shubert.

[—0.286, 2] that do not locate in the neighborhoods of the global optimum
are selected. Figure 5.3a shows the true surface of Shubert and Figure 5.3b
presents the initial DOE samples on its contour plot. Figure 5.3c-f describes
the dynamic process of sample updating. Since the initial samples cannot
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FIGURE 5.4 Optimization process in other multimodal arithmetic cases.

provide an accurate surrogate model, the first search focuses on the regions
far away from the true global optimum. From Figure 5.3e, it can be found
that new samples are filled in unexplored regions by the clustering-based
strategy when the algorithm gets trapped in local minima. Owing to the
newly supplemented samples in Figure 5.3e, the accuracy of local regions
around the global optimum gets improved. Finally, 89 samples are used in
total to find the global optimum.
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In addition, the optimization search process of SOCE on some classical
nonlinear multi-peak problems is given in Figure 5.4, which shows that
SOCE has a strong global search capability.

5.3.2 Parameters Analysis of SOCE

Section 5.1 has mentioned some algorithm parameters, among which the
number of clustering centers (NCC), the percentage Ratio, the number of
starting points (NSP) and the max allowable number of supplementary
samples obtained from multi-start optimization (MANS) may have sig-
nificant effects on the whole algorithm. Therefore, the sensitivity of these
parameters will be analyzed in this section.

This chapter utilizes a representative multimodal function, Shubert,
which has a global optimum of —186.7309. To avoid the randomness asso-
ciated with DOEs, a DOE sample such as the one in Figure 5.3 is used as
the initial sample point. Since the initial surrogate models constructed by
the eight samples have poor approximation accuracy, SOCE is easy to get
trapped in the neighborhood of the local optimum —10.9786, which can
activate the clustering-based strategy and make all the parameters work
adequately. Considering the stochastic behavior of SOCE, each case needs
to be tested for ten times. For NCC and Ratio, 12 cases are given and the
statistical results are shown in Table 5.1, where the results with the symbol
“>” indicate that at least one test cannot find target values within 300 NFE.
In addition, the numbers in brackets reflect the failure times. In Table 5.1,
Cases 4, 8 and 12 show that the bigger Ratio always brings the worse result.

TABLE 5.1 Parametric Analysis of NCC and Ratio on Shubert

Parameters Test Results
Cases NCC Ratio Min NFE Mean NFE Max NFE Obtained Values
Case 1 1 0.6 74 >159.9 >300 (1) [-186.710,—123.580]
Case 2 1 0.7 50 >117.9 >300(1) [-186.730,—123.580]
Case 3 1 0.8 50 124.9 274 [-186.730,—185.610]
Case 4 1 0.9 82 >176.1 >300(2) [-186.720, —79.330]
Case 5 5 0.6 100 143.2 217 [-186.640, —185.100]
Case 6 5 0.7 87 146.5 214 [-186.720,—185.070]
Case 7 5 0.8 94 146.4 263 [-186.730,—185.030]
Case 8 5 0.9 109 >184.4 >300(1) [-186.730, —79.330]
Case 9 10 0.6 54 121.7 197 [-186.720, —185.080]
Case 10 10 0.7 75 140.8 219 [-186.720, —185.480]
Case 11 10 0.8 77 127.6 171 [-186.720, —185.450]
(- ]

Case 12 10 0.9 80 148 275 186.660, —185.120
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It is clear that Case 4 fails to find satisfactory results within 300 NFE for
two times. Cases 9-12 where NCC equals to 10 have relatively smaller NFE
values in all the 12 cases. Furthermore, with NCC increasing, the failure
times decrease significantly. In conclusion, a Ratio with a value between
0.6 and 0.8 can make SOCE more efficient. Additionally, a bigger NCC
can make the exploration strategy more accurate, but the number of loops
in Algorithm 5.2(a) will increase. Therefore, the recommended parameter
ranges for NCC and Ratio are [5, 10] and [0.6, 0.8], respectively.

For the parameter NSP, seven cases are provided and the statistical
results are listed in Table 5.2. In this test, NCC is defined as 10 and Ratio
is 0.6. It is easy to find that all the cases can find satisfactory solutions
within 300 NFE. Mean NFE does not change too much but it gets smaller
gradually when NSP increases. It is worth noting that the CPU time is
significantly affected by NSP. This is because a bigger NSP can increase the
number of running the SQP optimizer. Eventually, we suggest the param-
eter range [30, 50] for NSP.

MANS is a main factor to affect the parallelism of SOCE. If MANS
gets bigger, the number of supplementary samples in each iteration may
increase. Analysis results of MANS are shown in Table 5.3. In this test,

TABLE 5.2 Parametric Analysis of NSP on Shubert

Test Results
Cases NSP Min NFE Mean NFE Max NFE Obtained Values CPUt
Case 1 5 67 149.2 227 [-186.73,—185.03] 23.11s
Case 2 10 78 138.4 192 [-186.72,—185.00] 20.33s
Case 3 20 81 140.2 199 [-186.69, —185.34] 25.77s
Case 4 30 63 125.2 174 [-186.67,—185.53] 27.83s
Case 5 40 58 135.7 213 [-186.69, —184.96] 36.07s
Case 6 50 67 130.4 244 [-186.73,—184.87] 41.57s
Case 7 60 48 128.3 243 [-186.71,—185.12] 49.94s

TABLE 5.3  Parametric Analysis of MANS on Shubert

Test Results

Cases MANS Min NFE  Mean NFE = Max NFE Obtained Values Iteration

Case 1 2 64 130.2 183 [~186.72, —184.88] 36.9
Case 2 3 85 144.8 248 [-186.73, —185.31] 319
Case 3 4 88 149.8 309 [~186.67, —185.47] 28.5
Case 4 5 121 185.7 323 [~186.72, —185.39] 314
Case 5 6 106 184 319 [~186.62, —185.08] 27.6
Case 6 7 121 183.8 248 [~186.67, —185.13] 27.3
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NCC, Ratio and NSP are defined as 10, 0.6 and 30, respectively. As Table 5.3
shows, Mean NFE increases remarkably when MANS changes from 2 to 7.
Meanwhile, it can be found that the mean number of iterations has a nega-
tive correlation with MANS. In a parallel computing environment, users
can increase MANS properly to improve the parallelism of SOCE. To sum
up, in this work, the recommended parameter range for MANS is [2, 4].

To verify the recommended parameters, tests are carried out on a more
challenging problem (two-dimensional Griewank function with the range
X, € [-5, 15] and X, € [-15, 5]). Similarly, eight samples [15, —6.429],
[3.571, 5], [9.286, —12.143], [0.714, —15], [-5, —9.286], [12.143, 2.143], [-2.143,
—0.714], [6.429, —3.571] are given to construct the initial surrogate models
that make SOCE easily get trapped around a local optimal value 7.40e-3
at the beginning. The same cases in Tables 5.1-5.3 are tested on Griewank
and the specific results are shown in Tables 5.4-5.6. From Table 5.4, it can
be seen that Cases 1-4 have the worst performance and Cases 10, 9 and
5 can go close to the global optimum with fewer function evaluations.
Additionally, all the better parameter groups in Table 5.4 are located in the
recommended parameter ranges.

In Table 5.5, Case 3 has the smallest NFE value and the CPU time grad-
ually gets longer from Case 1 to Case 7. Besides, the results in Table 5.6
show that Cases 1 and 2 have the best performance. Like Tables 5.2 and 5.3,
Tables 5.5 and 5.6 also give the laws that a larger NSP value can cause longer
CPU time and a larger MANS value may bring more function evaluations.
In summary, the parametric analyses on the two representative multi-
modal problems Shubert and Griewank get similar laws, and meanwhile

TABLE 5.4 Parametric Analysis of NCC and Ratio on GW

Parameters Test Results
Cases NCC Ratio Min NFE Mean NFE Max NFE Obtained Values
Case 1 1 0.6 206 >285.5 >300(8) [1.32e-5, 7.40e-3]
Case 2 1 0.7 166 >286.6 >300(9) [1.31e-4, 7.40e-3]
Case 3 1 0.8 >300 >300 >300(10) [7.40e-3, 7.40e-3]
Case 4 1 0.9 >300 >300 >300(10) [7.40e-3, 7.40e-3]
Case 5 5 0.6 112 >216.2 >300(3) [1.90e-6, 7.40e-3]
Case 6 5 0.7 184 >275.4 >300(6) [7.89¢e-6, 7.40e-3]
Case 7 5 0.8 107 >260.5 >300(6) [3.53e-5, 7.40e-3]
Case 8 5 0.9 269 >296.9 >300(9) [4.73e-5, 7.40e-3]
Case 9 10 0.6 80 >203.9 >300(2) [7.95e-6, 7.40e-3]
Case 10 10 0.7 82 >152.7 >300(1) [3.38e-5, 7.40e-3]
Case 11 10 0.8 133 >235.4 >300(5) [2.77e-6, 7.40e-3]
[ ]

Case 12 10 0.9 151 >257.8 >300(6) 1.36e-5, 7.40e-3
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TABLE 5.5 Parametric Analysis of NSP on GW

Test Results
Cases NSP Min NFE Mean NFE Max NFE Obtained Values CPUt
Case 1 5 147 >225.8 >300(2) [1.25e-5, 7.40e-3] 25.75s
Case 2 10 118 >192.2 >300(1) [4.79e-5, 7.40e-3] 23.75s
Case 3 20 88 >183 >300(2) [1.50e-5, 7.40e-3] 28.64s
Case 4 30 86 >179.8 >300(1) [5.36e-6, 7.40e-3] 35.82s
Case 5 40 72 >224.5 >300(3) [1.42e-6, 7.40e-3] 51.80s
Case 6 50 126 >221.2 >300(1) [2.60e-6, 7.40e-3] 58.55s
Case 7 60 101 >245.9 >300(2) [1.78e-6, 7.40e-3] 78.46s

TABLE 5.6  Parametric Analysis of MANS on GW

Test Results
Cases MANS Min NFE Mean NFE Max NFE Obtained Values Iteration
Case 1 2 91 212.3 370 [1.17e-6, 5.28e-4] 46.0
Case 2 3 113 225 478 [6.54e-6, 9.43e-4] 41.3
Case 3 4 124 258.3 435 [4.51e-6, 9.72e-4] 38.1
Case 4 5 149 281.2 468 [2.26e-6, 6.96e-4] 36.9
Case 5 6 147 311.1 579 [2.34e-6, 8.56e-4] 36.0
Case 6 7 166 293.7 620 [1.51e-5, 9.83e-4] 30.2

the recommended parameter ranges can make SOCE work well. In the
subsequent comparison experiments, the four parameters NCC, Ratio,
NSP and MANS of SOCE are defined as 10, 0.6, 30 and 2, respectively.

5.4 EXPERIMENTS ON BENCHMARK EXAMPLES
5.4.1 Comparison Test on Bound-Constrained Examples

Considering that SOCE is a multi-point global optimization algorithm,
MSEGO supplements multiple samples in each cycle based on different
surrogate models and is tested as the preliminary comparison. The test
cases and the results of MSEGO come from Long et al. (2015). When ten
independent tests are finished, the statistical results are given in Tables 5.7
and 5.8. It is easy to find that SOCE has a better performance than MSEGO
on most cases (SE, PK, SC, BR, RS, GN and HN). SOCE can quickly go
close to the true global optimum within 40 function evaluations on SE,
PK, SC and BR, but MSEGO needs more than 100 function evaluations.
Furthermore, SOCE can get better values than MSEGO on RS, GN and
HN with fewer function evaluations. Although both SOCE and MSEGO
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TABLE 5.7 Obtained Values of SOCE and MSEGO

SOCE MSEGO
Func. Var. Range Median Var. Range Median
SE [-1.456, —1.448] —-1.456 [-1.456, —1.454] —1.456
PK(Peaks) [-6.551, —6.494] —6.544 [-6.498, —5.979] —6.498
SC [-1.032,-1.030] —-1.032 [-1.024, —0.987] -1.024
BR [0.398, 0.399] 0.399 [0.398, 0.431] 0.398
RS(F1) [—2.000, —1.980] —1.994 [-1.874,-1.636] —1.874
GF [0.003, 0.009] 0.007 [0.001,0.035] 0.001
GP [3.000, 3.029] 3.008 [3.002, 3.014] 3.002
GN [3.33e-15, 4.81e-3] 7.33e-4 [0.176, 0.627] 0.177
HN(HNG6) [-3.317,-3.290] —-3.306 [-3.208, -3.052] —-3.145

TABLE 5.8 NFE of SOCE and MSEGO

SOCE MSEGO
Func. Var. Range Mean Var. Range Mean
SE [29, 55] 33.4 [70, 123] 109.6
PK(Peaks) [29, 46] 37.3 (129, 132] 130.4
SC [26,47] 349 [130, 132] 131.2
BR [22,29] 259 [36, 132] 112.6
RS(F1) [29, 242] 108.5 [131, 132] 131.4
GF [47,162] 113.5 [132,132] 132.0
GP (68, 239] 145.9 (101, 132] 120.4
GN [11, 130] 95.7 [132, 132] 132.0
HN(HNG®6) [55, 149] 89.1 [176, 176] 176.0

can find a value close to 3 on GP, MSEGO has a smaller computation cost.
In summary, SOCE is more efficient and robust.

To further verify the algorithm’s efficiency and robustness, 15 represen-
tative benchmark problems are provided for comparison testing. Among
them, there are 12 low-dimensional problems and three high-dimensional
problems. More details about them are listed in Table 5.9. Since the sto-
chastic nature of SOCE, ten tests are carried out on these examples. In this
work, three surrogate-based algorithms EGO, HAM and KMS are tested
as contrast. EGO and HAM are two well-known global optimization algo-
rithms that have been widely cited. KMS is a Kriging-based multi-start
global optimization method, which employs the MSSQP algorithm pro-
posed in SOCE. In addition, KMS uses the same multi-start optimization
strategy as SOCE.



SOCE = 133

TABLE 5.9 Bound-Constrained Benchmark Problems for Global Optimization

Number Analytic Global

Category Func. of Dims. Design Space Minimum
Low-dimensional problems Shub 2 [-2,2]* —186.731
(most of them are GW2 2 [-10, 10]? 0.000
multimodal problems with SE 2 [0, 52 —1.457
lots of local minima) Peaks ) (-3 3] x[~4 4] —6.551
Beale 2 [-4.5,4.5)? 0.000

Alp 2 [0, 10]2 —6.130

F1 2 [-1, 1]? —2.000

Rast 2 [-5.12,5.12]? 0.000

Levy 2 [-10, 10]2 0.000

Zakh 2 [-5, 10]? 0.000

Shek10 4 [0, 10]* —10.536

HN6 6 [0, 1]¢ —3.322

High-dimensional problems GW10 10 [-600, 600]'° 0.000
(n=10-16) Sphere 15 [-5.12, 5.12]% 0.000
F16 16 [-1, 1]'6 25.875

Table 5.10 shows the best values obtained by SOCE, KMS, EGO and
HAM within 300 function evaluations. Table 5.11 presents the NFE used
by the four algorithms in the experiments.

It is clear that the best values from SOCE mostly go much closer to the
true global optima with the fewest function evaluations and meanwhile it
has the fewest failure times. Since GW10 is a high-dimensional and multi-
modal problem, SOCE cannot find a value that is smaller than 0.001 within
300 NFE. However, SOCE can get satisfactory accuracy on GW10. KMS
can perform well on some problems that have fewer local optima, such as
SE, Peaks, Beales, levy and HN6, but most of the time it misses the global
optimum on more complex problems. EGO can solve low-dimensional
multimodal problems well, except Rast, GW2 and Beale. Moreover, EGO
has the worst performance on high-dimensional problems. Although the
hybrid meta-model technology improves the robustness of HAM, HAM
may still miss the global optimum. This is because HAM does not pro-
vide a search strategy to explore the sparsely sampled area. As observed
in Tables 5.10 and 5.11, HAM sometimes can just find a local optimum on
the multimodal problem, but HAM has a relatively robust performance on
most of the examples.

To improve readability, the mean values of NFE for the four algorithms
are given as a histogram in Figure 5.5. Meanwhile, the total ranks of the



TABLE 5.10  Best Values Obtained by SOCE, KMS, EGO and HAM
SOCE KMS EGO HAM
Func Best Med. Worst Best Med. Worst Best Med. Worst Best Med. Worst

Shub —186.701 —186.053 —185.342 -186.203 —101.456 —39.589 -186.664 —186.109 —184.941 -186.720 —119.826 —39.589
GW2 2.86e-6 2.14e-4 8.28e-4 7.40e-3 8.63e-3 1.97e-2 1.03e-6 5.73e-4 3.53e-3 2.30e-6 7.40e-3 9.86e-3

SE —1.456 —1.456 —1.448 —1.457 —1.454 2.866 —1.457 —1.455 —1.451 —1.457 —1.453 —1.447
Peaks —6.551 —6.544 —6.494 —6.550 —6.524 —6.492 —6.551 —6.549 —6.511 —6.551 —6.542 —-3.050
Beale 4.19-5 3.15e-4 8.37e-4 1.18e-4 7.09¢e-4  9.51e-4  2.35e-3 2.12e-2 8.27e-2 3.37e-7 2.54e-4 2.87e-3
Alp -6.127 —6.115 —6.084 —6.123 —6.080 —2.854 —6.129 —6.116 —6.089 —6.126 —6.121 —2.854
F1 —-2.000 —1.994 —1.980 -1.997 -1.879 —0.660 —2.000 -1.997 —-1.985 —2.000 -1.991 -1.879

Rast 4.26e-14 1.78e-4 8.79%¢-4 1.40e-12 0.995 3.980 2.02e-3 1.00e-2 7.92e-2 1.40e-5 1.05e-4 8.84e-4
Levy 9.83e-6 3.10e-4 6.85e-4 1.07e-5 3.90e-4  9.20e-4 5.13e-5 4.48e-4 1.23e-3 6.03e-7 5.33e-5 9.29¢-4
Zakh 7.58e-6 2.72e-4 8.47e-4 2.32e-5 5.04e-4  2.80e-3 6.31e-6 7.68e-4 7.71e-3 3.31e-6 7.51e-5 2.35e-4

Shekel  —10.523  —10.486 -2.871 —10.507 —9.998 -5.126  -10.523  -10.169 -5.029 —-10.517 -9.753 —2.427
HN6 -3.317 —3.306 —3.290 -3.312 —3.308 -3.291 -3.318 —3.298 -3.201 -3.316 —3.2945 -3.159
GWI10 1.18e-2 3.28e-2 9.75e-2 0.912 1.093 1.367 13.968 28.083 56.223 9.88e-3 2.39%-2 0.585
Sphere  2.09e-10  2.33e-8 5.74e-5 1.29¢-3 3.06e-3 7.00e-3 0.180 0.562 0.863 5.31e-4 3.24e-3 0.154
F16 26.073 26.109 26.130 26.096 26.122 26.876 26.356 26.668 27.270 26.061 26.129 26.323

suoneolddy pue spoyley uoneziundQ [eqo|D usAud-eled m HEL



TABLE 5.11  Specific Statistical Results of NFE Obtained by SOCE, KMS, EGO and HAM

SOCE KMS EGO HAM
Func Min Max Mean Min Max Mean Min Max Mean Min Max Mean
Shub 14 138 68 14 >300(8) >243.7 29 111 71 34 >300(5) >208.7
GW2 32 273 140.3 >300 >300(10) >300 24 >300(3) >157.3 58 >300(7) >244
SE 29 55 334 20 >300(1) >57.4 30 123 54.2 21 73 41.5
Peaks 29 46 37.3 17 92 39.8 21 45 34 21 >300(1) >67
Beale 58 249 151.9 80 237 156.1 >300 >300(10) >300 114 >300(1) >185.2
Alp 23 68 38.4 23 >300(4) >176.5 15 43 23.8 21 >300(1) >75.4
F1 29 242 108.5 56 >300(7) >235.5 39 105.1 155 30 >300(1) >93.7
Rast 10 64 25.6 11 >300(7) >214.9 >300 >300(10) >300 46 171 102.4
Levy 16 74 38.6 19 71 41.2 18 >300(1) >103.1 37 76 50.9
Zakh 63 231 134.8 54 >300(1) >198 28 >300(4) >157.5 42 63 48.2
Shekel 107 >300(2) >166.1 245 >300(9) >294.5 240 >300(5) >282.5 108 >300(8) >263.3
HN6 55 149 89.1 70 112 87.3 37 >300(3) >123.4 68 >300(3) >151.1
GW10 >300 >300(10) >300 >300 >300(10) >300 >300 >300(10) >300 >300 >300(10) >300
Sphere 138 141 138.6 >300 >300(10) >300 >300 >300(10) >300 261 >300(5) >286.5
Fle6 111 265 176.8 114 >300(1) >182.4 >300 >300(10) >300 187 >300(4) >252.8

g€l m ID0S
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FIGURE 5.5 Histogram of mean values of NFE.

four algorithms are evaluated. Among them, SOCE performs the best. It is
worth noting that all the four algorithms have the same NFE on GW10. In
Table 5.10, the median values of SOCE, KMS, EGO and HAM on GW10
are 3.28e-2, 1.093, 28.083 and 2.39¢-2, respectively. Hence, the accuracy of
their results is used for ranking. In summary, SOCE is a promising global
optimization algorithm for expensive black-box multimodal problems.

Although Kriging-based optimization technologies commonly can-
not work well on high-dimensional problems, the proposed SOCE is still
tested on the 50-dimensional Rosenbrock function in this work. Here,
the maximal NFE is defined as 1,500. Figure 5.6 shows the true func-
tion values obtained by SOCE within 1,500 function evaluations. As
discussed previously, QRS begins to work after 1,326 (0.5n*+1.5n+ 1)
samples are added.

In Figure 5.6, the best value changes slightly between 2.5¢6 and 2e7
within 1,326 function evaluations. It demonstrates that Kriging cannot
efficiently guide SOCE to search the design space anymore. The combina-
tion of QRS and Kriging makes the overall trend begin to decrease after
1,400 samples. However, the obtained best value 1.81e6 after 1,500 samples
is still far away from the true global optimum 0. The essential reason for
the poor performance is that the approximation accuracy of the two sur-
rogates is not good enough on 50-dimensional problems. Hence, SOCE
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is not appropriate for high-dimensional problems (with 50+ design vari-
ables) and its better scope of application is lower than 20 dimensions.

5.4.2 Comparison Test on Nonlinear-Constrained Examples

Based on the overall optimization flow in Figure 5.2, a penalty strategy is
suggested to make SOCE applicable for nonlinear-constrained optimiza-
tion. This strategy involves two penalty functions as follows.

F=Yy; +10° Y max(Z,0) i=1,2,...,m (5.4)

i=1

Yohj lfVZlﬁo i=12,...m
F= . (5.5)
Yohj+10 le|Z,>0 i=12,....m

Y, refers to the true objective value and Z, is one of the constraint values.
As previously discussed, SOCE needs to sort samples to get the local con-
vergence criterion and update promising regions in Algorithm 5.1. Hence,
Eq. (5.4) is employed to get the actual function value with the penalty term
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for ranking. Besides, Eq. (5.4) is also used to select promising solutions in the
multi-start optimization process. On the other side, Eq. (5.5) is used to get the
present best value for the termination judgment. For nonlinear-constrained
optimization problems, SOCE constructs surrogate models for objective
and constraint functions, respectively. Equations (5.6) and (5.7) describe the
optimization process on surrogate models.

GWO — Minimize  fous(x)+10" Y max (gl (x),0)  (5.6)

i=1

MSSQP — Minimize fi,g ()

fhoy (x)20

A2

st Gig(x)<0 (.7)

gln(qrg (X)SO i:1,2,...,m

where i, (x) is the Kriging model of the ith constraint. fors(x) and

fKrg (x) are the QRS and Kriging models of objective functions, respec-
tively. In this section, SOCE is tested on nonlinearly constrained problems
(Zhang et al., 2008; Regis, 2014), which include five complex mathematical
examples (G6, G7, G8, G9, G10) and two engineering problems (welded
beam design (WB4) and speed reducer design (SR7)). The target values
are given in Table 5.12. In the same way, all the tests are repeated ten
times. Additionally, as contrast, KMS, EGO and HAM utilize Eq. (5.4)
to deal with these constrained benchmark examples. Figure 5.7 presents
the representative results of SOCE on these problems. Since G7 is a high-
dimensional problem, the clear results close to the present best value are

TABLE 5.12  Nonlinear-Constrained Benchmark Problems for Global Optimization

Number of Number of Best Known Target
Problems Design Variables Constraints Value Value
Benchmark G6 2 2 -6,961.8139 —-6,800
mathematical  G7 10 8 24.3062 25
examples G8 2 2 ~0.0958 ~0.09
G9 7 4 680.6301 1,000
G10 8 6 7,049.3307 8,000
Engineering WB4 4 7 1.7250 2.5
examples SR7 7 11 2,994.42 2,995
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also provided. It is clear that SOCE can quickly focus on the boundaries
of constraints and find feasible solutions. Especially, SOCE can get accu-
rate results with fewer function evaluations on G6, G8, WB4 and SR7. For
high-dimensional examples G7, G9 and G10, SOCE can mostly find their
target values but higher computation cost is required.

Tables 5.13 and 5.14 give the statistical results including the obtained
function values and NFE. SOCE has excellent performances on G6, G8,
WB4 and SR7. For G9 and G10, SOCE just fails two times within 300
function evaluations, but it still gets the acceptable results 1,012.288 and
8,260.758 that are quite close to their target values. Additionally, it can

TABLE 5.13  Statistical Results of Function Values on Nonlinear-Constrained Problems

Problems G6 G7 G8 G9 G10 WB4 SR7

SOCE Best Value —6,961.813 24.644 —0.0958 772.220 7,109.074 1.726 2,994.471
Med. value —6,953.338 26.208 —0.0937 927.255 7,767.577 2.205 2,994.471
Worst value —6,872.775 28.571 —0.0902 1,012.288 8,260.758 2.349 2,994.657

HAM Best Value —6,339.926 602.933 —0.0950 966.166 1.28el1 2.934 3,124.147
Med. value —3,338.948 1.54el0 —0.0940 1,294.343 2.21ell 3.191 3,222.033
Worst value —1,356.719 4.13e10 —0.0912 1,740.238 3.71ell 8.272 3,401.861

KMS Bestvalue —6,073.916 169.209 —0.0943 825.588 1.65ell 2.314 3,041.883
Med. value —1,500.888 398.865 —0.0738 1,403.688 2.66ell 5.097 3,112.072
Worst value 1.15e10  2,088.117 —0.0579 3,083.203 3.87ell 1.45e9 3,191.210

EGO Best value 1.36e9 385.207 —0.091 763.358 6.30el10 2.654 3,051.468
Med. value  1.16e10  622.641 -0.057 1,033.078 1.88ell 5.142 3,070.588
Worst value  3.52el10 1,178.897 —0.015 1,295.343 2.58ell 7.511 3,151.450

TABLE 5.14  Statistical Results of NFE on Nonlinear-Constrained Problems

Problems G6 G7 G8 G9 G10 WB4 SR7

SOCE Min NFE 20 117 35 79 156 34 39
Mean NFE 439 >266.4 57 >170.7 >241.2 57.3 62.9
Max NFE 65 >300(8) 114 >300(1) >300(1) 100 85

HAM MinNFE  >300  >300 69 295 >300  >300  >300
MeanNFE  >300  >300 1158 >2995 >300  >300  >300
Max NFE  >300(10) >300(10) 192  >300(9) >300(10) >300(10) >300(10)

KMS MinNFE  >300  >300 16 71 >300 17 >300
MeanNFE  >300  >300 >271.6 >2183 >300 >271.7  >300
Max NFE  >300(10) >300(10) >300(9) >300(6) >300(10) >300(9) >300(10)

EGO MinNFE  >300  >300 10 29 >300 >300  >300
MeanNFE  >300  >300 >243.6 >207.9 >300  >300  >300
Max NFE  >300(10) >300(10) >300(8) >300(6) >300(10) >300(10) >300(10)
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be seen that SOCE cannot find its target value within 300 function eval-
uations on G7 in most cases. However, the range of the optimal values
[24.644, 28.571] obtained by SOCE on G7 is satisfactory. HAM, EGO and
KMS sometimes can reach the target value within 300 NFE on G8 and
G9, but all of them cannot go close to the target value on G7 and G10.
Especially on G10, HAM, EGO and KMS can hardly find feasible solutions
within 300 NFE. Although KMS and HAM also failed on G6, they have
almost reached the target. HAM, EGO and KMS have acceptable perfor-
mance on WB4 and SR7, but few of them can complete the mission within
the maximal NFE. After the comparison test, it can be found that SOCE is
also an efficient and robust algorithm for nonlinear-constrained EBOPs.

5.5 CHAPTER SUMMARY

In SOCE, a surrogate-based global optimization algorithm SOCE is pre-
sented, which can solve multimodal EBOPs and constrained EBOPs.
SOCE employs Kriging and QRS to construct two surrogate models. Since

Kriging models can always generate multiple predictive optimal loca-
tions, an MSSQP is suggested to find them as supplementary samples. To
guarantee the diversity of the new samples, MSSQP defines an allowable
distance to eliminate redundant samples. QRS models can predict the
overall trend of a true model, thus the nature-inspired global optimiza-
tion algorithm GWO is utilized to capture the global optimum of QRS
models. When the optimization process gets trapped in a local optimum, a
clustering-based space exploration strategy is activated to make the search
focus on unexplored regions. This proposed strategy includes four steps:
(1) Generate multiple clustering centers; (2) Create small regions around
these centers; (3) Count the current samples located in these regions and
update regions until a defined ratio is reached; (4) Generate new samples
and delete the samples outside of these regions. In this work, the specific
pseudo is provided and a graphic example is shown to demonstrate the
remarkable capacity of SOCE on multimodal EBOPs. To verify the robust-
ness of SOCE, tests were repeated ten times on 15 benchmark examples.
Besides, three surrogate-based global optimization algorithms EGO,
HAM and KMS were compared with SOCE. The results showed the pow-
erful capacity of SOCE in dealing with multimodal EBOPs. Finally, two
penalty functions were proposed to make SOCE applicable for constrained
optimization. In the tests of seven nonlinear-constrained examples, SOCE
successfully found satisfactory solutions with fewer function evaluations.
In summary, SOCE is a promising global optimization algorithm for mul-
timodal EBOPs and constrained EBOPs.
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NOTE

1 Based on “Surrogate-based Optimization with Clustering-based Space
Exploration for Expensive Multimodal Problems,” published in [Structural and
Multidisciplinary Optimization], [2018]. Permission obtained from [Springer].
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CHAPTER 6

HSOSR

Hybrid Surrogate-Based
Optimization Using Space
Reduction for Expensive
Black-Box Functions’

6.1 INTRODUCTION

Expensive black-box problems (EBPs) are prevalent in modern engineer-
ing design (Craven et al.,, 2016). Traditional optimization techniques,
like swarm intelligence and evolutionary computation (Mirjalili et al.,
2014; Park & Kim, 2017), are difficult to get EBPs’ global optima, primar-
ily because of the substantial number of expensive function evaluations.
Surrogate-based global optimization (SBGO) plays an important role in
today’s simulation-based industrial design (Queipo et al., 2005; Wang &
Shan, 2007).

In the past two decades, plenty of researchers focused on the develop-
ment of SBGO algorithms and their applications (Forrester & Keane, 2009;
Gutmann, 2001; Kleijnen, 2009; Myers et al., 2004; Tang et al., 2013; Younis
& Dong, 2010). Ong et al. (2003) introduced a hybrid approach that com-
bines surrogate modes with evolutionary algorithms to solve the global
optimization of EBPs. Wild et al. (2008) presented a derivative-free opti-
mization algorithm called ORBIT, which employs RBF and a trust-region
framework to solve unconstrained expensive optimization problems.

144 DOI: 10.1201/9781003636267-6
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ORBIT was tested on two engineering applications, calibration of a water-
shed and optimization of a bioremediation plan, and the final results
suggested that ORBIT could use fewer function evaluations to complete
optimization. Park and Kim (2017) combined a generalized regression
neural network with the particle swarm optimizer (PSO) to develop a new
surrogate-assisted global optimization algorithm (MUGPSO). Compared
to the original PSO, MUGPSO showed improvement in solution quality
and computational efficiency. Li et al. (2017) presented a Kriging-based
constrained global optimization (KCGO) algorithm to solve expensive
nonlinear constrained problems. KCGO includes two phases: (1) “How
to find the feasible solutions” and (2) “How to find the better solutions,”
which can help KCGO find the global optimum even if the initial samples
are infeasible.

In recent years, many researchers have been paying attention to hybrid
surrogate-based optimization approaches. Zhou et al. (2011) combined dif-
ferent independent surrogates into an ensemble model to improve the pre-
diction accuracy. A recursive process was proposed to obtain the updated
weights for each stand-alone surrogate. Through tests on five numerical
cases, the ensemble technique showed its advantages in saving sampling
costs. Gu et al. (2012) developed a hybrid and adaptive meta-model-based
(HAM) global optimization algorithm that employed PR, Kriging, and
RBF to estimate the exact objective function, respectively. According to
predictive results from the three surrogate models, HAM created seven
candidate sets to generate supplementary sample points. HAM was veri-
fied by various numerical examples and used for the crashworthiness
simulation of a vehicle, and the results showed remarkable computation
efficiency and robustness performance. Viana et al. (2013) proposed the
multiple surrogates EGO (MSEGO) algorithm that improves the paral-
lelism of EGO. MSEGO can add several new sample points in each opti-
mization cycle based on the predictions of these surrogates, which can
considerably reduce the number of iterations required for convergence.

In order to solve unconstrained EBPs, a new algorithm—“Hybrid
Surrogate-based Optimization using Space Reduction” (HSOSR) is pro-
posed in this chapter. Since Kriging and RBF have advantages in predicting
nonlinear problems, they are employed to construct surrogate models of
objective functions, respectively. Generally, different approximation tech-
niques may get different promising regions in a design space. We present
a space reduction approach that fuses “Potentially Better Regions” from
Kriging and RBF to create two subspaces for exploration. Additionally, a
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multi-start optimization strategy is employed to search these subspaces on
Kriging and RBF. The supplementary samples in each cycle will be selected
to avoid repetition. Once the algorithm gets trapped in a local optimal
location, a proposed strategy will be triggered to make HSOSR explore the
sparsely sampled area of the design space.

6.2 HSOSR ALGORITHM
6.2.1 Surrogate Models — Radial Basis Function

The RBF approximation technique was originally developed by Hardy
(1971) and then modified by Dyn et al. (1986). As its name shows, RBF is
composed of multiple radial basis functions and it can also be understood
as a single-layer neural network. The general expression of RBF is sum-
marized as follows:

f(x)=wT1//=2w,»l//(Hx—c(i) ) (6.1)
i=1

In Eq. (6.1), w is a weight vector, x is the to-be-tested location, and c is the

center vector. Besides, m denotes the number of input samples and y (e)

represents the basis functions that have multiple forms and they are shown
in Eq. (6.2).

linear y(r)=r
cubic y(r)=r’ (6.2)
thin plate splinew (r)=r>Inr

where r refers to the Euclidean distance between input vector x and center
vector ¢. In HSOSR, the cubic basis function is employed to construct RBF.

6.2.2 HSOSR Construction Process

In this section, the proposed HSOSR will be explained in detail
HSOSR is different from the traditional hybrid surrogate-based (or
meta-model-based) methods that commonly fuse the results from all the
surrogates with weights or construct an ensemble model to combine the
advantages of all the surrogates. HSOSR employs Kriging and RBF to
construct surrogates for the same expensive black-box objective function,
respectively. The better design regions predicted by Kriging and RBF are
identified and two promising design subspaces are created for optimiza-
tion exploration. The specific demonstrations are summarized in the fol-
lowing contents.
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6.2.2.1 Space Reduction

For nonlinear multimodal problems, space reduction techniques can
make optimization search focus on the potentially optimal regions and
avoid unnecessary computation costs in non-significant areas. In this
chapter, a large number of samples are first generated to get the predictive
values of the Kriging and RBF models. According to the predictive results,
HSOSR selects top M sample points from Kriging and RBF, respectively.
Subsequently, two promising regions are identified based on these sample
points: one is from Kriging and the other comes from RBF.

Rankl Rank1 Rankl Rank1
Skrgl > SkrgZ > T Skrgd > Ykrg
Rank2 Rank2 Rank2 Rank?2
StopM Skrgl > Skrgz > ) Skrgd > Ykrg
g S| .
SRankM SRankM SRankM RankM
krgl > krg2 > Y krgd > krg
T
_ . Rankl @Rank2 RankM
Lbk,g,' = min [ Skrgi s Skrgi yeeey Skygi ]
T
Rankl gRank2 RankM
Ubkrgi = max[skrgi > Skrgi seeey Skrgi ]
T
Range _krging; = [Lbk,g,» s Ubjgi ]
i=1,2,....d
SR(mkl SRankl SRankl YRankl (63)
rbf1 > rbf 2 > T rbfd > rbf
SRankZ SRankZ SRunkZ Rank2
StopM rbf1 > rbf2 > T rbfd > rbf
A : : :
SRankM SRankM SRankM RankM
rbf1 > rbf2 > T rbfd > rbf

T
: Rankl qRank2 RankM
Lb,hf,' = mln[Srhﬁ s Srbﬁ yeees Srbfi
T
Rankl QRank2 RankM
Ubyy; = max[srbﬁ sSifisee o> S

Range_RBF, = [Lbrbfi s Ubyyi ]T
i=1,2,....d

In Eq. (6.3), Range_Kriging and Range_RBF denote the two promising

regions, respectively. S,i‘;fg,’M and S,tZ}’M are the ranked top M samples from

Kriging and RBF, M is the number of good samples, and d denotes the
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dimension. In addition, Yklfg”k’ and Y,ff””k’ are the predictive values from

the two surrogate models, and Lb; and Ub; represent the lower and upper
bounds, respectively. Based on Range_Kriging and Range_RBF, two sub-
spaces Range_union and Range_intersection are defined. The detailed
pseudo codes are summarized in Algorithm 6.1.

Algorithm 6.1(a) Create the Promising Ranges—Range_union

(01) Begin

(02)  Sp « Carry on Latin Hypercube Sampling (LHS) to obtain multiple
starting points.

(03)  Yrbf < Evaluate the RBF values at these starting points Sp

(04) Ykrg < Evaluate the Kriging values at these starting points Sp

(05)  Goodpoints_r < Sort the RBF values Yrbfand find the correspond-
ing points

(06) Goodpoints_k < Sort the Kriging values Ykrg and find the corre-
sponding points

(07) Num_rankl < Define the number of the selected good points.

(08) Range_r, Range_k < Define the promising range by the top Num_
rankl good points, respectively.

(09) fori« 1toD ('The number of dimensions)

(10) Range_union_Ib(i) < Get the minimum boundary from Range_r
and Range_k at the ith dimension.
11) Range_union_ub(i) < Get the maximum boundary from

Range_r and Range_k at the ith dimension.
(12)  end for
(13) Range_union < Gettherange [Range_union_lb; Range_union_ub).
(14) End

Intuitively, Range_union is the union set of Range_Krigingand Range_RBF,
and Range_intersection is the overlap of Range_Kriging and Range_RBF.
Both Range_union and Range_intersection include better regions from
Kriging and RBF, which decreases the risk of missing the global optimum.
In Algorithm 6.1(b), after the top Num_rank2 points of Kriging and RBF
are obtained, the same points in Goodpoints_r_inter and Goodpoints_k_
inter will be recorded in Points_intersection. These points in Points_
intersection may gather in a small region or may be distributed in several
local optimal regions. Finally, the subspace is created to enclose the points
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FIGURE 6.1 (a-d) Graphic demonstration of GW function.

set Points_intersection. Figures 6.1 and 6.2 show how to create the pro-
posed subspaces, which involve two cases on Griewank (GW) and Ackley
functions, respectively. Intuitively, GW and Ackley have manylocal valleys,
but Ackley has a clearer convergence trend to its global minimum. Since
GW has multiple similar valleys in the whole space, the top M samples
from Kriging and RBF scatter in different local optimal regions. It can be
seen from Figure 6.1b that Range_Kriging and Range_RBF enclose several
promising local regions, respectively. Besides, Range_intersection focuses
on the common better regions from the two surrogates. From Figure 6.1d,
it is clear that Range_intersection encloses the exact global minimum and
three other local minima and Range_union covers all the predicted prom-
ising regions from Kriging and RBF. Due to the characteristic of Ackley,
the top M samples from the two surrogates are located in a concentrated
area around the true global optima. Therefore, Range_intersection identi-
fies an accurate reduced space that encloses the global optimal solution.
In conclusion, Range_union can contain more local optimal regions to
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FIGURE 6.2  Graphic demonstration of Ackley function.

avoid missing the global optimum, and Range_intersection can focus on
the best joint regions of Kriging and RBF to accelerate convergence. In
this work, the total number of cheap points generated by LHS is 1,000,
Num_rankl =100 and Num_rank2=50. It is worth noting that the two
subspaces are alternately employed for optimization search with iterations
going on. The detailed pseudo codes are summarized in Algorithm 6.1(b).

Algorithm 6.1(b) Create the Promising Ranges—Range_intersection

(01)
(02)

(03)

(04)
(05)

Begin
Goodpoints_r < Sort the RBF values Yrbfand find the correspond-
ing points
Goodpoints_k < Sort the Kriging values Ykrg and find the corre-
sponding points

Num_rank2 < Define the number of the selected good points.
Goodpoints_r_inter —Goodpoints_r (1: Num_rank?2, :)
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(06) Goodpoints_k_inter —Goodpoints_k (1: Num_rank?2, :)
(07) fori <« 1to Num_rank2
(08) forj < 1to Num_rank2

(09) Error < Get the error of | Goodpoints_r_inter(i, :)-
Goodpoints_k_inter(j, :) |

(10) if Error is small enough

(11) Record i and j

12) end if

(13) end for
(14) end for
(15)  Points_intersection < Select the points that have good performance

on both Kriging and RBF.
(16) fori—1toD
(17) Range_intersection_Ib(i) < Min(Points_intersection(:, i))
(18) Range_intersection_ub(i) «— Max(Points_intersection(:, i))

(19) end for

(20) Range_intersection < Get the range [Range_intersection_lb;
Range_intersection_ub]

ith dimension.

(21) End

6.2.2.2 Multi-Start Optimization on Kriging and RBF
As Figures 6.1 and 6.2 show, surrogate models like Kriging and RBF, always
produce multiple approximate local optima, especially for highly nonlin-
ear multimodal problems. Some of these local optima are in the neigh-
borhood of the true local or global optimal solutions but some are not.
Compared with traditional global optimization algorithms, like genetic
algorithm or particle swarm optimization, multi-start optimization can
capture multiple local optima from surrogate models more easily. On one
hand, supplementing multiple sample points in each cycle can improve
the algorithm’s parallelism. On the other hand, multi-start optimization
can increase the probability of successfully capturing the global optimum.
In each iteration, HSOSR utilizes Latin hypercube sampling (LHS) to
generate several starting points, where the local optimizer-sequential
quadratic programming (SQP) is employed to perform optimization
search. Considering the demand for sample diversity, two different dis-
tance values are defined to select new samples alternately. The multi-start
optimization exploration is carried out in the subspaces of the Kriging
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and RBF models, respectively. Then, all the to-be-supplemented samples
are collected and added to a database for further selection. HSOSR prom-
ises that the final supplementary samples should keep a distance between
each other. Once the algorithm gets trapped in a local optimal region, a
proposed strategy begins to explore the sparsely sampled area. The specific
pseudo code is listed in Algorithm 6.2.

Algorithm 6.2(a) Exploitation on Surrogates

(01) Begin
(02) ifthe remainder of (iteration/3)==
(03) dis « A*sqrt(range_legnth(1)\2+ range_legnth(2)72). Here,
range_length denotes the length vector of the design range (1e-3)
(04) else
(05) dis — A,*sqrt(range_legnth(1)"\2+ range_legnth(2)/2).(1e-6)
(06) endif
(07) Gn « If D (Dimension) is smaller than 7, the number is 5D.
Otherwise, the number is 2D
(08) M « Call Latin Hypercube Sampling to get Gn starting points in
the defined subspace.
(09) fori=1:Gn
(10) S_rbf <« Call SQP to perform optimization search at the ith
starting points M(i) on RBE. Save the obtained local optimal
solution in the defined subspace.
(11)  end for
(12)  S_rbf _select < Select the better samples from S_rbfand guarantee
that the selected sample points keep a distance (bigger than dis)
between the existing samples.
(13) fori=1:Gn
(14) S_Kriging < Call SQP to perform optimization search at the ith
starting points M(i) on Kriging. Save the obtained local optimal
solution in the defined subspace.
(15)  end for
(16) S_krg_select < Select the better samples from S_Kriging and guar-
antee that the selected sample points keep a distance dis between
the existing samples.
(17) S_new « [S_rbf select; S_krg_select]
(18) End
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In Algorithm 6.2(a), a distance dis is provided to make samples have the
diversity. When iteration is the multiple of 3, the coefficient of dis is A,.
Otherwise, the coefficient is defined as A,. In the subsequent tests, A, is
le-3 and A, is le-6. In the loop, different sizes of dis affect the selection
of samples from the predicted sets S_rbf and S_Kriging. The larger the
parameter dis is, the more rigorous the selection will be. Eventually, the
selected promising samples from Kriging and RBF are gathered into a
sample set S_new.

When dis gets larger (Employ A,), multi-start optimization some-
times may hardly find a satisfactory solution from Kriging and RBF,
which makes S_new empty. Sometimes, the algorithm may get stuck
near a local valley, and the present best value cannot be improved for
multiple iterations. Once the above-mentioned cases happen, Algorithm
6.2(b) is activated to explore the sparsely sampled area. Since the esti-
mated MSE of Kriging has the maxima at the sparsest area as Figure 6.3
shows, the proposed multi-start optimization is employed to get the
updating samples in a randomly generated range. Figure 6.4 shows the
captured new samples located in the sparse area. Algorithm 6.2(b) is
shown below.

MSE

FIGURE 6.3 MSE of Kriging.
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FIGURE 6.4 Samples updating by maximizing MSE.

Algorithm 6.2(b) Exploration of Sparsely Sampled Area

(01) Begin
(02) if S_new is empty or the present best value does not change remark-
ably for continuous 10 iterations.

(03) w < Generate a random value between 0 to 1.

(04) Ibmse < (range_lb+range_ub)/2-w(range_ub-(range_lb+range_
ub)/2).

(05) ubmse <«  (range_lb+range_ub)/2+w(range_ub-(range_lb+
range_ub)/2).

(06) range_mse < [lbmse;ubmse]

(07) M_mse < Call Latin Hypercube Sampling to get Gn starting
points in the defined range_mse.

(08) fori=1: Gn

(09) S_mse « Call SQP to perform optimization search at the ith

starting points M_mse(i) on the MSE function of Kriging. Save
the samples with local maximal MSE values in range_mse.
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(10) end for

(11) S_new <« [S_new; S_mse].

(12) endif

(13) S_new_checked < Check the repeated points in S_new and delete
them.

(14) END

6.2.2.3 Optimization Flow

The whole optimization processis shown in Figure 6.5, where “Exploitation”
and “Exploration” affect each other and jointly search the global optimum.
The termination criterion is proposed for the subsequent comparison tests
as below,

|Voptimal = Yest| <1% or NFE>300, if Yopiima 20 and dim<8
yoptimal

Doptinad ZI0] 106 or NFE>500,  if Yopuat #0 and dim>8
yuptimal

ot <0.001 or NFE>300, if Yopima =0 and  dim <8

Yiew <0.001 or NFE>500, if Yopiima =0 and - dim=8

(6.4)

where y,, is the present best value. y,;,,, is the true optimal value. NFE is
the number of function evaluations and dim refers to the dimension.

6.3 COMPARISON EXPERIMENTS

In order to verify the efficiency and robustness of the algorithms, 15 rep-
resentative benchmark functions are given in this chapter for compara-
tive testing, including ten low-dimensional problems (Ack, GW, Peak, ST,
AP, F1, HM, GF, Levy, HN6) and five high-dimensional problems (Schw3,
Trid, Sums, Sphere, F16). It is worth noting that most of the benchmark
algorithms are highly nonlinear problems.

In contrast, five methods, including EGO, CAND, HAM, MKRG, and
MRBE, are employed in this chapter. Among them, EGO is a Kriging-based
global optimization algorithm which captures new samples by maxi-
mizing the EI function. CAND originally comes from a stochastic RBF
algorithm presented by Regis and Shoemaker (2007) and is currently
implemented by Miiller’s surrogate toolbox in this work. HAM is a hybrid
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FIGURE 6.5 Flowchart of HSOSR.

meta-model-based method using three surrogates to predict the global
optimum, which has a robust performance in most mathematical cases.
MKRG and MRBF have the same idea as HSOSR, except that MKRG and
MRBEF just use their predictive information (One from Kriging and the
other from RBF) and explore the global design space. Figure 6.6 shows
the iterative results of the six algorithms on all the above-mentioned cases
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within 300 function evaluations. It is worth mentioning that most cases
have clearer subgraphs to describe the convergent parts. Since most of
these test cases are multimodal problems, it is easy for an algorithm to get
stuck in a local valley. As Figure 6.6a shows, CAND, HSOSR, and MRBF
get closer to the true target, but EGO, HAM, and MKRG get stuck in some
local optimal regions. It also can be seen from Figure 6.6¢, e, h, and j that
HAM has the worst performance and cannot jump out of a local region
within 300 function evaluations. From Figure 6.6a, g, i, and 1, it can be
found that EGO has difficulty in dealing with Ackley, Him, Levy, and Trid.
Besides, CAND performs worse on higher-dimensional problems (HNG6,
Schw3, Trid, Sums, F16, and Sphere). Although MKRG decreases slowly
at the beginning as Figure 6.6¢, i, j, 1, and n show, it can go close to the
target values at last. Intuitively, HSOSR and MRBF are relatively efficient.
In most cases, HSOSR and MRBF can quickly find the global optima.
However, MRBF has a slower convergence speed compared with HSOSR
in Figure 6.6b, e, f, and i-k. In summary, Figure 6.6 provides a prelimi-
nary comparison of the six algorithms on iterative results. On one hand,
Figure 6.6 shows the convergence abilities of these different algorithms.
On the other hand, it proves that HSOSR is more efficient than others on
these benchmark cases.

Since the stochastic nature of the six algorithms, ten tests are repeated
on all the cases. Equation (6.4) is employed as the termination crite-
rion in this test. Besides, since EGO spends much execution time on
higher-dimensional problems, the allowable NFE in Eq. (6.4) is defined as
300 for the high-dimensional cases. Tables 6.1 and 6.3 show the mean NFE
and final best values of the six algorithms. Tables 6.2 and 6.4 list the statis-
tical results of NFE. NFE refers to the number of function evaluations. The
best results in Tables 6.1-6.4 are flagged with boldface. In Tables 6.2 and
6.4, Min, Median and Max represent the minimum NFE, median NFE,
and maximum NFE, respectively. In the four tables, the results with the
symbol “>” indicate that at least one test cannot find target values within
a defined NFE. Besides, the numbers in brackets reflect the failure times.

From Tables 6.1-6.4, it can be found that MKRG, MRBF, HAM, EGO,
and CAND have several failure times on low-dimensional multimodal
problems. Since HAM does not have a strategy that makes the search jump
out of a local region, it performs the worst on multimodal problems. As per
the previous discussion, Ackley possesses a lot of local optimal solutions.
MKRG, EGO, and HAM can hardly find a value below 0.001 on Ackley
within 300 function evaluations. Similarly, MKRG, MRBF, EGO, and HAM
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TABLE 6.1 Mean NFE and Final Best Values of HSOSR, MKRG and MRBF

HSOSR MKRG MRBF
Func. NFE Best Value NFE Best Value NFE Best Value
Ackley 139 [1.18e-4, >300 [0.067, >131 [3.91e-5,
9.43e-4] 4.331] 2.580]
GW 90 [1.37e-7, 133.2 [9.42¢-7, 149.4 [4.65e-5,
5.57e-4] 4.45e-4] 7.46e-4]
Peaks 30.3 [—6.551, 36.2 [—6.548, 85 [—6.547,
—6.491] —6.512] —6.487]
ST 38.4 [—78.329, 30.1 [—78.332, 30.2 [—78.173,
—77.599] —77.679] —77.585]
Alp 19.2 [—6.128, 354 [—6.129, 40.3 [—6.119,
—6.074] —6.076] —6.079]
F1 136.7 [—2.000, >161.5 [—2.000, >186.1 [—1.999,
—1.993] —1.879] —1.879]
Him 30.4 [5.96¢-6, >142.6 [8.62¢-7, 50.6 [5.02¢e-4,
7.02e-4] 1.23e-2] 9.13e-4]
GF 52.4 [0.524, 30.4 [0.523, >148.4 [0.525,
0.527] 0.528] 0.678]
Levy 190.6 [4.91e-4, >278.7 [3.95¢-4, >230.6 [7.97e-4,
9.60e-4] 1.951] 3.090]
HN6 52.6 [-3.313, 103.8 [—3.315, 92.5 [—3.306,
—3.291] —3.289] —3.290]
Schw3 299.8 [5.26e-4, >500 [0.075, >402 [7.67e-4,
9.84e-4] 1.823] 2.83e-3]
Trid10 169.9 [—208.785, 171.3 [—208.949, 292.6 [—208.336,
—207.92] —207.911] —207.906]
Sums 304.6 [5.61e-4, >500 [0.018, 315 [5.18e-4,
9.96e-4] 0.059] 9.91e-4]
Fl6 69 [26.016, 174.6 [26.002, 71.5 [25.927,
26.133] 26.128] 26.129]
Sphere 124.5 [5.32¢-4, >500 [8.08e-3, 111.7 [5.70e-4,
9.41e-4] 5.84e-2] 9.42e-4]

also have difficulty in dealing with Levy. Intuitively, HSOSR has the most
robust performance on all the low-dimensional problems. Furthermore,
HSOSR can use fewer function evaluations to get the target values.

For high-dimensional tests, it is difficult for MKRG, HAM, EGO, and
CAND to perform well on Schw3, Trid10, Sums, and Sphere. However,
MKRG, HAM, and CAND can efficiently get the target value on F16. Both
HSOSR and MRBF can solve high-dimensional cases well, but HSOSR
uses fewer NFE than MRBF on Schw3 and Trid10. Moreover, HSOSR finds
a satisfactory solution on F16 just using about 69 function evaluations.
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TABLE 6.2  Statistical NFE of HSOSR, MKRG and MRBF

HSOSR MKRG MRBF

Func. Min Median Max  Min Median Max Min Median Max
Ackley 88 113.5 245 >300 >300 >300(10) 94 112.5 >300(1)
GW 28 93 193 62 150 205 38 162 243
Peaks 16 24 59 20 35 56 20 68 247
ST 16 33 86 16 28 52 12 28 68
Alp 10 20 22 19 34 62 17 35 97
F1 92 131 223 98 159.5 >300(1) 53 196 >300(2)
Him 27 30.5 36 28 98.5 >300(2) 30 46.5 79
GF 27 54 82 16 30 53 25 119.5 >300(2)
Levy 95 187.5 299 203 >300 >300(7) 82 >300 >300(6)
HN6 37 52 72 60 106.5 129 42 75 211
Schw3 218 281 464 >500 >500 >500(10) 283 422.5 >500(3)
Trid10 115 163 237 145 161 246 208 291 397
Sums 242 311 336 >500 >500 >500(10) 234 303.5 426
Fl16 60 68 80 113 164 299 61 70 85

Sphere 106 119.5 149 >500 >500 >500(10) 101 1125 132

TABLE 6.3 Mean NFE and Final Best Values of HAM, EGO and CAND

HAM EGO CAND
Func. NFE Best Value NFE Best Value NFE Best Value
Ackley >300 [2.78e-3, >300 [0.037, >241.9 [7.49¢-4,
1.664] 0.503] 2.24e-3]
GW >164.8 [3.10e-5, 97.4 [1.42¢-6, >205.3 [1.57e-4,
7.40e-3] 7.73e-4] 7.40e-3]
Peaks >113 [—6.551, 31.5 [—6.551, 35.3 [—6.550,
—3.050] —6.518] —6.494]
ST >71.3 [—78.325, 335 [—78.332, 27.2 [—78.252,
—64.196] —77.803] —77.555]
Alp >53.6 [—6.128, 23.5 [—6.126, 26.8 [—6.124,
—2.854] —6.073] —6.080]
F1 85.5 [—2.000, 73.7 [—2.000, >226.3 [—1.999,
—1.983] —1.986] —1.879]
Him 76.2 [7.70e-6, >112.2 [1.78e-4, 82.8 [1.91e-5,
7.99¢-4] 7.39¢-3] 9.94e-4]
GF >164.9 [0.524, >136.9 [0.523, 25.9 [0.523,
1.079] 0.550] 0.528]
Levy >263 [2.15e-4, >300 [0.016, 224.1 [3.55e-4,
7.10e-2] 0.413] 9.92e-4]

(Continued)
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TABLE 6.3 (Continued)

Mean NFE and Final Best Values of HAM, EGO and CAND

HAM EGO CAND
Func. NFE Best Value NEFE Best Value NFE Best Value
HN6 >144.4 [—3.317, >82 [—3.310, >157.8 [—3.314,
—3.176] —3.202] —3.137]
Schw3 >500 [0.144, >300 [0.422, >500 [0.036,
2.693] 2.127] 0.447]
Trid10 >500 [—161.737, >300 [—29.129, >493.9 [—207.901,
26.035] —18.946] 91.161]
Sums >500 [1.45e-3, >300 [1.256, >500 [0.027,
3.191] 6.426) 0.347]
F16 >351.5 [26.109, >283.2 [25.994, 205 [26.042,
26.651] 26.527] 26.129]
Sphere >500 [5.80e-3, >300 [2.495, >500 [3.45e-3,
0.414] 9.393] 2.37e-2]
TABLE 6.4 Statistical NFE of HAM, EGO and CAND
HAM EGO CAND
Func. Min Median Max Min Median Max Min Median Max
Ackley >300 >300 >300(10) >300 >300 >300(10) 94 >290.5 >300(5)
GW 27 112.5  >300(4) 32 100 137 117 199.5  >300(2)
Peaks 22 43.5 >300(2) 20 30 45 18 28 60
ST 21 39.5 >300(1) 13 30 83 17 29 38
Alp 14 24 >300(1) 11 23 38 17 19 49
F1 27 66.5 205 25 57.5 166 90 234.5  >300(2)
Him 44 65.5 185 30 325 >300(3) 52 79.5 129
GF 63 122 >300(3) 22 58 >300(3) 17 24 40
Levy 115 >300 >300(7) >300 >300 >300(10) 157 223 278
HN6 48 88 >300(3) 38 46 >300(1) 52 79 >300(4)
Schw3 >500 >500 >500(10) >300 >300 >300(10) >500 >500 >500(10)
Trid10 >500 >500 >500(10) >300 >300 >300(10) 439 >500  >500(9)
Sums >500 >500 >500(10) >300 >300 >300(10) >500 >500 >500(10)
Fle6 160 3435 >500(4) 192 >300  >300(8) 182 193 259
Sphere >500 >500 >500(10) >300 >300 >300(10) >500 >500 >500(10)

As a summary of Tables 6.1-6.4, Table 6.5 shows the total NFE mean
(TNM) values, failure times, success rates, relative improvements of com-
putational efficiency (RICE) and relative improvements of success rates
(RISR) in all the cases. Importantly, RICE and RISR reflect the improved
levels of HSOSR than the other five methods. To sum up, HSOSR is a

promising global optimization algorithm for EBPs.
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TABLE 6.5 Summary of the Final Results

Algorithm TNM Failure Times Success Rate RICE RISR
HSOSR 1,747 .4 0 100% — —
MKRG >3,097.8 50 66.67% >77.28%1 50%1
MRBF >2,336.9 14 90.67% >33.74%1 10.29%1
HAM >3,788.2 75 50% >116.79%1 100%1
EGO >2,673.9 75 50% >53.02%1 100%1
CAND >3,452.3 52 65.33% >97.57%1 53.07%71

6.4 CHAPTER SUMMARY

In this chapter, an SBGO algorithm HSOSR is presented, which can solve
expensive black-box optimization problems. HSOSR constructs RBF and
Kriging models to approximate the true expensive problems, respectively.
In each iteration, a group of samples is employed to get the predictive
values from RBF and Kriging. Two promising regions from Kriging and
RBF are identified by these predictive values. Considering the relations
between the two promising regions, two reduced subspaces are created.
Furthermore, the optimization search begins to run in the two subspaces
alternately. Since RBF and Kriging models can always generate multiple
predictive optimal locations, a multi-start optimization algorithm is pro-
posed to find them as supplementary samples. The multi-start optimiza-
tion search promises that the new samples keep a defined distance from
the obtained samples. For the diversity of samples, two different sizes of
distance are suggested in this chapter. Once HSOSR gets stuck in a local
region, the multi-start optimization algorithm will be run on the esti-
mated mean square error of Kriging to explore the sparsely sampled area.

In order to verify the efficiency and robustness of HSOSR, ten
low-dimensional multimodal functions and five high-dimensional func-
tions are tested, and five other algorithms are employed as contrast refer-
ences. The results show the powerful capacity of HSOSR in dealing with
expensive black-box optimization problems. Compared with other classi-
cal algorithms, HSOSR can use fewer function evaluations to get close to
the true global optimal values.

NOTE

1 Based on “Hybrid Surrogate-based Optimization using Space Reduction
(HSOSR) for Expensive Black-box Functions,” published in [Applied Soft
Computing], [2018]. Permission obtained from [Elsevier].
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CHAPTER 7

MGOSIC

Multi-Surrogate-Based
Global Optimization Using a
Score-Based Infill Criterion’

7.1 INTRODUCTION

Due to rapid development and continuous progress in modern engineer-

ing, optimization design associated with high-fidelity simulation is gain-
ing more attention (Lakshika et al., 2017; Sala et al., 2016; Tyan et al.,
2015; H. Wang et al,, 2017; G. Zhou et al., 2017). On one hand, advanced
simulation techniques provide precise analyses for real-world applica-
tions; On the other hand, they also bring enormous computational costs
(Gu et al., 2017; Masters et al., 2017; Singh et al., 2017). Many complex sim-
ulation models are multimodal, black-box and time-consuming, which is
challenging for global optimization.

Commonly, it is difficult for derivative-based optimization methods
to solve expensive black-box optimization problems (EBOPs) (Ong et al.,
2003). This is because large numbers of operations on expensive models
produce a great computational burden, and meanwhile, uncertain error or
noise from simulation codes affects the accuracy of approximate deriva-
tives. Additionally, derivative-based methods overly depend on starting
points and easily get trapped in a local valley of multimodal problems.
Derivative-free optimization algorithms (Jiang et al., 2017; Meng et al.,
2016; Pan, 2012; L. Wang et al., 2017) involving evolutionary computation
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(EC) or swarm intelligence (SI) have developed for several decades, which
can optimize black-box models in parallel. These algorithms like parti-
cle swarm optimization (PSO) (Sun et al., 2013), gray wolf optimization
(GWO), bat algorithm (BA), differential evolution (DE) (Rocca et al., 2011)
and so on, have been widely used in actual applications. Although EC and
SI have remarkable advantages in global optimization, they have to utilize
large numbers of function evaluations to explore the design space, which
is not efficient for EBOPs. An effective approach to address this issue is to
build surrogate models in an optimization process.

Surrogate models, namely meta-models or response surfaces generally
use obtained expensive samples to construct simple mathematical expres-
sions as approximate models of complex problems (Q. Zhou, Y. Wang,
et al,, 2017). Commonly used surrogate models such as Kriging, RBF and
QRS can predict function values at the to-be-tested locations (Q. Zhou, P.
Jiang, et al., 2017). Although prediction error is inevitable, surrogate mod-
els can still give useful guidance information for optimization to improve
search efficiency. In general, a complete surrogate-based global optimiza-
tion (SGO) process includes the following steps: (1) Design of experiment
(DOE), that is, an initial sampling process; (2) Construct surrogate models
dynamically in each cycle; (3) Exploit surrogate models to find promis-
ing samples; (4) Explore sparsely sampled regions; (5) Evaluate the exact
function values of obtained new samples; (6) Repeat Steps (2) to (5) until
the termination criterion is met. A key factor or difficult point to develop
an efficient and robust SGO algorithm is how to find a balance between
“Exploitation and Exploration.” “Exploitation” refers to search based on
surrogate models where a local or global optimizer can be employed to
find the predictive best sample for subsequent model updating. Although
optimization efficiency is improved, pure “Exploitation” may make the
above search get stuck in a local valley. “Exploration” denotes search in
sparsely sampled areas, which can make an algorithm jump out of local
regions and continue looking for the global optimum.

Due to the wide existence of EBOPs in various fields, SGO has attracted
a lot of attention. Jones et al. (1998) developed an efficient global optimi-
zation (EGO) algorithm, which maximizes an “Expected Improvement”
criterion to capture the promising expensive samples. Gutmann (2001)
introduced a distinctive SGO strategy that includes two steps: (1) Assume
a target value for the true global optimum; (2) Select the next sample
(combined with the target value) that will cause the least “bumpiness” of

» <«
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surrogate models. Wang et al. (2004) presented a mode-pursuing sampling
method for SGO, which can generate more samples around the function
mode and meanwhile detect the regions possibly containing the global
minimum based on QRS. Regis and Shoemaker (2007) proposed a sto-
chastic response surface method that can select a supplementary sample
from a set of candidate points in each cycle by RBF approximation. Younis
and Dong (2010) presented a region elimination algorithm that identifies
several key unimodal regions to speed up the local search. Although most
of the above-mentioned methods have better global convergence capabil-
ities, they have lower sampling efficiency in each cycle. In other words,
these algorithms do not possess strong parallel capabilities.

Therefore, some scholars have begun to pay attention to both
the total computation cost and the iterative efficiency (parallelism) in SGO
algorithms (Cai et al., 2017). Ong et al. (2003) developed a parallel
SGO algorithm that combines a proposed hybrid optimizer with RBF. On
the one hand, the hybrid optimizer utilizes an evolutionary algorithm to
do global search; On the other hand, it employs the sequential quadratic
programming algorithm to realize local search on RBF. Importantly, the
parallelism of traditional evolutionary algorithms is retained in their
method. Gu et al. (2017) presented a hybrid and adaptive SGO algorithm,
HAM, that simultaneously uses Kriging, RBF and QRS to create several
sets for parallel sampling. According to the importance of these sets, the
number of to-be-selected samples in each set is different. The points that all
three surrogate models approve will have a bigger opportunity to be sam-
pled. In order to supplement multiple samples in each cycle, Viana et al.
(2013) developed a multi-surrogate EGO (MSEGO) algorithm. Instead
of using one single surrogate model Kriging, MSEGO maximizes the
“Expected Improvement” criterion over multiple surrogates. Krityakierne
et al. (2016) provided a multi-point SGO strategy that draws lessons from
the idea of multi-objective optimization. One objective is the expensive
function value of a point, and the other one is the minimum distance of
the point to other obtained points. Once the Pareto frontier is obtained,
multiple sample points can be selected by a candidate search strategy. Li
et al. (2016) decomposed the large-scale optimization space into several
subspaces for local exploitation and global exploration, which can avoid
the difficulties in constructing Kriging with a large size of training data.
In addition, a heuristic criterion was proposed to select promising samples
from candidate points obtained in these subspaces per iteration.
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This chapter introduces a new global optimization algorithm named
MGOSIC to solve unconstrained EBOPs. In MGOSIC, three surrogate
models, Kriging, radial basis function (RBF) and quadratic response sur-
faces (QRS) are dynamically constructed, respectively. Additionally, a
multi-point infill criterion is proposed to obtain new points in each cycle,
where a score-based strategy is presented to mark cheap points generated
by Latin hypercube sampling. According to their predictive values from
the three surrogate models, the promising cheap points are assigned with
different scores. In order to obtain the samples with diversity, a max-min
approach is proposed to select promising sample points from the cheap
point sets with higher scores. Simultaneously, the best solutions predicted
by Kriging, RBF and QRS are also recorded as supplementary samples,
respectively. Once MGOSIC gets stuck in alocal valley, the estimated mean
square error of Kriging will be maximized to explore the sparsely sampled
regions. Moreover, the whole optimization algorithm is carried out alter-
nately in the global space and a reduced space. In summary, MGOSIC not
only brings a new idea for multi-point sampling but also builds a reason-
able balance between exploitation and exploration.

7.2 ALGORITHM FLOW

In this section, the proposed algorithm flow is provided. Before MGOSIC
begins, an initialization process is required for the algorithm parameters
like design ranges, internal parameters of surrogate models, termination
variables, target values and so on. Subsequently, the specific algorithm
steps are summarized as follows.

« Step 1 Utilize optimized Latin hypercube sampling (OLHS) (Jin
et al., 2005) to identify initial sample points in the original design
range and then evaluate their exact sample values.

o Step 2 Create a database to save these expensive samples. Besides,
sort all the samples by their expensive function values.

« Step 3 Construct Kriging, RBF and QRS models based on the sam-
ples in the database, respectively.
Figure 7.1 shows a specific example to demonstrate Steps 1 to 3.
The employed function is called Himmelblau, which is a multimodal
problem. Kriging and RBF can capture the nonlinear feature of
Himmelblau, while QRS can just identify a general trend.
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FIGURE 7.1  Construction of surrogate models.

+ Step 4 Create a reduced subspace around the present best solution to
speed up the local convergence.

LbiSub — Sihest —w .(UbiRange _ LbiRange)
UbiSub — Sibest +w- (UbiRange _ LbiRange)
if Lb™ <Lb/"™*
then Lb « Lb’"
(7.1)
if Ub™ >Ub™™
then UbM™ « Ub*™

V i=12,...,d

Subspace; = [Lbf“b ,UbS ]
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where $/*' is the present best solution, Lb"* and Ub*"* are the
lower and upper bounds of the original design space, and L and
Ub™ are the bounds of the new subspace. In Eq. (7.1), w is a weight
coefficient that determines the size of this subspace. In this chapter,
wis setas 0.1.

« Step 5 Determine which space, the subspace or global space, will be
regarded as the search space in accordance with the present num-
ber of iterations. Define the numbers of the total cheap points (INV,
and N,), and the numbers of promising samples (M, and M,) in
the subspace and global space, respectively. In the subsequent tests,
N,=10,000 and N, = 1,000, M, = 100 and M, = 500.

« Step 6 Judge whether MGOSIC has got stuck in a local valley. If so,
the samples with bigger MSE values of Kriging will be chosen to
explore the sparsely sampled area. In the subsequent sections, more
details will be provided.

« Step 7 Evaluate Kriging, RBF and QRS values at all the N cheap sam-
ple points and select the top M samples from the three groups of
results, respectively. The points that are located in the top M samples
of all three surrogate models have a score of 3, and those located in
the top M samples of two surrogate models have a score of 2.

« Step 8 Firstly, save the predictive optimal points from Kriging, RBF
and QRS, respectively. Furthermore, select K, and K, promising solu-
tions from the point sets with scores 2 and 3, respectively. All these
points will be used to update the previous database. More details
about Steps 7 and 8 will be shown in the following section.

+ Step 9 Delete repeated samples to avoid unnecessary computation.

« Step 10 Evaluate expensive function values at the newly added sam-
ple points and sort them. Repeat Steps 2 to 10 until a termination
criterion is satisfied.

For better readability, a flowchart of MGOSIC is shown in Figure 7.2. The
termination criterion for the subsequent test is suggested as follows.

(7.2)

if dim>2, then y,. <target, or NFE>500
if dim<2, then yuy <target, or NFE>300
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FIGURE 7.2 Flowchart of MGOSIC.

where NFE denotes the number of function evaluations, target refers
to target values of expensive black-box problems, and dim represents
dimensions.

7.3 MULTI-POINT INFILL CRITERION

Before introducing this proposed infilling criterion, we will give an exam-
ple to make it easier to understand. Assume that there is a businessman
who has no idea about how to choose rabbits but wants to buy ten better
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ones from 1,000 rabbits. Besides, there are three experienced experts, each
of whom can recommend 100 better rabbits for the businessman based on
their respective opinions. Under this circumstance, firstly, the business-
man should buy the best ones that are recommended by the three experts,
respectively; Secondly, the businessman should identify which ones from
the 300 rabbits are recommended by all three experts, two experts and one
expert. Naturally, the businessman will select more rabbits that are jointly
recommended by more experts.

Intuitively, Kriging, RBF and QRS are three experienced experts who
can guide an optimization process, MGOSIC is the businessman and sam-
ple points are those rabbits. The total number of cheap points is N and the
number of recommended sample points is M. In this proposed infilling
criterion, three best solutions are first selected based on the three surrogate
models. The specific formulas are summarized below.

1 1 1 1 1 1 . topM k1
Sl > S2 > T Sd > Yk‘rg > K’bf > qus Matrix ’ = Slggn

krg
2 2 2 2 2 2
Sl > Sz > Y Sd > Ykrg > thf > qus rankl

= MatrixiZ?M = Sy

N N N N N N . _topM rank1
St S, s Sas Yae, Y, Y Matrixgs = Sgrs

rankl rankl rankl rankl

Ssml > Ssmz > IR Ssmd > 1fsm
rank2 rank2 rank2 rank2

Matrix;‘%)M — .Ssml > ' sm2 > ) Ssmd > .}/sm (73)

rankM rankM S rankM Y. rankM
sml > sm2 > Y smd > sm

sme {krg, rbf, qrs}
where Y™, Y™ and Y2 are the ith ranked predictive values from
Kriging, RBF and QRS, respectively. Besides, S;Z?gkl, S,'Zf”k1 and S,;fs”kl are
the best solutions obtained from the three surrogate models. In order to
improve the search accuracy, S, S and S can be obtained from
the three surrogate models by a global optimizer. In this chapter, the GWO
is employed to get them.

Subsequently, MGOSIC fuses the sample points from Matrix
MatrixiZJ@M and Matrix{?" into one big matrix, in which generally there are
multiple groups of repeated sample points. A scoring strategy is proposed

below.

topM
krg >
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rankl rankl rankl
Skrgl > SkrgZ > T Skrgd
rankM rankM rankM
Skrgl > Skrg2 ’ T Skrgd
rank1 rank1 rank1
Srbfl > Srhfz > T Srhfd
rankM rankM rankM
Srbf 1 S'rbf 2 T S'rbfd
rank1 rank1 rank1
Sqrsl > SquZ > T Sqrsd (74)
rankM rankM rankM
Sqrsl > SqrsZ > Y Sqrsd

{Sf‘m3 L8373 . G Reore } & Appear three times
= {SfcoreZ ’SgcoreZ o .’SiczoreZ } P Appear twice

1 1 1
{Sf“’” L83t . S }<:> Appear once

In the big matrix, scores of these points equal the number of their occur-
rences. k,, k, and k, represent the number of sample points in the three
sets. The specific pseudo code about the proposed scoring strategy is sum-
marized below.

Algorithm 7.1 Scoring Mechanism

(01) Begin

(02) S_hybrid < S,i‘;ZM,Sﬁgj‘ZMand So

(03) m « Calculate the total number of sample points in S_hybrid.
(04) Score < Define a unit vector with the length m.

(05) Z < Define an empty logical variable.

(06) fori< 1tom-1

(07) forj<itltom

(08) Z <S_hybrid (i, :)== S_hybrid (j, :).
(09) Ztemp <True value 1.

(10) fork<1tod

(11) Ztemp <Ztemp && Z(k)

(12) end for



MGOSIC » 175

(13) if Ztemp == 1

(14) Score(i) < Score(i)+1;

(15) Score(j) < Score(j)+1;

(16) end if

17) end for

(18)  end for

(19)  $<ore3<« Delete repeated points in S_hybrid ((Score==3), :) and save
them.

(20) S0z« Delete repeated points in S_hybrid ((Score==2), ;) and save
them.

(21)  Sscorel « Delete repeated points in S_hybrid ((Score==1), :) and save
them.

(22) End

Figure 7.3 provides an example on Ackley to demonstrate the scoring
strategy clearly. Assume that there are ten expensive samples (dots in
Figure 7.3a), and Kriging, RBF and QRS are constructed in Figure 7.3b-d,

FIGURE 7.3 Ackley and its surrogate models. (a) Original Ackley function. (b)
Kriging model of Ackley. (c) RBF model of Ackley. (d) QRS model of Ackley.
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FIGURE 7.4 Illustration of scoring strategy.

respectively. LHS is used to generate 10,000 cheap points and each sur-
rogate model provides their respective top 500 points based on Eq. (7.3).
Finally, Figure 7.4 shows the point sets with scores 1, 2 and 3, which are
obtained by Eq. (7.4).

In this work, the newly added sample points will be selected from the
point sets with scores 3 and 2. Additionally, in order to keep sampling
diversity, the to-be-added points need to satisfy a proposed max-min cri-
terion. “max-min” denotes that the minimum distance is maximized, and
its pseudocode is shown below.

Algorithm 7.2 A Proposed Max-Min Criterion

(01) Begin

(02) S_temp < All the present expensive sample points.

(03)  SsrX_new < Empty.

(04) ifthe number of points in set $<°X> N (In this chapter, N is set as 2)
(05) K< N.

(06) else
(07) K < the number of points in §soreX,
(08) endif

(09) fori<1toK
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(10) Dis «find the nearest neighbors in §_temp for each point in
SecoreX and get the minimum distance vector.

(11) Max_dis <find the maximum distance from Dis

(12) Max_point <find the corresponding point in §scoreX,

(13) SscoreX_new < [ScoX_new; Max_point]

(14) S_temp < [S_temp; Max_point]

(15) end for

(16) End

In Algorithm 7.2, §srX_new is the selected sample points, which can
make MGOSIC have a better space-filling feature in the neighborhood
of the present promising regions. Actually, this max-min criterion aims
at selecting points that possess the maximum difference with the known
expensive samples from the two promising point sets. Figure 7.5 gives an
example to explain the max-min approach. Firstly, each new point (dots)
needs to find its closest neighbor (squares) and the corresponding mini-
mum distance in the space. As Figure 7.5 shows the four minimum dis-
tances are 0.2558, 0.3245, 0.3360 and 0.7933 and Point 3 and Point 4 will

be chosen as supplementary sample points.

2 r T T T — g T
B Known sample points 0
i5l ® New sample points
: <] Closest points to New points m
¥ Selected Points _ 2
11 '.—‘ 1
Minimum Distance Minimum Distance
o 02558 03245
[ .'
0f ]
1]
05 ®  Mini i 1
Minimum Distance Mlmm;;;gsm"ce
Al 3 0.3360 4
o
[ ]
5@
m
il 1 B I L I L |
-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

FIGURE 7.5 Tllustration of max-min approach.
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FIGURE 7.6 Search process of MGOSIC. (a) Original Ackley function.
(b) Kriging model of Ackley.

As Step 4 in Section 3.1 has introduced, the best samples from Kriging,
QRS and RBF are obtained in the original design space, and the scored
samples are alternately selected in a reduced space and the original space.
Figure 7.6 shows the search process of MGOSIC on Ackley, where tri-
angles are DOE points, gray small dots are cheap points generated by LHS,
big gray dots are updated points in the current iteration, and black dots
are supplementary points in the last iteration. In Figure 7.6(a, seven new
points are captured from the original design space, and five new points
are obtained in Figure 7.6b. During the first iteration, three best predicted
solutions [~0.7137, 0.7144], [-0.7346, 0.5641] and [~0.0504, 0.2226] are
obtained from the three surrogate modes, respectively. Besides, four points
[-0.8786, 3.8146], [-3.8661, 2.1467], [0.5865, —2.0495] and [-3.4302, 1.7663]
are selected from the cheap points by the presented infill criterion. It can
be found that the four infill points can effectively explore the sparsely sam-
pled area of the design space. Moreover, in the second iteration, three best
predicted solutions [0.0412, 0.1741], [0.8092, 0.0452] and [0.0832, 0.1683]
are supplemented, and meanwhile two infill points [0.1704, 0.1415] and
[0.0243, 0.0981] around the present best solution are acquired by the pre-
sented strategy. After the two iterations, the best solution [0.0243, 0.0981]
that is close to the global optimal solution [0, 0] has been found. Obviously,
the cheap points in Figure 7.6a are distributed over the whole design space,
realizing the global exploration. In Figure 7.6b, the cheap points gathering
in a promising space around the present best solution effectively enhance
the local search. It is worth noting that the coefficient w in Eq. (7.1) deter-
mines the size of the reduced space and meanwhile affects the density of
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cheap points. Essentially, a smaller w can bring a high density of cheap
points around the present best solution, which promotes the local search.
However, when w is too small, the search space is overly limited, which
may decrease the search efficiency. Hence, the proposed range for w is
[0.05, 0.15], and w is defined as 0.1 in the subsequent tests.

74 EXPLORATION OF UNKNOWN AREA

The above-mentioned infilling criterion mainly focuses on the promis-
ing locations predicted by Kriging, RBF and QRS. Besides, the proposed
max-min criterion can make MGOSIC have a better space-filling perfor-
mance in a local region, but cannot explore the sparsely sampled regions
in the global space. Therefore, the estimated MSE of Kriging is employed
to explore unknown areas of the global space. In this work, a local condi-
tion is defined to judge whether MGOSIC gets stuck in a local valley or
not. In each iteration, the average change of the top P sample values will
be recorded. Furthermore, if they do not change obviously during several

successive iterations, the exploration strategy will begin working. The spe-
cific pseudo code is listed as follows.

Algorithm 7.3 Exploration Unknown Area

(01) Begin

(02)  Rank_value < Sort all the present best sample values.

(03) MeanbestY(iteration) — Get mean values of the top P sample val-
ues in each iteration. (In this chapter, P is set as 3)

(04) if the number of iterations> Q (In this chapter, Q is set as 5)

(05) GVI « | MeanbestY(end)— MeanbestY (end-5)|.

(06) endif

(07) if GVI< A (In this chapter, the default value of A is 1le—4)

(08) Smse < Get multiple sample points in the original design range
by LHS.

(09) fori <« 1 tom (In this work, m equals to 30d)

(10) MSE < Get the estimated MSE values of Kriging at Smse

(11) end for

(12) S_exploration < Sort MSE and select two samples with the max-
imal MSE values.

(13) endif

(14) End
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7.5 COMPARISON EXPERIMENTS

In order to demonstrate the capability of MGOSIC, two parts of bench-
mark cases (Gu et al., 2012; Long et al., 2015) including lower-dimensional
(d =2-5) and higher-dimensional problems (d = 6-20) are used for testing.
These representative cases have different characteristics involving multi-

modal, convex, large-scale and so on. Additionally, the specific target val-
ues of all the cases are given in this chapter, and more details are listed
in Tables 7.1 and 7.2. It can be found that all the proposed target values
are much closer to the true global minima. Finally, an algorithm will stop
when the termination criterion in Eq. (7.2) is satisfied.

7.5.1 Preliminary Comparison and Analysis

As our previous introduction, EGO (Jones et al., 1998) is a well-known
SGO algorithm and has advantages in low-dimensional multimodal prob-
lems. Similarly, CAND presented by Regis and Shoemaker (2007) also has
a remarkable performance in low-dimensional problems. Hence, EGO
and CAND are tested on two-dimensional cases as a preliminary contrast.

TABLE 7.1 Comparison on Low-Dimensional Problems

MGOSIC EGO CAND

Values NFE NIT  Values NFE NIT Values NFE NIT

Func.  Range Range Range

Ack [5.98e-7, 75.8 124 [5.55e-2, >300(10) >293 [5.30e—4, >227.8(6) >220.8
7.19e—4] 7.87e—1] 1.93e-3]

BA [3.66e-6, 35.5 59 [1.06e-4, >168.6(4) >161.6 [6.18¢—5,  217.8 210.8
9.67e—4] 1.34e-2] 8.56e—4]

Peak [-6.551, 509 8.7 [-6.551, 27.2 20.2  [-6.550, 29.3 22.3
—-6.538] -6.505] —6.502]

SE [-1.457, 345 56 [-1.457, 45.4 384  [-1.456, 329 25.9
-1.450] -1.450] —-1.451]

GP [3.001, 93.1 16.8 [3.000, >262(8) >255 [3.000, 111.4 104.4
3.005] 3.684] 3.009]

F1 [-2.000, 116.9 19.2 [-2.000, 95.4 884  [-1.999, 202.3 195.3
—-1.993] —-1.994] —-1.992]

HM [3.63e-6, 40.5 6.5 [9.71e-5, >225.7(7) >218.7 [1.09e-5, 83.9 76.9
8.50e—4] 6.51e-2] 9.15e—4]

GF [0.5233, 51 89 [0.5233, >209.8(6) >202.8 [0.5233, 38.8 31.8
0.5234] 0.5459] 0.5234]

RS  [3.55e-14, 52.7 8.7 [5.03e-3, >300(10) >293 [6.52e-5, >267.5(8) >260.5
7.77e—4] 3.35¢—1] 1.990]
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TABLE 7.2 Comparison on Higher-Dimensional Problems

MGOSIC DE
Func. Values Range NFE NIT Values Range NFE NIT
Levy [3.36e—4, 169 27.9 [2.35e—4, 2,290 114.5
9.86e—4] 9.67e—4]
Dp [2.56e-4, 325.8 53.9 [1.80e—4, 3,860 193
9.94e—4] 9.02e—4]
ST [-195.77, 214.7 34.2 [-195.51, >5,884(2) >294.2
—-195.15] —-181.49]
HNe6 [-3.319, 77.5 11.7 [-3.312, 3,488 174.4
-3.301] —-3.300]
Schw [7.54e-5, 301.9 47.1 [2.24e—4, 3,914 195.7
9.72e—4] 9.08e—4]
GW [4.63e—4, 332.9 48 [0.426, >1e4(10) >500
9.94e—4] 0.725]
Trid [-209.99, 87.6 13 [-209.73, 4672 233.6
—-209.56] -209.01]
Sums [2.31e-15, 145.3 25.1 [7.11e—4, >8,556(1) >427.8
4.27e-13] 1.25e-3]
F16 [25.959, 81.5 9.1 [26.021, 2,728 136.4
26.096] 26.100]
Sphere [2.93e—4, 171 28.5 [9.47¢—4, >9,990(9) >499.5
9.98e—4] 7.61e-3]

Considering the randomness of these algorithms, all the following tests
are repeated ten times. Table 7.1 shows the comparison results, includ-
ing the range of obtained best values (Values Range), number of function
evaluations (NFE) and number of iterations (NIT). Here, NFE and NIT in
Table 7.1 are mean values. The symbol “>” means that target values cannot
be found within the maximal NFE, and the numbers in “()” represent the
failure times. From Table 7.1, it can be seen that MGOSIC can efficiently
find all the target values. Although EGO and CAND have a good perfor-
mance on Peak, SE and F1, they need more NFE and NIT than MGOSIC
to get close to these target values in most cases. Especially, Ack and RS
have so many local valleys that EGO and CAND can hardly succeed in
most cases. More importantly, EGO and CAND can just add one point in
each cycle, which causes larger NIT values than MGOSIC. In addition, the
widely used global optimization algorithm DE is also tested for compari-
son on higher-dimensional cases. For DE, the maximal allowable NFE is
10,000. Like Table 7.1, Table 7.2 gives the similar comparison results. It is
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obvious that traditional global optimization algorithms need more NFE
and NIT than MGOSIC on these higher-dimensional cases.

Additionally, MGOSIC are also compared with two SGO algorithms
with multi-point infill criteria. One is called SOCE (Dong et al., 2018) that
is a clustering-based global optimization algorithm using Kriging and
QRS to build surrogates; the other one named MSEGO was presented by
Viana et al. (2013), which extends the original EGO to sample multiple
points per cycle by using several surrogates. Tables 7.3 and 7.4 provide the
comparison results, where the data of MSEGO and EGO come from the
reference Long et al. (2015) and the results of SOCE are obtained from
Dong et al. (2018). As Long et al. (2015) mentioned, EGO and MSEGO
were tested by Viana’s surrogate toolbox (Viana et al., 2013), and MSEGO
supplemented three points per cycle in their tests. Besides, due to the adap-
tive sampling feature, SOCE has an uncertain sampling number, but most
of the time it adds three points per cycle. From Tables 7.3 and 7.4, it is
clear that all four algorithms can get much closer to the true global optima
on SE, Peak, SC and BR which are nonlinear problems with fewer local

TABLE 7.3 Obtained Values of EGO, MSEGO, SOCE and MGOSIC

EGO MSEGO SOCE MGOSIC

Var.
Func. Var.Range Median Range Median Var.Range Median Var.Range Median

SE [-1.456, -1.453 [-1.456, -1.456 [-1.456, -1.456 [-1.457, —1.455

~1.436] ~1.454] ~1.448] ~1.450]

Peak [-6.550, -6.550 [-6.498, —6.498 [-6.551, —6.544 [-6.551, —6.549
~6.383] -5.979] —6.494] -6.538]

SC  [-1.032, -1.031 [-1.024, -1.024 [-1.032, -1.032 [-1.032, -1.031
-1.031] ~0.987] ~1.030] ~1.030]

BR (0398, 0.398 [0.398, 0.398 [0.398,  0.399  [0.398,  0.398
0.400] 0.431] 0.399] 0.398]

F1 [-1.375, -1.375 [-1.874, -1.874 [-2.000, -1.994 [-2.000, —1.999
~1.283] ~1.636] ~1.980] ~1.993]

GF'  [0.966, 0966 [0.001, 0.001 [0.003,  0.007 [l.17e-4, 5.50e—4
3.480] 0.035] 0.009] 9.56e—4]

GP [7.581,  7.581 [3.002,  3.002  [3.000, 3.008  [3.001,  3.001
43.353] 3.014] 3.029] 3.005]

GN  [0.459, 0459 [0.176, 0.177 [3.33e-15, 7.33e-4 [6.33e—15, 3.6le—4
0.459] 0.627] 4.81e-3] 7.18e—4 ]

HN6 [-3.316, -3.313 [-3.208, -3.145 [-3.317, -3.306 [-3.319, -3.311
~3.308] ~3.052] ~3.290] -3.301]
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TABLE 7.4 Mean NFE and NIT of EGO, MSEGO, SOCE and MGOSIC

EGO MSEGO SOCE MGOSIC

Mean Mean Mean Mean Mean Mean Mean Mean
Func. NFE NIT NEFE NIT NFE NIT NFE NIT
SE 52 41 109.6 33.5 334 9.3 34.5 5.6
Peak 42.6 31.6 130.4 40.5 37.3 11.7 50.9 8.7
SC 32.6 21.6 131.2 40.7 34.9 10 41 7
BR 36.1 25.1 112.6 34.5 259 7.1 40.2 6.8
F1 52 41 1314 40.8 108.5 27.8 116.9 19.2
GF 52 41 132.0 41 113.5 35.1 123.6 22.7
GP 52 41 120.4 37.1 145.9 455 93.1 16.8
GN 52 41 132.0 41 95.7 27.2 44.8 7.2
HN6 68.8 13.8 176.0 41 89.1 24.7 77.5 11.7

minima, but MSEGO requires more NFE. For F1 and GN that possess lots
of local minima, EGO and MSEGO have a worse performance. Relatively,
MSEGO with the help of multiple surrogate models can find better solu-
tions than EGO on F1 and GN, but NFE also gets larger at the same time.
In Tables 7.3 and 7.4, GF’ is the same as GF in Table 7.1, except that the
variable range of GF’ is [-5, 5]. Among the four algorithms, EGO has the
worst performance on GF" and GP within 41 iterations, but it is very effi-
cient on HN6. SOCE has an acceptable performance in all nine cases, but
it usually uses more function evaluations and iterations than MGOSIC.
In summary, compared with others, MGOSIC needs fewer NIT and can
always efliciently get the target values on these cases.

7.5.2 Analysis and Discussion

After the preliminary comparisons, MGOSIC has shown its powerful capa-
bility in solving expensive black-box problems. In order to further dem-
onstrate its significance, two recently presented SGO algorithms, MSSR
(Dong et al., 2016) and HAM (Gu et al., 2012), are tested for comparison.
Since the maximal sampling number per iteration (MSNPI) in MGOSIC
is 7, and HAM most of the time also adds about seven points per cycle,
the MSNPI of MSSR is also defined as seven in this test. Firstly, a group of
representative iterative results that can reflect their average performance
is listed in Figure 7.7. In order to make it clearer, some sub-graphs like
Figure 7.7p and r are locally magnified, and some are improved by the
logl0 function. Intuitively, MGOSIC can always find the target values
more quickly in most cases. Sometimes, MGOSIC may get stuck on mul-
timodal problems like Peak, GP, F1, RS, but it can successfully jump out
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of the local optimal regions and find the global optima at last. Conversely,
HAM lacks an effective exploration strategy, so it frequently misses the
global optima. Since MSSR is only guided by Kriging, it overly relies on the
predictive capability of Kriging. Therefore, MSSR has worse performance
on AK, RS, HN6, Schw and GW. From these iterative figures, it can be
found that MGOSIC is more efficient than HAM and MSSR. Moreover,
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in order to compare their stability, each test is repeated ten times and the
detailed data are shown in Tables 7.5-7.7. The termination criterion in
Eq. (7.2) is employed for the three algorithms. Here, “NFE Range,” “NIT
Range” and “Values Range” denote the ranges of obtained NFE, NIT and
best values during the ten tests, respectively. Besides, “R.” represents ranks
of the three algorithms, which are obtained based on their average perfor-
mance. In Table 7.7, “SR” is the abbreviation of “Success Rate.”

In Tables 7.5-7.7, there is no doubt that MGOSIC has the highest efficiency
and strongest stability. MSSR and HAM have a satisfactory performance on
low-dimensional problems. MSSR can find the target value on Peak using
the fewest NFE, and HAM has the best performance on F1. Although MSSR
and HAM can hardly find the target value on ACK, sometimes they can
get much closer to le—4. Besides, compared with MSSR, HAM has a lower
success rate on multimodal problems Peak and SE. Since the target value
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TABLE 7.5 Statistical NFE of MGOSIC, MSSR and HAM on All Cases

Func.

Ack

BA
Peak

SE

GP
F1
HM
GF

RS
Levy
DP
ST
HNe6
Schw
GW
Trid
Sums
F16

Sphere

MGOSIC MSSR HAM
NFE Range Mean R. NFE Range Mean R. NFE Range Mean R.
[15, 149] 758 1 [>300, >300 2 [>300, >300 2
>300] (10) >300] (10)
[28, 40] 355 1 [51, 141] 89.5 3 (44, 117] 72.8 2
[18,99] 509 2 [24, 73] 38.4 1 [26,>300] >114.8 3
(3)
[27, 42] 345 1 [26, 86] 37.6 2 [22,>300] >915 3
(2)
[82, 106] 93.1 1 [76,165] 122.8 3 [81,172] 110.8 2
[42, 193] 1169 2 [27,242] 158 3 [34,171] 92.8 1
[30, 49] 405 1 [34, 145] 59.2 2 [29, 159] 74.1 3
[28, 69] 51 1 [20, 129] 60.3 2 [>300, >300 3
>300] (10)
[15, 95] 527 1 [47,>300] >2003 3 [46, 243] 86.8 2
(4)
[90, 285] 169 1 [154,>500] >337.8 2 [102,>500] >389.8 3
(4) (7)
[241,461] 3258 1 [>500, >500 3 [326,>500] >440.2 2
>500](10) (6)
[62,389] 2147 1 [80,>500] >339.8 2 [124,>500] >3735 3
(6) ©)
[52,228] 775 1 (59, 218] 107.4 2 [87,>500] >181.1 3
2
[242,334] 3019 1 [>500, >500 2 [>500, >500 2
>500](10) >500](10)
[263,428] 3329 1 [>500, >500 3  [375,>500] >490.5 2
>500](10) 9)
[73, 136] 87.6 1 [162,>500] >438.6 2 [>500, >500 3
(8) >500](10)
[144,146] 1453 1 [>500, >500 3 [368,>500] >466.7 2
>500](10) (7)
[72, 93] 815 1 [103, 197] 161.7 2 [184,>500] >363.2 3
)
[152,186] 171 1 [>500, >500 2 [>500, >500 2
>500](10) >500](10)

of GF is quite strict, HAM cannot find it within 300 function evaluations.
Although the case RS has a lot of local optimal solutions, it has an over-
all downward trend that can be predicted accurately by QRS. Therefore,
MGOSIC and HAM that use QRS to construct surrogate models have
higher efficiency. With the dimension increasing, the success rate of MSSR
and HAM decreases significantly. Especially, MSSR and HAM can hardly
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TABLE 7.6 Statistical NIT of MGOSIC, MSSR and HAM on All Cases

MGOSIC MSSR HAM
Func. NIT Range Mean R NIT Range Mean R. NITRange Mean R.
Ack [2, 24] 12.4 1 [>48, >59] >55 3 [>49,>55] >524 2
BA [5,7] 5.9 1 [12, 25] 17.5 3 [7,19] 11.3 2
Peak [3, 19] 8.7 1 [7,22] 10.6 2 (4, >47] >174 3
SE [4,7] 5.6 1 [8,33] 14.2 3 [3, >48] >139 2
GP [15,19] 16.8 1 [15,28] 21.8 3 [13,28] 17.8 2
F1 [8,29] 192 2 [10, 96] 55 3 [5,25] 13.7 1
HM [5, 8] 6.5 1 [9, 28] 14.6 3 [4, 24] 11.1 2
GF [5,12] 8.9 1 [7,24] 15.4 2 [>45,>49] >473 3
RS [2, 16] 8.7 1 [13, >84] >50.5 3 [7,37] 13 2
Levy [15, 46] 27.9 1 [35, >85] >61.6 2 [16,>85] >642 3
DP [41, 73] 53.9 1 [>74, >93] >79.8 3 [52,>82] >702 2
ST [9, 62] 34.2 1 [21, >102] >61.7 3 [19,>78] >56.1 2
HN6 [8,37] 11.7 1 [13,74] 30.9 3 [13,>78] >274 2
Schw [37,52] 47.1 1 [>87, >121] >98.1 3 [>80,>83] >823 2
GW [39, 62] 48 1 [>68, >75] >69.5 2 [70,>99] >949 3
Trid [11,20] 13 1 [26, >84] >68.8 2  [>83,>88] >858 3
Sums [25, 26] 25.1 1 [>82,>136] >109.1 3 [61, >88] >80 2
Fl16 [7,12] 9.1 1 [53,119] 96.3 3 [28,>85] >59.5 2
Sphere [24, 32] 28.5 1 [>122,>146] >132 3 [>94,>98] >96.1 2
TABLE 7.7 Statistical Best Values of MGOSIC, MSSR and HAM on All Cases
MGOSIC MSSR HAM
Values SR R. Values SR R. Values SR R.
Func. Range Range Range
Ack [5.98e-7, 1 1 [8.96e-3, 0 2 [3.33e-3, 0 2
7.19e—4] 2.581] 5.16e—1]
BA [3.66e-6, 1 1 [7.73e-5, 1 1 [3.98e-6, 1 1
9.67e—4] 7.86e—4] 7.06e—4]
Peak [-6.551, 1 1 [-6.551, 1 1 [-6.551, 0.7 2
—6.538] —6.501] —-3.050]
SE [-1.457, 1 1 [-1.456, 1 1 [-1.457, 0.8 2
—1.450] —1.450] 2.866]
GP [3.001, 1 1 [3.000, 1 1 [3.000, 1 1
3.005] 3.009] 3.009]
F1 [-2.000, 1 1 [-2.000, 1 1 [-2.000, 1 1
-1.993] -1.992] —-1.993]
HM [3.63e-6, 1 1 [2.15e-6, 1 1 [8.32e-7, 1 1
8.50e—4] 5.13e—4] 8.00e—4]

(Continued)
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TABLE 7.7 (Continued) Statistical Best Values of MGOSIC, MSSR and HAM on All
Cases

MGOSIC MSSR HAM
Values SR R. Values SR R. Values SR R.
Func. Range Range Range
GF [0.5233, 1 1 [0.5233, 1 1 [0.5235, 0 2
0.5234] 0.5234] 0.5276]
RS [3.55e-14, 1 1 [5.96e-6, 0.6 2 [1.46e-6, 1 1
7.77e—4] 0.995] 8.13e—4]
Levy [3.36e—4, 1 1 [2.97e—4, 0.6 2 [1.51e—4, 0.3 3
9.86e—4] 1.04e-2] 5.51e-2]
DpP [2.56e—4, 1 1 [1.33e-3, 0 3 [1.25e—4, 0.4 2
9.94e—4] 1.14e-1] 6.17e-1]
ST [-195.77, 1 1 [-195.62, 0.4 3 [-195.52, 0.5 2
-195.15] -167.56] -181.55]
HNo6 [-3.319, 1 1 [-3.317, 1 1 [-3.316, 0.8 2
-3.301] -3.302] -3.203]
Schw [7.54e-5, 1 1 [1.38e-2, 0 2 [2.51e-2, 0 2
9.72e-4] 1.89¢-1] 1.864]
GW [4.63e-4, 1 1 [0.691, 0 3 [8.07e-4, 0.1 2
9.94e—4] 2.561] 0.632]
Trid [-209.99, 1 1 [-209.74, 0.2 2 [-207.33, 0 3
-209.56] -200.87] —-78.88]
Sums [2.31e-15, 1 1 [1.01e-2, 0 3 [4.87e-4, 0.3 2
4.27e-13] 2.21e-1] 1.77e-1]
F16 [25.959, 1 1 [26.021, 1 1 [25.968, 0.5 2
26.096] 26.096] 27.039]
Sphere [2.93e—4, 1 1 [4.90e-3, 0 2 [6.30e-3, 0 2
9.98e—4] 9.24e-2] 4.24e-1]

find the target values of DP, Schw, GW, Sums and Sphere. Besides, MSSR
and HAM have the lower success rate on ST. On the contrary, MGOSIC
still has the remarkable performance on high-dimensional problems. It is
worth noting that MGOSIC just uses 87.6 and 81.5 function evaluations on
Trid and F16, respectively. What is more, for the 20-dimensional problem
Sphere, MGOSIC just needs 171 function evaluations. More importantly,
MGOSIC uses the fewest NIT to find the target values in most cases, which
reflects its outstanding parallel capability. To sum up, MGOSIC is an efhi-
cient SGO algorithm that can be applied for EBOPs.

7.5.3 Engineering Applications

In order to demonstrate the engineering applicability of MGOSIC, the
optimal shape design of a two-dimensional hydrofoil is used for the test.
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The geometric parameterization for the hydrofoil employs the class and
shape function transformation (CST) method (Kulfan, 2008) that is origi-
nally expressed as follows:

EORIDIOE
{HI 12T
\IEEE

0

where C(e) and S(e) are the class and shape functions, respectively. Besides,
¢ refers to the chord length of the hydrofoil, Z,,/c denotes the thickness
of the tail flange, and N, and N, are two coefficients to decide the class
of the hydrofoil. It is worth noting that v, and S,,, come from Bernstein
polynomials. In this chapter, we modify the CST formulas to make them
appropriate for the proposed optimization problem as below.

Pal)= o)+ 2 (1= 20" D 4,8,(x) 79)

i=0

P =30+ 5 (1= Y A4S, (x) (79)

i=0

where y,(x), y(x) and y,(x) refer to the upper bounds, lower bounds and a
basic hydrofoil, respectively. Here, x represents the coordinate along the
chord of the hydrofoil, and y is the coordinate along the thickness direc-
tion. The class coefficients N, and N, are constants 0.5 and 1, and # is set
as 5. Considering that the upper and lower curves have the same radius
of the front edge, A,, equals to —A,,. Hence, nine Bernstein coefficients
A, are regarded as design variables of this optimization problem, and
their design ranges come from two basic airfoils “modified NACA0008”
and NACAQ016. Figure 7.8 shows the design space of the hydrofoil.
Additionally, the length of the chord and the angle of attack are also
regarded as design variables. The objective is to minimize the drag coef-
ficient, and meanwhile, the area and lift coeflicients are supposed to satisfy
inequality constraints.
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FIGURE 7.8 Design space of the hydrofoil.

The specific optimization formula is summarized as follows.

min ¢y

design range: X =[ paraments A,c,aoa]

0<A; £0.1141;-0.0232< A, £0.1008;-0.010< A; <0.1072;
—0.0050< A, £0.0815;0.005< A5 <0.111;—0.1008 < A5 <0.013;
—0.1072< A; £0.022; - 0.0815 < A3 £—-0.0258;—-0.1112 < Ay <0.1445;

0.2<c¢<0.3;3<aoa<4;

st. ¢ 203510
§20.0051

thick 20.12
(7.10)

where c is the length of the chord, aoa refers to the angle of attack, c; is the
lift coefficient, S refers to the area and thick represents the maximal thick-
ness. The reference values 0.3510, 0.0051 and 0.12 come from NACA0012,
which will be regarded as the reference case. Considering that MGOSIC
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and other comparison methods are mainly developed for box-constrained
problems, Equation (7.10) is modified as follows by a penalty function.

minc, + Px (max(0.3510— ¢;,0)+ max(0.0051 - S,0)+ max(0.12 — thick,0))

designrange : X =| paramentsA,c,aoa]
(7.11)

where P is the penalty factor that is defined as 10°. The modified objective
function including all the response values like lift coefficient, drag coef-
ficient, area and thickness is directly approximated by surrogates, which
is easy to implement in an actual engineering application. The simula-
tion analysis is realized by Computational Fluid Dynamics (CFD), and
the maximal iteration number is set as 500 that generally can get satis-
factory convergence results. Each analysis process from parametric mod-
eling to CFD simulation will cost about 1.5 minutes. In this chapter, we
employ MGOSIC, MSSR and HAM to realize the optimization design of
this hydrofoil, and the maximal allowable times of simulation are 300.
Figure 7.9 shows the grid partition of the hydrofoil, and Figure 7.10 shows
the pressure contour of the reference case NACA0012.
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FIGURE 7.9  Grid partition diagram.
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FIGURE 7.10 Pressure contour of NACA0012.

The obtained results from the three methods are listed in Table 7.8.
Obviously, MGOSIC gets the minimum drag coeflicient, and meanwhile
gets larger improvements compared to NACA0012. Additionally, the itera-
tive results of the three global optimization methods are also provided in
Figure 7.11. It is clear that MGOSIC has a faster convergence rate. MSSR
performs worse within the first 100 simulation analyses, but it can gradu-
ally find better solutions. However, HAM can hardly find a better solu-
tion after 100 analyses. The best shape and pressure contour obtained
by MGOSIC are shown in Figure 7.12. Figure 7.13 shows the compari-
son results of the obtained best shape and the shape of NACA0012, and
Figure 7.14 gives their comparison diagram of pressure curves. In sum-
mary, MGOSIC outperforms the other two methods on the shape optimi-
zation of the hydrofoil.

TABLE 7.8 Best Results Obtained from MGOSIC, MSSR and HAM

Methods cd Cl N Thick Improvement
NACA0012 0.0153776 0.3510 0.0051 0.12 NA
MGOSIC 0.0148780 0.3678 0.0072 0.1298 3.25%7
MSSR 0.0149357 0.4300 0.0074 0.1269 2.87%1

HAM 0.0155002 0.3767 0.0071 0.1309 0.80%.
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FIGURE 712 Pressure contour of the optimal shape.
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7.6 CHAPTER SUMMARY

In this chapter, we propose a new SGO algorithm MGOSIC for EBOPs.
Traditional multi-surrogate methods mostly utilize weighted sums to con-
struct an ensemble model for optimization, and pay much attention to the
choice of these weights. MGOSIC proposes a different strategy that gets
multiple sample points in each cycle based on the integrated prediction
information from three surrogate models.

In MGOSIC, three approximation methods, Kriging, RBF and QRS,
are employed to construct surrogate models, respectively. Besides, a
multi-point infilling criterion is presented to capture the new sample
points on the three models per iteration. In the proposed infilling crite-
rion, the newly added sample points mainly come from two parts: one is

the present best solutions from each surrogate model, and the other one is
selected from several promising point sets. These point sets are created by
a proposed score-based strategy that marks a lot of cheap sample points
based on their predictive values from Kriging, RBF and QRS. The new
sample points will be selected from the point sets with higher scores by
a proposed max-min approach that maximizes the minimum distance
between new points and obtained points. When MGOSIC gets trapped in
a local region, the estimated MSE of Kriging will be used to explore the
unknown area. Finally, the whole optimization flow is carried out alter-
nately in the global space and a reduced space. Compared with seven exist-
ing global optimization algorithms, MGOSIC has the best performance.
After the tests on 19 benchmark cases and an engineering application,
MGOSIC shows its high efficiency, strong stability and remarkable paral-
lel capability. To sum up, MGOSIC is a promising method to optimize
expensive black-box problems.

NOTE
1 Based on “Multi-surrogate-based Global Optimization using a Score-based
Infill Criterion,” published in [Structural and Multidisciplinary
Optimization], [2019]. Permission obtained from [Springer].
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CHAPTER 8

SCGOSR

Surrogate-Based Constrained
Global Optimization Using
Space Reduction’

8.1 INTRODUCTION

Continuous advancements in modern industry make simulated-based
design and optimization imperative (Tolson & Shoemaker, 2007). Although
the above-mentioned algorithms have advantages in dealing with expen-
sive black-box optimization problems with boundary constraints, most of
them cannot handle nonlinear constrained optimization problems.
When both the objective and constraints are computationally expen-
sive black-box functions, the complexity of optimization gets further
increased. Bjorkman and Holmstrom (2000) developed a radial basis func-
tion (RBF)-based optimization algorithm that utilized a penalty technique
to transform an inequality-constrained problem into a box-constrained
problem. Besides, a train design optimization problem was successfully
solved with fewer costly function evaluations. Basudhar et al. (2012) pre-
sented an efficient global optimization algorithm for constrained prob-
lems, where Kriging is used for approximation of the objective function
and support vector machines (SVMs) are employed to approximate the
boundary of feasible regions. Importantly, one unique SVM can represent
several correlated constraints, which considerably simplifies the complex-
ity of constrained optimization. Regis (2011) extended the previous local
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metric stochastic RBF (LMSRBF) algorithm to handle costly nonlinear
inequality-constrained problems. The constrained LMSRBF algorithm
constructs surrogate models for objective and constraint functions, respec-
tively, and identifies candidate points that are predicted to be feasible.
Bagheri et al. (2017) presented a “Self-Adjusting Constrained Optimization
by RBF Approximation (SACOBRA)” method based on Regis’s research.
Importantly, SACOBRA can efficiently find feasible solutions without
parameter tuning. Parr et al. (2012) presented an enhanced infill sam-
pling criterion that treats objective improvement and constraint satisfac-
tion as two separate functions and uses multi-objective optimization to
select update points. Additionally, there is also some literature focusing
on multi-objective optimization with expensive objectives and constraints
(Audet et al., 2010; Durantin et al., 2016). Muller and Woodbury (2017)
also pointed out that algorithms for problems with expensive objectives
and constraints are scarce.

Hence, this chapter aims at developing a new global optimization algo-
rithm for computationally expensive black-box-constrained problems.
The problem type considered in this chapter can be briefly summed up as
follows:

min f(x)

ST. g;(x)<0, Vj=L,...,m
Lb, <x;<Ub;,, Vi=1,...,n
x; €R, Vi=1,...,n

(8.1)

where x is the design variable vector, f(x) denotes the costly objective and
g(x) refers to the costly constraint vector. Lb and Ub are the lower and upper
bounds of the design variable x, respectively. For the computationally expen-
sive problems described in Eq. (8.1), using a smaller number of function
(objective and constraints) evaluations to get the global optimum is impor-
tant. Since the actual engineering applications involve multimodal or high
nonlinear models, both f(x) and g(x) in Eq. (8.1) may have complex forms.
Actually, this chapter is the extension of our previous work where a
Kriging-based global optimization algorithm MSSR was presented. MSSR
is mainly developed for unconstrained expensive black-box problems.
On constraint handling, MSSR just adds a penalty term to the objective
function, and the reduced spaces are created without using penalty-based
strategies. Besides, MSSR always constructs the complete surrogate mod-
els for costly objective and constraint functions, respectively, which is
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time-consuming. In this chapter, Kriging is used to approximate the costly
objective and constraints. In addition, a proposed multi-start constrained
optimization algorithm carries out a search on the Kriging models to get
supplementary points in each cycle. In order to find feasible regions, even
the global optimum quickly, a penalty-based space reduction strategy is pre-
sented. In this strategy, two penalty methods are used respectively to sort
the expensive samples and two subspaces are created based on the rank-
ing of the present samples. Considering the difficulty in fitting an accurate
large-scale surrogate model, two groups of local surrogate models located
in the defined subspaces are dynamically constructed per optimization
cycle. Furthermore, once SCGOSR gets stuck in a local valley, the estimated
mean square error of Kriging is maximized to explore the sparsely sampled
area, guaranteeing the balance between the local and global searches.

8.2 SCGOSR ALGORITHM
In SCGOSR, Kriging is employed to construct surrogate models for costly

objective and constraint functions, respectively. In order to add multiple
promising samples in each cycle, a multi-start constrained optimization
algorithm is proposed to exploit Kriging models. Furthermore, a space
reduction strategy is presented to create two subspaces where two groups
of local surrogate models are separately constructed. The multi-start opti-
mization is carried out alternately in the two subspaces and the overall
design space. Once a local convergence criterion is satisfied, SCGOSR will
maximize the estimated MSE of Kriging to explore the sparsely sampled
regions. More details will be introduced in the following sections.

8.2.1 Multi-Start Constrained Optimization

Generally, optimization on surrogate models may generate several predic-
tive local optimal solutions, especially when both objective and constraint
functions are Kriging models. The true global optimal solution may exist
among these potential optimal locations, and thus, it is important to cap-
ture these predictive local optimal samples and select more promising
ones. In this chapter, a multi-start constrained optimization algorithm
is utilized to exploit the Kriging models. Different from MSSR, which is
mainly designed for unconstrained problems, this multi-start constrained
optimization algorithm utilizes a penalty function to deal with the pre-
dicted results and save them in a defined matrix. Besides, in MSSR the
distances between points are defined as constants, while in this chapter
a distance criterion that relies on the size of the design space is proposed.
The specific process is described as follows.
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Firstly, several starting points are generated in a defined space by Latin
hypercube sampling, and then sequential quadratic programming (SQP)
begins to run from these starting points. Samples and the corresponding
predictive values obtained by multiple SQP solvers are saved in a matrix
PLO. Equation (8.2) gives the specific expression of the multi-start con-
strained optimization.

Multi _Start Optimization 8.2)
StartingPoints: x;, i=1,2,...,M

SQP  min f’krg (x)
ST.  ug(x)<0
Lb<x<Ub

where }A’k,g (x) and g, (x) are Kriging models of the exact objective and
constraint functions, respectively. In Eq. (8.2), M refers to the number
of starting points and x; denotes the ith starting point. Once the predic-
tive local optima are obtained, these samples and predictive values of the
objective and constraints will be recorded in matrix PLO. Equation (8.3)
describes a penalty method that can transform the Kriging-based objec-
tive and constraints into an augmented function. As Eq. (8.4) shows, the
new PLO matrix has M rows and (n+ 1) columns.

Vog (%)= Vg () + P+ Y max(givs (x),0) 8.3)
i=1
Slla Sé) ) Si) Yklrg éllcrgla T éllﬁgm
PLO = Sl2 > Sz2 > ) Si > .Ykzrg .gAI%rgl > ERE) girgm
SlNI) Séw) Y Sr]zw) Yk]g é’lg{gl) Y gé\fgm
Sll > Sé > ) S;i > Yalug
= 812 > 822 > RS Snz > Yazug
SINI) Séwy Y Sé\/l’ Yall\fg
(8.4)

According to the size of ?;ug in PLO, the matrix is sorted in ascending
order. Since multiple SQP solvers may get similar or repeated local optimal
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solutions, the redundant samples will be deleted from PLO. The samples in
Eq. (8.5) need to keep a defined distance as below.

$'—8'|>A-|Ub— L (8.5)

where Ub and Lb are the design bounds and A is a weight factor that deter-
mines the size of the distance. Generally, a smaller A may bring more points
that are much closer to each other, but a bigger A may make SCGOSR miss
some promising points. Hence, the recommended range for A is [le—6,
le—4]. Besides, the samples that go much closer to the obtained sample will
also be eliminated. The final supplementary samples will be chosen from
the filtered PLO and the smaller ,,, will have the higher priority.

8.2.2 Space Reduction for Constrained Optimization

Space reduction (also called region elimination) can remove the less prom-
ising and previously explored regions to decrease the number of costly func-
tion evaluations. Mostly, a reduced space is the neighborhood of the present
best solution or a small region that encloses several promising solutions. For
constrained optimization, the so-called best solution not only possesses the
minimum objective value but also has to satisfy all constraints. In order to
find these promising samples from the expensive sample set, two penalty
functions are utilized, and the specific formulas are shown below.

Yu _{ Yabj Ifg,SO, Vizl,...,m (86)

ugl = Yob]+P I:fgi>0’ E|i=l,...,m
Yo = Yo + P Zmax( €:,0) (8.7)
i=1
S S S Yoy
'Slz’ .SZZ’ ) :Snz = },ai]
S sE o, s v
(8.8)
gll > g% > Y in Yalugl YulugZ
2 2
+ g127 g%; T é r2n — Ya‘ugl . Yu1.4g2
glK’ gf’ ) ng; Yalzjgl YalrigZ

where m is the number of constraints, K is the number of expensive sam-
ples and n represents the dimension of design variables. In Egs. (8.3), (8.6)
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and (8.7), P is the penalty factor that needs to be noticeably bigger than
the objective function value, and Y,,,, and Y,,,,, are two augmented func-
tions. A smaller P will not generate remarkable changes to the augmented
objective functions, and thus, the recommended range for P is [1e10, 1e20].
Equation (8.8) shows the sample matrix, expensive objective vector and
expensive constraint matrix. Additionally, two augmented objective vec-
tors are obtained by the proposed penalty functions. Intuitively, the first
penalty function will punish solutions that just violate any constraint,
while the second one can “forgive” solutions that go much closer to the
constraint bounds. Relatively speaking, Eq. (8.6) is more rigorous than
Eq. (8.7) when dealing with the solutions near bounds. Besides, solutions
on both sides of constraint bounds may enhance the approximation accu-
racy of Kriging models in the vicinity of bounds. In other words, the solu-
tions that violate constraints but are located near constraint bounds are
also valuable. Considering this characteristic, Y,,,, is minimized to find

the present best solution and Y,,,, is sorted to obtain the ranks of all the

ug2
expensive samples. The specific process is described as follows.

1 1
Yaugl YaugZ
& Yo
: augl min aug2 rankl grank2 rankK
min . = Saugl sort . = {SaugZ )SuugZ s+ +>9%ug2 } (89)
K K
Yaugl YuugZ

rank1

In Eq. (8.9), S;’Z’l may not equal to ;4> , because they come from two dif-
ferent evaluation criteria. On the basis of the above-obtained better sam-
ples, two subspaces are created as follows:

Lbsubl = S;?A?I -—w- (menge - menge )
if Lbgup1 (1)< Lbyange (i), then, Lbgp (i) = Lbyang (i)
Ubsubl = ;2;1 tw- (menge - menge )

(8.10)
1f Ubsubl (l) > menge (Z)> then, Ubsubl (l) = menge (1)

Subspacel : [ Ly, ;Uby, |
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M =round(r-K)
Lby (i) = min({ S8 (1); Sk (1)s -+ S (i)}
Ubuisa (i) = max({ S5s!(1); Sies? ()5S (i)} (8.11)
i=1,2,...,n

Subspace2 :[ Lby,»;Uby, |

In Eq. (8.10), Ub,,,, and Lb,,,, are the upper and lower bounds of the
original design space, w is a weight factor, and n refers to the number
of dimensions. In Eq. (8.11), r is a ratio coeflicient and K represents the
number of expensive samples. The two user-defined parameters, “w” and
“r” determine the size of the subspaces. If “w” is bigger than 50% or “r”
is bigger than 100%, it will lose the significance of the space reduction.
On the contrary, if “w” and “¢” are too small, the local surrogate mod-
els will get inaccurate and SCGOSR may miss some promising solutions.
Therefore, the recommended ranges for “w” and “r” are [10%, 20%] and
[20%, 40%)], respectively. Intuitively, Subspacel is a neighborhood of the
present best solution that comes from Egs. (8.6) and (8.9), while Subspace2
encloses several promising samples that are defined by Egs. (8.7) and (8.9).
In SCGOSR, the proposed multi-start constrained optimization algorithm
alternately explores the three spaces: Subspacel, Subspace2 and the global
design space. As Ong et al. (2003) suggested, it is difficult to construct an
accurate global surrogate model, especially when objective and constraint
functions are multimodal problems. Hence, based on the samples in the
two subspaces, two groups of local Kriging models for the costly objective

and constraints are constructed, respectively.

8.2.3 Exploration on Unknown Area

Generally, a successful global optimization algorithm has the capacity
to escape from local optima to explore the unknown area. In SCGOSR,
when all the new samples in the matrix PLO do not satisfy the diversity
requirement, or several successive iterations do not bring better samples,
the algorithm will focus on the sparsely sampled regions. Here, the esti-
mated MSE of Kriging is maximized by the multi-start optimization
algorithm to search the added sample points. The specific pseudocode is
shown as follows:
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Algorithm 8.1 Escape from Local Optima

(01) Begin

(02) OptSpace < Identify the optimization space (Subspacel, Subspace2,
Design Space) based on the number of iterations

(03) Snew < New samples selected from the PLO matrix

(04) Ya’,f;fd ,Y;ﬁ;{d,- . a’,fg”f‘K « Sort the augmented function values to get
the ranks

(05)  Yoi" < mean(Ya',f;{d, a’,f;fz S afgfm ), Get the mean value of the top
m augmented function values based on the ranks

(06) Y,,,,(iteration) < Save and Record Y,,,1"in each iteration.

(07) if iteration>5

(08) GVI <« | Y,,,..(pre_iter)- Y,

refers to the present iteration)

(pre_iter-5)|. (Here, “pre_iter”

ean

(09) else

(10) GVI < 1e20

(11) endif

(12) if Snew is empty or GVI <=le—6

(13) Snew_mse < Call multi-start constrained optimization to
maximize the estimated MSE of Kriging in OptSpace based
on Egs. (8.2) to (8.5)

(14) Snew < [Snew; Snew_mse]

(15) endif

(16) End

In Algorithm 8.1, GVI is a temporary variable that records the changes of
the top m augmented function values. From Lines (04) to (06) of Algorithm
1, it is clear that the top m samples are selected and their mean value is
recorded in each cycle. Besides, as Lines (07) to (12) in Algorithm 8.1 show,
if the mean value of the top m sample values does not change obviously or
Snew is empty, the multi-start constrained optimization begins to explore
the unknown area.

8.2.4 Optimization Flow

In this section, the overall flowchart of SCGOSR is given, and it mainly
includes three parts: initialization, exploitation and exploration. For a
global optimization algorithm, exploitation refers to the quick search in
the vicinity of the present best solution, while exploration denotes sup-
plementing new points in sparsely sampled areas. SCGOSR possesses the
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capacity of intensive search in a local promising region and meanwhile
is also able to jump out from a local valley. The flowchart of SCGOSR is
shown in Figure 8.1.

In Figure 8.1, the local convergence criterion is provided in Algorithm
8.1, and the global stopping criterion is defined as below.

Vet Starget, or NFE>500 (8.12)

Initialize parameters of SCGOSR: design
range, number of constraints, parameters of
kriging model, local and global convergence

thresholds and so on.
v
Initialization DoE: Get initial sample points and
evaluate exact functions
A4
Utilize the two penalty functions in Formulas (11)
— and (12) to get the augmented objective functions
and Sort samples based on Formula (14)

“_'___'_,_....------“' v “"“'""""""“‘b
If rem(iter, 3)==0, If rem(iter, 2)==0, Else, then
then Range = then Range Range == Original
Subspacel Subspace2 design space
¥ A4 ¥
Employ samples in Employ samples in Employ all the
Subspacel to Subspace? to obtained samples
Exploitation create local create local to create global
kriging models kriging models kriging models

Carry out Multi-start Constrained Optimization to get
new added samples using the kriging-based objective
and constraints, based on Formulas (7) to (10)

.

Yes [Explore the sparsely sampled

1;:2::{21?? —»  area by maximizing the
i timated MSE
Exploration| ‘ - estima :d S

Evaluate exact function values at the
new sample points

¥
Satisfy the g

stopping criterion '

FIGURE 8.1 Flowchart of SCGOSR.

No
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where target is a defined target value and NFE represents the number of
objective or constraint function evaluations.

In Figure 8.1, the function “rem(A, B)” returns the remainder after the
division of A by B.

8.3 COMPUTATIONAL EXPERIMENTS

In order to verify the capability and demonstrate the advantage of

SCGOSR, different representative benchmark cases in the nonlinear con-
strained optimization domain are tested. These cases include eight bench-
mark mathematical examples (BR, SE, GO, G4, G6, G7, G8 and G9) and
five engineering applications (TSD, WBD, PVD, SRD and SCBD) that are
commonly used. More details of the test cases can be seen in Table 8.1.

In Table 8.1, dim denotes the number of dimensions, and Noc is the
abbreviation of “Number of Constraints.” Besides, “Target value” and
“Known Best Value” come from the already published papers about con-
strained problems (Garg, 2014; Thanedar & Vanderplaats, 1995). It is men-
tionable that these cases have various characteristics and involve different
dimensions and constraints. Obviously, they can represent most of the
constrained optimization problems that we may encounter in the actual
engineering design. In the following tests, the parameter P in Egs. (8.3),
(8.6) and (8.7) equals to 1el0, A in Eq. (8.5) is defined as le—5, w in Eq.
(8.10) is 15%, and r in Eq. (8.11) is 25%.

TABLE 8.1 Nonlinear Constrained Optimization Cases

Target Known
Category Func. dim Noc. Design Range Value Best Value
Benchmark BR 2 1 [-5,10]%[0,15] 0.3980 0.3979
mathematical Sg 2 1 [05] -1.1740  —1.1743
examples GO 2 1 [-0.50.5]%[-1,0] -0.970  —0.9711
G4 5 6  [78,102]x[33,45] x[27,45]3 —31,025 -31,025.56
G6 2 2 [13,100]x[0,100] -6,960 —6,961.81
G7 10 8 [-10,10]" 25 24.3062
G8 2 2 [le-15,10]? —0.0958  —0.0958
G9 7 4  [-10,10)7 1,000 680.6301
Engineering TSD 3 4 [0.05,2]x[0.25,1.3]x[2,15] 0.0128 0.01267
applications  WBD 4 7  [0.1,2]x[0.1,10]>%[0.1,2] 1.8 1.7249
PVD 4 4 [0.0625,6.1875]2%[10,200]> 6,000 5,885.33
SRD 7 11  [2.6,3.6]%[0.7,0.8] x[17,28] x 3,000 2,994.42
[7.3,8.3]?%[2.9,3.9] X [5.0,5.5]
SCBD 10 11 ([2,3.5]%[35,60])° 65,000 62,791
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TABLE 8.2  Preliminary Test Results of SCGOSR

Problems Design Variables fix)
BR [9.4248, 2.4750] 0.3979
SE [2.7450, 2.3523] —1.1743
GO [0.1092, —0.6234] -0.9711
G4 (78, 33,27.0734, 45, 44.9619] -31,025.35
G6 [14.0950, 0.8430] —6,961.80
G7 [2.1640, 2.3825, 8.7750, 5.0870, 0.9753, 1.3864, 1.3067, 24.3187
9.8169, 8.2413]
G8 [1.2315, 4.2450] —0.0958
G9 [2.0341, 1.9175, —0.6860, 4.4691, —0.2074, 1.7834, 1.6773] 686.8836
TSD [0.0516, 0.3550, 11.3904] 0.0126653
WBD [0.2057, 3.4705, 9.0366, 0.2057] 1.7249
PVD [0.7792, 0.3852, 40.3713, 199.3308] 5,888.66
SRD [3.5002, 0.7000, 17, 7.3000, 7.7153, 3.3503, 5.2867] 2,994.78
SCBD [2.9921, 59.8408, 2.7943, 55.3846, 2.5237, 50.4720, 2.2206,  62,874.36

43.9321, 2, 35.0028]

8.3.1 Preliminary Test

Preliminarily, the presented SCGOSR algorithm is tested on the 13 bench-
mark cases, and the results are listed in Table 8.2. What is more, Figure 8.2
provides the iterative results of SCGOSR on all these cases. It is worth not-
ing that SCGOSR uses “NFE>500" as the global stopping criterion in the
preliminary test. It is clear that SCGOSR can easily find the target values
of these cases and even get much closer to the global optima shown in
Table 8.1. In order to improve the readability of Figure 8.2, clearer results
are given in some cases, like BR, G6, G7, G8, G9 and WBD. As Figure 8.2a,
e, f, g, 1,1, m, o and p shows the initial DoE cannot provide a feasible solu-
tion in most cases, but SCGOSR can still capture the feasible solutions
with iterations going on.

8.3.2 Comparison and Analyses

Due to the random feature of SCGOSR, ten independent tests were con-
ducted to verify its stability. Additionally, five surrogate-based constrained
optimization algorithms (RBFCGOSR, SCGO, MSSR, MS and MSRBF) are
tested in contrast. Specifically, RBFCGOSR is the same as SCGOSR except
that RBFCGOSR uses cubic RBF to construct the surrogate model; SCGO
is the SCGOSR algorithm without space reduction; MSSR is a previously
presented global optimization algorithm that can deal with constrained
problems; MS is the MSSR algorithm without using space reduction strate-
gies; MSRBF is an RBF-based optimization algorithm using the multi-start
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FIGURE 8.2 SCGOSR on benchmark cases. (a) SCGOSR on BR. (b) SCGOSR on
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(m) SCGOSR on WBD. (n) Clear results of SCGOSR on WBD. (0) SCGOSR on

TSD. (p) SCGOSR on SCBD. )
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optimization solvers of SCGOSR. Besides, SCGOSR is also compared with
KCGO that is recently published. The ranges of best values are shown in
Tables 8.3 and 8.5. The statistical NFE results are shown in Tables 8.3-8.6.
Here, the NFE values with the symbol “>” indicate that at least one of the
tests cannot find the target value within 500 function evaluations, the
numbers in the brackets “()” refer to the number of failures, and the num-
bers in the brackets “{}” represent how many times the algorithm cannot
find feasible solutions.

Intuitively, SCGOSR can find the target values of all the cases within
500 function evaluations, but the other five algorithms have failed cases
in varying degrees. In this work, two-dimensional cases like BR, SE, GO,
G6 and G8 are nonlinear constrained problems. For these low-dimen-
sional problems, it is clear that MS and MSRBF have a higher possibility
of failure, and RBFCGOSR and MSSR can succeed in most cases. BR is
a relatively simple case whose global optima can be easily found by all
these algorithms. Besides, it is difficult for the two RBF-based algorithms
(RBFCGOSR and MSRBF) to quickly find the target value of GO and G8.
What is more, MSSR, MS and MSRBF sometimes may go close to the tar-
get value of SE but finally, they cannot reach the target.

When the number of dimensions and constraints increases, it will get
harder for a surrogate-based optimization algorithm to find target values.
For G4, which has five dimensions and six constraints, the proposed opti-
mization flow including SCGOSR, RBFCGOSR and SCGO can success-
fully find the target value with fewer function evaluations, but MSSR, MS
and MSRBF always fail. In the mathematical examples, G7 and G9 seem to
be the most complex cases, and thus most of these algorithms have larger
NFE values. In particular, MSRBF sometimes cannot even find a feasible
solution on G7 when it stops.

For engineering applications, SCGOSR and MSSR perform better. Due
to the lack of an exploration strategy that can help an algorithm escape
from local valleys, MSRBF is easy to get trapped in a local optimal region.
Hence, MSRBF is not stable in most engineering cases. Since SRD and
SCBD both have 11 constraints that bring challenges for optimization,
RBFCGOSR, MSSR, MS and MSRBF commonly use more function evalu-
ations to search their target values.

Table 8.7 shows the comparison results of SCGOSR and KCGO (Li
et al.,, 2017). In Table 8.7, KCGO provides a group of results that come
from the reference. Here, G4’ is a little different from G4 (Garg, 2014) that
was previously introduced. The coefficient 0.00026 in G4 is changed to



TABLE 8.3

Best Values and Mean NFE of SCGOSR, RBFCGOSR, and SCGO

Func.

BR
SE
GO
G4
Go6
G7
G8
G9
TSD
WBD
PVD
SRD
SCBD

SCGOSR RBFCGOSR
NFE Best Value NFE Best Value
25.1 [0.3979, 0.3980] 69 [0.3979, 0.3980]
259 [-1.1743,-1.1740] 43.2 [-1.1743,-1.1741]
51.1 [-0.9711, -0.9706] >137.6 [-0.9711, -0.7653]
53.9 [-31,026, —31,025] 252.6 [-31,026, —31,025]
78.5 [-6,961.8, —6,961.4] 46.4 [-6,961.8, —6,961.2]
178.2 [24.3149, 24.9969] 247.2 [24.3062, 24.8145]
51.8 [-0.0958, —0.0958] >178.1 [—0.0958, —0.0936]
115.6 [826.30, 981.86] 124.2 [845.75, 974.07]
75.7 [1.267e-2, 1.278e-2] >293.3 [1.273e-2, 1.287e-2]
101.9 [1.7249, 1.7888] 194 [1.7449, 1.7983]
429 [5,885.3, 5,982.1] 174.2 [5,885.4, 5,972.7]
88.1 [2,994.5, 2,997.8] 232.6 [2,994.5, 2,994.5]
152.5 [62,861, 64,895] >256.9 (62,791, 70,594]

SCGO
NFE Best Value
26.7 [0.3979, 0.3980]
24.3 [-1.1743, -1.1741]
85.7 [-0.9711, -0.9708]
55.7 [-31,026, —31,025]
>464 [-6,961.6, —6,937.3]
>290.6 [24.4436, 27.824]
115.5 [-0.0958, —0.0958]
165.2 [730.19, 990.14]
110.2 [1.267e-2,1.279e-2]
>392.4 [1.7745, 2.7610]
319 [5,885.3, 5,981.7]
147.8 [2,994.5,2,999.3]
216.3 [63,079, 64,699]
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TABLE 8.4  Statistical NFE of SCGOSR, RBFCGOSR and SCGO

SCGOSR RBFCGOSR SCGO
Func. Min Median Max Min Median Max Min Median Max
BR 21 25.5 29 28 60 160 17 24 48
SE 18 24.5 41 25 33 128 20 25 30
GO 17 28 156 22 60.5 >500(1) 18 21 297
G4 32 35.5 174 188 253 307 21 255 181
G6 33 65.5 171 27 44.5 71 123 >500 >500(9)
G7 102 199.5 239 107 200.5 459 64 >293.5 >500(5)
G8 24 47.5 80 32 104.5 >500(2) 44 97 297
G9 54 112 198 58 121 213 31 187.5 235
TSD 43 69 114 113 244 >500(1) 62 96.5 249
WBD 72 97 153 112 180.5 372 186 408 >500(3)
PVD 27 41 63 92 159 285 26 31.5 36
SRD 35 60.5 272 143 219.5 345 35 127 331
SCBD 62 119.5 297 134 222.5 >500(1) 42 209 470
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TABLE 8.5 Best Values and Mean NFE of MSSR, MS and MSRBF

MSSR MS MSRBF
Func. NFE Best Value NFE Best Value NFE Best Value
BR 22.6 [0.3979, 0.3980] 21.8 [0.3979, 0.3979] >145.9 [0.3979, 0.3981]
SE >162.8 [-1.1743,-1.1739] >233.7 [-1.1743,-1.1735] >74.5 [-1.1743,-1.1729]
GO 33.6 [-0.9711, -0.9701] 41.8 [<0.9711, —0.9703] >357.7 [-0.9708, —0.1664]
G4 >272.3 [-31,026, -31,020] >310.5 [-31,026, —30,742] >232.2 [-31,026, —31,024]
G6 >253.5 [-6,961.4, -6,958.3] >454.6 [-6,960.9, —6,918.7] 147.2 [-6,961.8, —6,961.8]
G7 >147.8 [24.3540, 25.1828] >213.4 [24.3342, 27.8559] >500 [25.0043, 1e10] {*1}
G8 68.9 [—0.0958, —0.0958] 94.8 [—0.0958, —0.0958] >427.8 [-0.0958, —2.89e-5]
G9 109.1 [828.79, 999.87] 160.8 [822.56, 999.99] >438.1 [946.63, 11,690]
TSD 95.4 [1.267e-2,1.279e-2] 100.7 [1.268e-2, 1.279¢e-2] 179.2 [1.267e-2, 1.278e-2]
WBD 156 [1.7354, 1.7976] >348.4 [1.7643, 2.8849] >311.6 [1.7333, 2.7608]
PVD 30.4 [5,891.2, 5,951.5] 29.7 [5,885.4, 5,965.3] >150.2 [5,885.4, 6,025.5]
SRD >209.6 [2,994.5, 3,019.2] >322.3 [2,994.5, 3,018.7] >328.3 [2,994.5, 5,448.7]
SCBD 284.4 [62,858, 64,648] 307 [62,791, 64,731] >387.8 (62,791, 1e10]
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TABLE 8.6 Statistical NFE of MSSR, MS and MSRBE O
MSSR MS MSRBF §

Func. Min Median Max Min Median Max Min Median Max 0O
BR 17 23 28 19 20.5 30 45 79 >500(1) S
SE 25 124.5 >500(1) 22 116 >500(4) 20 26 >500(1) =
GO 13 33 54 14 425 74 17 >500 >500(7) 8
G4 21 >288.5 >500(5) 22 >500 >500(6) 161 198 >500(1) 3
G6 15 190 >500(4) 230 >500 >500(8) 53 75 408 B
G7 72 104 >500(1) 73 98 >500(3) >500 >500 >500(10) S
G$ 39 64.5 109 42 95.5 152 31 >500 >500(8) z
G9 60 102.5 189 83 145 295 139 >500 >500(8) 3
TSD 52 101 153 53 84 249 75 167 399 e
WBD 98 133 411 178 358 >500(2) 60 299 500(4) o
PVD 26 31 37 23 28 49 46 63 >500(1) a
SRD 31 201.5 >500(1) 34 364 >500(2) 120 305 >500(3) 2z
SCBD 52 310.5 384 146 317.5 466 147 >500 >500(6) %
QL

§‘.
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SCGOSR = 217

TABLE 8.7 Comparison of SCGOSR and KCGO

SCGOSR KCGO

Cases Mean NFE Range of NFE Range of Best Value NEFE Best Value
G4’ 60.3 [33, 163] [-30,665.54, —30,665.20] 24 -30,665.51
G6 78.5 [33,171] [-6,961.8, —6,961.4] 31 —6,677.68
G7 178.2 [102, 239] [24.3149, 24.9969] 107 24.3093
G8 51.8 [24, 80] [—0.0958, —0.0958] 39 —0.0956
G9 115.6 [54, 198] [826.30, 981.86] 163 860.9243
TSD 75.7 [43, 114] [1.267e-2, 1.278e-2] 38 0.0135
WBD 101.9 [72, 153] [1.7249, 1.7888] 115 2.3230
SRD 88.1 [35,272] [2,994.5, 2,997.8] 43 2,999.76

0.0006262 in G4". Now, the known global optima of G4” is —30,665.54.
Obviously, KCGO has impressive performance on these cases. KCGO
can find an approximate optimum on G4’ only using 24 function evalu-
ations. SCGOSR can always get satisfactory values on G4’ but needs at
least 33 function evaluations. However, SCGOSR sometimes can find the
true global optimum —30,665.54. Similarly, SCGOSR can find much better
values than KCGO on G6, but KCGO uses fewer function evaluations. For
G7, KCGO can get more accurate results than SCGOSR, while SCGOSR
sometimes can be more efficient. Intuitively, SCGOSR mostly outperforms
KCGO on G8, because the best value of KCGO is outside of the SCGOSR’s
value range and SCGOSR can use fewer function evaluations. For G9,
SCGOSR is able to find a better value of 826.30 than KCGO with a smaller
NFE. Besides, the mean NFE of SCGOSR (115.6) is also much smaller than
163. For the three engineering applications TSD, WBD and SRD, there is
no doubt that SCGOSR gets more accurate results than KCGO. What is
more, SCGOSR also performs efficiently on the three applications.

No matter the mathematical examples or engineering applications,
SCGOSR always has impressive performance. More importantly, SCGOSR
shows advantages in stability and efficiency compared with other algo-
rithms. In summary, SCGOSR is a promising constrained optimization
algorithm for expensive black-box problems.

8.3.3 Further Comparison and Analyses

Additionally, in order to demonstrate the extensive applicability of
SCGOSR, further experiments are set up. The constrained optimization
algorithm “superEGO” is used as contrast. “superEGO” (Sasena et al.,
2002) was developed to solve computationally expensive problems with



218 m Data-Driven Global Optimization Methods and Applications

disconnected feasible regions. In this chapter, two benchmark examples,
Gomez and newBranin suggested by Sasena et al. (2002) are tested. new-
Branin has three feasible regions that only cover about 3% of the design
space, and the disconnected feasible regions of Gomez cover approxi-
mately 19% of the design space. According to the reference, SCGOSR also
utilizes LHS to generate ten initial sample points and runs ten times on the
two examples. Besides, SCGOSR will stop and NFE will be recorded when
a feasible point is obtained within a box (+1% of the design space range)
around the true global optimal solution. The main data of Table 8.8 comes
from the reference, and it is clear that superEGO2 performs the best in the
two examples. It is worth noting that SCGOSR also has impressive perfor-
mance. For newBranin, SCGOSR is much closer to the superEGO’s results.
However, SCGOSR needs more function evaluations than superEGO2 on
Gomez. What is more, SCGOSR outperforms the deterministic optimiza-
tion algorithm DIRECT (Jones, 2001), the gradient-based algorithm SQP,
and the nature-inspired algorithm SA (Kirkpatrick et al., 1983).

In order to demonstrate how SCGOSR works on the problems with
disconnected feasible regions, two graphical examples are shown in
Figures 8.3 and 8.4. In the two figures, the stars are the global optimal
solutions, the squares are DoE sample points, the black circles are pre-
viously added points and the blue circles are the currently added points.
Besides, the dashed lines refer to the constraint bounds.

We advisedly provide the two cases with “worse initial sample points.”
In other words, the initial sample points cannot offer positive guidance for
SCGOSR to find the global optimum at the beginning. From Figure 8.3,
it can be seen that the search at first focuses on the “wrong” feasible
regions. Figure 8.3b and c shows that the search gradually goes close to the
most important feasible region. Additionally, since SCGOSR can capture

TABLE 8.8 Comparison on newBranin

and Gomez
Average Number of

Function Evaluations
Algorithm newBranin Gomez
SCGOSR 24.6 47.5
superEGO1 22.2 66.3
superEGO2 22.0 36.5
DIRECT 76 93
SQP 363 831

SA 5,371 7,150
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(c)1s 10-15 (dy

FIGURE 8.3 TIterative results of SCGOSR on newBranin. (a) Iterations 1-4. (b)
Iterations 5-9. (c) Iterations 10-15. (d) Iterations 16-17.

multiple local optimal points in each cycle, the three feasible regions are
sufficiently explored. Finally, 44 function evaluations are used to find the
best solution [3.2340, 0.9547].

Intuitively, Gomez is more complex than newBranin as illustrated in
Figure 8.4. It is clear that the search begins from the left feasible region that
includes an initial sample point. During the first 20 iterations, SCGOSR is
busy exploring “wrong” feasible regions. After SCGOSR explores five fea-
sible regions, it begins to pay attention to the neighborhood of the global
optimal point. Finally, SCGOSR finds the satisfactory feasible solution
[0.1110, —0.6233] by 35 iterations and 79 function evaluations. In sum-
mary, SCGOSR can also solve complex problems with disconnected fea-
sible regions.

8.3.4 Specific Analyses on Space Reduction

After the previous comparison with other methods, SCGOSR has shown
its remarkable capability. According to the comparison results of SCGOSR
and SCGO in Table 8.3, it is clear that the two subspaces speed up the
search process of SCGOSR. In order to analyze the contribution of using
Subspacel and Subspace2, separately, two algorithms SCGOSR_S1 and
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FIGURE 8.4 Iterative results of SCGOSR on Gomez. (a) Iterations 1-4. (b)
Iterations 5-9. (c) Iterations 10-15. (d) Iterations 16-17.

TABLE 8.9 Best Values and Mean NFE of SCGOSR_S1 and SCGOSR_S2

Func.

BR
SE
GO
G4
G6
G7
G8
G9
TSD
WBD
PVD
SRD
SCBD

SCGOSR_S1 SCGOSR_S2
Mean NFE Best Values Mean NFE Best Values
23.7 [0.3979, 0.3980] 28.3 [0.3979, 0.3980]
27.7 [-1.1743,-1.1742] 26.5 [-1.1743,-1.1741]
64.2 [<0.9711, —0.9704] 26.7 [-0.9711, -0.9701]
96.2 [-31026, -31025] 37 [-31,026, —31,025]
80.3 [-6,961.8, —6,960.0] >362.8 (7) [-6,961.8,-6,914.1]
152.6 [24.3083, 24.9307] 220.3 [24.3086, 24.8412]
79.6 [—0.0958, —0.0958] 46.2 [—0.0958, —0.0958]
96.9 [782.31, 988.15] 118.5 [720.83, 982.69]
120.8 [1.267e-2, 1.276e-2] 77.7 [1.267e-2, 1.272e-2]
89.5 [1.7249, 1.7998] >150.7(1) [1.7286, 2.5605]
40.9 [5,907.3, 5,995.1] 36.8 [5,885.4, 5,959.5]
168.6 [2,994.5, 2,999.5] 60.9 [2,994.5, 2,999.9]
223.4 (62,792, 64,846] 157.7 (62,791, 64,318]

SCGOSR_S2 are tested. The two algorithms are the same as SCGOSR,
except that the two subspaces are used, respectively. Table 8.9 shows the
statistical results of the two algorithms. Combining the results of SCGOSR
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TABLE 8.10 Ranking of SCGOSR, SCGOSR_S1 and SCGOSR_S2
Ranking SCGOSR SCGOSR_S1 SCGOSR_S2

BR

SE
GO
G4
G6
G7
G8
G9
TSD
WBD
PVD
SRD
SCBD
Total ranking 23
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in Table 8.3 with the results in Table 8.9, we give the specific ranking of the
three algorithms in Table 8.10. Intuitively, SCGOSR_S2 fails several times
on G6 and WBD, but it has the best performance on GO, G4, G8, PVD
and SRD. Differently, SCGOSR_S1 uses the fewest function evaluations on
BR, G7, G9 and WBD, but performs badly on SRD and SCBD. Relatively
speaking, SCGOSR has the most stable performance and its total ranking
is the best. Although the combinative utilization of the two subspaces may
increase NFE on some problems, it makes the space reduction strategy
more robust.

8.4 CHAPTER SUMMARY

In this work, a surrogate-based global optimization algorithm for com-
putationally expensive black-box problems (SCGOSR) is presented. It is
worth mentioning that SCGOSR can handle problems with costly objec-
tives and constraints, which frequently appear in actual engineering
design. In SCGOSR, Kriging is used to construct surrogate models that will
be updated with iterations going on. Besides, a multi-start optimization
method is proposed to exploit surrogate models, and newly added samples
are selected from predictive local optimal solutions. In order to speed up
the search on Kriging, two subspaces are created based on two penalty
functions. Among them, Subspacel is the vicinity of the present best solu-
tion, and Subspace? is a region that encloses several promising solutions.
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Furthermore, two groups of local surrogate models are constructed by the
samples in the two subspaces, respectively. On the one hand, local sur-
rogates can improve the local convergence efficiency. On the other hand,
local surrogates make SCGOSR spend less time in constructing Kriging
models for objective and constraint functions. The proposed multi-start
optimization is carried out alternately on Subspacel, Subspace2 and the
overall design space. Once SCGOSR gets trapped in a local optimal region
and a proposed local convergence criterion is satisfied, SCGOSR begins to
explore the sparsely sampled area.

Finally, through the comparison tests on eight mathematical examples
and five engineering applications, SCGOSR shows the powerful capacity
in dealing with expensive black-box-constrained optimization problems.

NOTE

1 Based on “SCGOSR: Surrogate-based Constrained Global Optimization
using Space Reduction,” published in [Applied Soft Computing], [2018].
Permission obtained from [Elsevier].
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CHAPTER 9

KTLBO

Kriging-Assisted Teaching—
Learning-Based Optimization to
Solve Computationally Expensive
Constrained Problems’

9.1 INTRODUCTION

As high-fidelity simulation techniques are leaping forward and being
applied extensively, computationally expensive black-box global opti-
mization has turned out to be one of the most challenging problems in
engineering optimization (Dong, Song, Wang, et al., 2018; Li et al., 2020;
Ororbia et al., 2020). Overall, the more accurate the simulation analysis,
the more computation budget it will bring. Thus, engineers are required to
take some time to achieve satisfactory accuracy. Besides, costly black-box
constraints may further complicate optimization and impose greater chal-
lenges (Bagheri et al.,, 2017; Li, 2019; Miranda-Varela & Mezura-Montes,
2018; Muller & Woodbury, 2017). Sometimes, feasible solutions are dif-
ficult to find in actual simulation-based engineering applications with
acceptable computational budgets (Akbari & Kazerooni, 2020; Wu et al.,
2018). Specifically, the expensive black-box constrained problems (EBCPs)
that the chapter focuses on can be described as follows:

min f(x) xe[lb,ub]

9.1
st. Gi(x)<0, i=1,...,m.
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Where [Ib, ub] denotes the search space; f(x) represents the objective func-
tion; C,(x) denotes the ith inequality constraint; and m is the total num-
ber of inequality constraints. It is assumed that both f (x) and C/(x) are
time-consuming black boxes. If the objective function f(x) is calculated at
an unknown point x, the corresponding constraints C;(x) can be attained
concurrently. In other words, f(x) and C,(x) are different response values
from one simulation model.

Since most of the mentioned time-depending and black-box simula-
tion models are unable to present an explicit mathematical expression,
the conventional gradient-based mathematical programming methods
become inferior. In the existing literature, swarm intelligence (SI) and
evolutionary computation (EC) combined with some constraint-handling
techniques are widely employed to address black-box constrained prob-
lems (Mezura-Montes & Coello Coello, 2011). Farmani and Wright (2003)
presented a self-adaptive fitness formulation for constrained optimization
by referencing their previous work (Wright & Farmani, 2001), where a
penalty-function method was proposed for genetic algorithm (GA). In the
optimized version, constraint violations were represented by a single infea-
sibility measure function involving a two-stage penalty strategy, which
could decrease the dimensionality of the problem and make the method
more dynamic and self-adaptive. Daneshyari and Yen (2012) developed a
constrained multi-swarm particle swarm optimization (CPSO) method in
a cultural framework (cultural CPSO), where numerous concepts from the
cultural algorithm were employed to optimize PSO’s updating mechanism
and swarm-communication capability. In cultural CPSO, objective and
constraint violation values are normalized, and a V-F space is established
to form a modified fitness formulation for comparisons of particles. Wang
and Cai (2012) developed an algorithm combining multiobjective opti-
mization with differential evolution (CMODE) to solve constrained opti-
mization by using their previous Cai-Wang (CW) algorithm. In CMODE
(Wang & Cai, 2012), objective and constraint violation functions emerged
into a biobjective optimization formulation as an attempt to minimize
objective values and degree of constraint violations. Unlike CW (Wang &
Cai, 2012), CMODE employed DE as the search engine to decrease the
number of tuning parameters and proposed a more efficient replacement
mechanism for infeasible solutions. Furthermore, Wang et al. (2016) intro-
duced a novel constrained optimization method: integrating feasibility
rules with objective function information (FROFI). A novel replacement
mechanism and a mutation strategy have been cooperatively adopted to
generate promising offspring and achieve global exploration.
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Though SI and EC algorithms (Chen et al., 2018; Kar, 2016; Mavro-
vouniotis et al., 2017) can effectively solve complex black-box optimization,
they are overly determined by the number of function assessments, which
is inappropriate for computationally expensive problems. In most cases,
one simulation may require several minutes or hours, while thousands of
calls to the simulation models will cause unbearable computation costs,
thereby enormously extending the design cycle. When the time-to-market
requirement is tight, an efficient optimization method that requires fewer
calls to the expensive model is indispensable (Liu et al., 2014).

Dong, Li, et al. (2018) developed a multi-surrogate-based global opti-
mization method using a score-based infill criterion (MGOSIC), where
Kriging, radial basis function (RBF), and polynomial response surface
(PRS) are separately employed to build dynamically updated surrogate
models. In addition, a score-based infilling criterion is presented to find the
candidate sample sets. The points that can perform better on most of the
surrogate models will have higher scores. Furthermore, high-score points
farther from the known expensive samples will be first introduced into the
expensive sample set. Most of the existing surrogate-based optimization
(SBO) methods are developed to solve expensive black-box unconstrained
problems, and they cannot directly apply to EBCPs. As proposed by Haftka
et al. (2016), “When it comes to adaptive sampling algorithms for con-
strained optimization, the state of the art is less advanced.” Regis (2011)
extended his previous work and developed a constrained local metric sto-
chastic RBF (ConstrLMSRBF) method that separately builds RBF models
for objective and constraint functions. Among the candidate points, the
ones predicted to be feasible are first collected. If none of the candidate
points are feasible on surrogate models, the point with the least number of
constraint violations will be selected. Though ConstrLMSRBF can effec-
tively process some EBCPs, it requires at least one feasible point as the initial
sample to drive the subsequent optimization loop. Sometimes, it is difficult
to identify the feasible solutions of an actual EBCP at the beginning. Liu
et al. (2017) presented an improved constrained optimization algorithm,
termed eDIRECT-C, for EBCPs, where a DIRECT-type (Jones et al., 1993)
constraint-handling technique using the Voronoi diagram (Liu et al., 2015)
was proposed to separately deal with feasible and infeasible cells. Though
eDIRECT-C does not contain user-defined parameters and can effectively
explore the unknown feasible area, it requires more running time and thus
is not appropriate for large-scale and multi-constraint problems. Dong,
Song, Dong, et al. (2018) developed a surrogate-based constrained global
optimization method using space reduction (SCGOSR), where a multi-start
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optimization strategy was proposed to capture the promising points from
the local and global spaces of Kriging. SCGOSR outperforms other algo-
rithms on most of the benchmark cases, while it overly relies on Kriging’s
predicting accuracy. If Kriging has a larger prediction error on some prob-
lems, SCGOSR will be mistakenly guided by Kriging and exhibit poor per-
formance. Wang et al. (2019) proposed a global and local surrogate-assisted
DE (GLoSADE) algorithm for EBCPs, consisting of two phases. At the
global phase, DE acts as the search engine to generate potential samples
and the generalized regression neural network is adopted to classify these
points, achieving the global exploration; at the local phase, the interior
point method coupled with RBF is employed to improve the individuals of
the population, eventually accelerating the convergence. Surrogate-assisted
evolutionary algorithms (e.g., GLoSADE) (Yu et al., 2019) comply with the
stochastically sampling mechanism of metaheuristic algorithms, while
they exploit the potential information from surrogates, which have aroused
considerable attention recently (Dong et al., 2019).

In this chapter, an efficient surrogate-assisted SI method is devel-
oped by exploiting the unique optimization framework of teaching-
learning-based optimization (TLBO) (Rao et al., 2011) and Kriging’s
prediction mechanism. Since TLBO was originally developed to pro-
cess constrained mechanical design optimization, a novel method based
on TLBO is expected to efficiently process computationally expensive
inequality-constrained optimization. Since TLBO consists of two phases
to generate new points, two Kriging-guided sampling strategies that can
effectively balance the local search and global exploration are corre-
spondingly proposed. In the Kriging-assisted teaching phase (KATP), the
neighborhoods around the present best solution are sufficiently exploited
to accelerate the convergence, and a constrained expectation of improve-
ment (EI) function considering the probability of feasibility is set as a
prescreening tool to select the potential individuals from the learners.
However, in the Kriging-assisted learning phase (KALP), a constrained
mean square error (MSE) function more concerned with Kriging’s predic-
tion uncertainty is proposed to select the learners located at the sparsely
sampled feasible region for global exploration. Through the joint search
of the proposed two phases, the new KTLBO algorithm can efficiently
solve EBCPs. For this, KTLBO uses Kriging to construct a dynamically
updated surrogate model for the objective and constraint functions and
establishes a constraint-optimization-oriented data management strategy
for archiving, sorting and updating valuable samples.
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9.2 TEACHING-LEARNING-BASED OPTIMIZATION

TLBO first presented by Rao et al. (2011) refers to a phenomenon-inspired
method that exploits a population to iteratively search the global optimal
solution. Uniquely, TLBO imitates how knowledge spreads in a class (pop-
ulation), where the individuals consist of several learners and one teacher.
The teacher possessing the highest-level knowledge can guide the learners
to get improved, so the overall knowledge level of this class will ultimately
shift to the teacher. Moreover, one learner can be inspired by other learn-
ers: if you are better, I can follow you; otherwise, I can try the opposite
direction. To sum up, TLBO involves two search phases: teaching and
learning. To be more specific, Figure 9.1 illustrates the detailed formulas
and algorithm steps.

Initialize parameters like size of
population and termination criterion

A\

Calculate the mean of population = €——+

v
Identify the present best point: x,_ ..
A\
Generate new points

X, = Xq + 1 (X — T - Mean)
A4

Teaching
Phase

: No : Yes
Reject <«—  Getimproved? —» Accept

v
Randomly select two points X, and x,
Learning ¥
s l— Is x;better thanx? _l
Xy =Xy 1 (X - X)) X =Xy Hre(X,— X))
| - |

; No ) . Yes
Reject <«—  Getimproved? —» Accept

v

Yes Satisfy No
Sl o Termination?

FIGURE 9.1 Illustration of TLBO.
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9.3 THE PROPOSED KTLBO

In the presented KTLBO, the design of experiments (DoE) is first employed to
yield a group of well-distributed points that should be assessed by real objec-
tive and constraint functions. Thereafter, these expensive samples are orga-
nized to build surrogate models of objectives and constraints, respectively.

In this chapter, a novel sampling method combining metaheuristic search
mechanism and the prediction capability of Kriging is presented, to achieve
a reasonable balance of global exploration and local exploitation. For each
cycle of KTLBO, real data are required to undergo assessment, preprocess-
ing, classifying, surrogate modeling and updating, while the potential candi-
date points determined from Kriging-assisted teaching and learning phases
should go through prescreening and repeatability detecting. After several
iterations, the predicting performance of the mentioned Kriging models is
gradually enhanced, and more potential points around the true feasible area
or global optimum will be captured. Figure 9.2 presents the overall flow of
KTLBO, and more details will be explained in the following sections.

Parameter & Samples
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{
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Meta-heuristic
Exploration &
Prescreening

Exploitation on
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FIGURE 9.2 Data flow of KTLBO.
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9.3.1 Initialization of KTLBO

At the initial phase of KTLBO, some basic parameters (e.g., design range,
numbers of variables and constraints, population size and number of initial
sample points) are initialized and defined, respectively. Next, optimized
Latin hypercube sampling (OLHS) is employed to obtain the initial point
set § = {x, x@, ..., ™} and its corresponding objective and constraints
values Yz{y(l),y(z),...,y(m} and C={c(1),c(2),...,c(N)}, where $ and Y
denote two vectors, and C is a matrix. To efficiently compare the expensive
samples in a constrained problem, a penalty-function method is written:

1<i<m

max(Y)+ Zmax(ci (x(j) ),0), if max(max(c,- (x(j) ),0)) >0

Y(x(j)), ifmax(max(ci(x(j)),o))zo

1<i<m
Vi=1,2,...,N 9.2)

where x\) denotes the jth point in the sample set S; Y represents the objec-
tive values set; and max(Y) is the maximal objective function value. It is
assumed that there are two points A and B. According to Eq. (9.2), it is easy
to draw three conclusions.

1. If A is feasible and B is infeasible, F(A) should be better than F(B)
because:

Y(A)<max(Y)
m = F(A)<F(B) (9.3)

2. If both A and B are infeasible and the constraint violation of A is
smaller than that of B, F(A) should be better than F(B) because:

max(Y)=max(Y)

imaX(Ci (A),0)< Zm“max(ci (B),0)

= F(A)<F(B) (9.4)

3. If both A and B are feasible and the objective function value of A is
smaller than that of B, F(A) should outperform F(B) because:

Y(A)<Y(B)= F(A)<F(B) (9.5)
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FIGURE 9.3 Data flow of initial phase.

Obviously, if both A and B are infeasible, Eq. (9.2) considers more about
how seriously they violate the constraints, which will promote the algo-
rithm to find feasible solutions efficiently. Besides, the penalty function
F is employed to classify all samples in S, Y and C, and select the promis-
ing individuals as the population members Pop. Figure 9.3 illustrates the
data structure and flow of the initial phase, underpinning the subsequent
sampling loop. Moreover, since the initial samples are extensively distrib-
uted over the whole design space, the first population Pop has a better
space-filling performance. With the loop continuing and more promising
samples added, the Pop in teaching phase will concentrate on the present
best solution to accelerate convergence, and the Pop in learning phase may
continuously exhibit a wide distribution to achieve global exploration.
More details can be found in the following sections.

9.3.2 Kriging-Assisted Teaching Phase

The optimization loop includes two phases: one is the KATP that suffi-
ciently exploits the local area around the present best solution; the other
one is KALP that can effectively search the sparsely sampled area. In KATP,
the predicted local optimal solution x,,, should be first captured in a local
area enclosing the present best solution x,,,,. Since the Kriging models for
objective and constraint functions have been built, TLBO directly acts as
an optimizer to search the surrogate models. Equation (9.6) expresses the
pure exploitation of surrogates.
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minY (x)

st. Cix)<0
xe [lb,ub] ﬂ[xhest — &, Xpest +§]
E=0.1+(ub—1b), i=12,..,m

(9.6)

where [Ib, ub] denotes the whole design range; Y(x) and C;(x) are the
Kriging models of objective and constraint functions, respectively.
Considering the constraints of Eq. (9.6), a contrast rule is adopted to com-
pare any two points in TLBO. More precisely, if a predicted point is better,
it is assumed as feasible or at least has a lower constraint violation value.
Equation (9.7) accounts for the details about the contrast rule, and it will
be used for selecting teachers and smarter learners in TLBO.

pi<p; i (p)=0A%(p;)>0
pi=pi if¥(p)=9(p;)=0AY(p)<Y(p))
pi=p;  ifv(p)>0Av(p;)>0(pi)

i#j, Vi, j=1,2,..,P 9.7)

zimax(é X 02
i=1

where p; and p; denote two predicted points in one population; v repre-
sents the constraint violation; P is the population size in TLBO; Y is the
predicted objective function; and C, is the ith predicted constraint. After
considerable generations, the predicted best point can be found.

On the other hand, the current Pop whose individuals originate from
the expensive samples § Y C begins to generate the new individuals.
Figure 9.4 presents the data structure and flow of KATP. In each cycle,
Pop will generate M groups of new positions based on the metaheuris-
tic teaching mechanism and archive these newcomers into a candidate
sample pool, from which a proposed prescreening strategy is used to
select the most promising points that keep balanced exploitation and
exploration.
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FIGURE 9.4 Data flow of Kriging-assisted teaching phase.

As Figure 9.4 shows, Pop={x'""V xRekD  (RaklOY ig classified by
Eq. (9.2) and then selected from S. Based on the TLBO’s search mecha-
nism, the new positions are estimated by the following equations.

xij =x(Ranki)+rj( (Rankl) T] Q)

K
1 )
Q=— E Rk (9.8)

i=1
i=1,2,..,K, j=12,..,.M

where x; denotes the new position generated by x(®*%); j denotes the jth
group; T, is a random integer between {1, 2}; r is a random number in
the range [0, 1]; K refers to the size of Pop; M is the number of groups.
Lastly, KX M new points are archived into a temporary sample pool for
prescreening.

Since the EI strategy can identify potential points that balance Kriging’s
prediction values and space-filling performance, KTLBO utilizes the EI
function to select promising points from the sample pool. To be more spe-
cific, the EI equations are written as:
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I(x)= max(ybm - Y(x),O)
(9.9)
Vet =min(Y)
I(x) represents the improvement of the objective function; Y(x) over the
current best value y,,,. Due to Y(x)~N (Y(x) (x)) I(x) is a random
variable and its mathematical expectation is described as below:

N ybest—l}(x) A Ybest — ( )
N [ e L) I e G AR

0, s(x)=0

(9.10)
Equation (9.10) refers to the EI of objective function. Besides, it is neces-
sary to consider the possibility of feasibility at x, and the specific formulas
are listed.

_ C-Clx) . _C(x) C(x)
PF—P[CSO]—P[ (x) <-— (x)] cI)[ ()J (9.11)

where C(x) also complies with the normal distribution N (C (x),s? (x)) To
improve the readability, Figure 9.5 illustrates the EI strategy. For a prob-
lem with m constraints, the final EI expression can be formulated as:

E.[1(x)]=E[1(x)]x ﬁB [c; <0] (9.12)

It is clear that Eq. (9.12) considers the potential contribution of a new
point to the objective function, as well as its feasibility. Thus, Eq. (9.12) is
regarded as a sorting criterion to find the maximal EI value of each group.
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FIGURE 9.5 Illustration of teaching-based prescreening theory.
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x; =argmax(E,[I(x)))

XEX;

X; :{x,-l,x,»z,...,x,»M} (9.13)
i=1,2,....K

Lastly, a group of new points {x;,x,...,xx } that balance the exploration of
unexplored areas and exploitation of Kriging are attained. Furthermore,
the predicted best solution x,, and these selected new points will be
assessed and saved into the expensive sample set for the next cycle. The
detailed pseudo code of KATP is provided in Algorithm 9.1.

lo

Algorithm 9.1 Kriging-assisted Teaching Phase

Input: Sample sets S, Y, C, F; The number of constraints m; the number
of design variables d; the population Pop; the Pop’s size K; the
number of sampling groups M;

Output: Updated sample sets S, Y, C, F

(01) Begin

(02) KRG« {KRG
(S, Y), (S, C)%;

(03)  x,, < Get the predicted best solution based on Egs. (9.11) and

KRG, KRG,,, } /* Build Kriging models based on

obj>

(9.12) using TLBO;

(04)  Flag < Check the repeatability to the samples set § /* Use K-nearest
Neighbors */;

(05)  If Flag = True /* True implies that x,,,, is not repeated*/

(06) Vpbes Cpvest < Calculate the objective and constraint function val-

ues of X,
(07) S, Y, C = SUx 0 YUYppe0 CUC 105
(08) EndIf
(09) Teacher < Identity the most promising sample from S by Eq. (9.7);
(10) Q< Evaluate mean positions of Pop;
(11) Forifrom1 toK
(12) For j from 1 to M
(13) x/ < Get the new point by Eq. (9.13)
(14) End For
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(15) X; < Select the most promising individual by Egs. (9.14)-(9.18)
(16) Flag <— Check the repeatability to the samples set § /* K-nearest

Neighbors */;
(17) If Flag = True /* True implies that x; is not repeated*/
(18) ¥:, ¢ < Calculate the objective and constraint function values
of x;;
(19) S, Y, CSUx;, YUy, CUc;;
(20) End If

(21) End For

(22)  F« Update the penalty function values set based on Eq. (9.7).
(23) Return Updated sample sets S, Y, C, F

(24) End

9.3.3 Kriging-Assisted Learning Phase

In KALP, TLBO is first employed to get the predicted global optimal solu-
tion x,,, from Kriging models, where the search range has been changed to
global design space [Ib, ub]. Besides, in KALP, the manner to form the cur-
rent population Pop is also inconsistent with KATP. Figure 9.6 illustrates
the corresponding data flow. The point with the best F value is first chosen,
and then K — 1 points are randomly selected from the remaining N — 1
points. This selection manner makes the samples in Pop more diverse
and distribute more extensively, which promotes the search for unknown
areas. According to Figure 9.6, Pop will generate M groups of new points
by following TLBO’s learning mechanism.

Index Selection Learning-based
exploration

F(x,3.¢) 8 Pop
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FIGURE 9.6 Data flow of Kriging-assisted learning phase.
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x =20 4 (50 - x9), if X0 <x0

Xl =204 (39 2x0), i 29 <20
9.14)
x",x) e Pop= {x(l) X .,x(K)}

i=1,2,...M

where r denotes a random number in the range [0, 1]; K is the size of Pop;
M represents the number of groups. Likewise, K X M new points are gener-
ated, which are saved into a temporary sample pool for prescreening.

As discussed above, the estimated MSE s?(x) can indicate the sample
density of the design space. A point with larger MSE value implies that it is
located in a sparsely sampled area. Figure 9.7 gives a more intuitive expla-
nation, where the MSE values of generated points are 0, whereas x, and x,
are relatively larger. In fact, points with larger MSE values should be added
to enhance the global exploration capability.

For constrained problems, the feasibility of points should be consid-
ered. Accordingly, a prescreening method combining MSE and possibility
of feasibility expressed in Eq. (9.11) is proposed:
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FIGURE 9.7 Illustration of learning-based prescreening theory.
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sP.(x)=s(x)x [ [ Pl <0] 9.15)

Equation (9.15) reveals that a point x with a larger s(x) value and higher
probability of feasibility will be more attractive. Thus, Eq. (9.15) is regarded
as a sorting criterion to determine the maximal SP, value of each group.

x; =argmax(SP. (x))

XEX;

X, :{x,l,xf,...,xf”} (9.16)
t=1,2,...,K

Similar to KATP, a group of new points {x;,x;,...,xx} located in the
sparsely sampled area is generated. The mentioned new points and the pre-
dicted best solution x,,, from the current Kriging models will be saved into
the expensive sample set. Specifically, the pseudo-code regarding KALP is
summarized in Algorithm 9.2.

Algorithm 9.2 Kriging-assisted Learning Phase

Input: The number of constraints m; the number of design variables d;
the Pop’s size K; the number of sampling groups M; sample sets
S,Y,C,F

Output: Updated sample sets S, Y, C, F

(01) Begin

(02) Pop(l)« xRkl s Select the best samplefrom SasFigure9.6 shows*/

(03) T+« Get K-1 random integers ranging from 2 to N /* N is the num-
ber of points in §*/

(04) Forifrom 1to K-1

(05) Pop(i) « xFerkT@

(06) End For

(07) KRG« { KRG, KRG, KRG,,, } /* Build Kriging models based on
(S, Y), (S, O

(08)  x,,, < Get the predicted best solution on design space [Ib, ub] using
TLBO;

(09) Flag < Check the repeatability to the samples set S /* K-nearest
neighbors */;
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(10)  If Flag = True /* True implies that x,,,,, is not repeated*/

(11) Vpbest> pvest < Calculate the objective and constraint function val-
ues of X,

(12) 8, Y, C—=SUxpp YU Y00 CUCppeis

(13) EndIf

(14) Fortfrom1ltoK

(15) s<— Identify an index s €{1,2,---,K}, s #¢;

(16) For j from 1to M

(17) x/ Get the new point by Eq. (9.14)

(18) End For

19) < x, Select the most promising individual by Egs. (9.15) and

(9.16)

(20) Flag < Check the repeatability to the samples set § /* K-nearest
neighbors */;

(21) If Flag = True /* True implies that < is not repeated™/

(22) ¥i ¢ < Calculate the objective and constraint function values

of x/;
(23) S, Y,C«~SUx/, YUy, CUc;
(24) End If

(25) End For

(26)  F <« Update the penalty function values set based on Eq. (7)
(27) Return Updated sample sets S, Y, C, F

(28) End

9.3.4 Overall Optimization Framework of KTLBO

To clearly demonstrate the whole optimization flow, an illustration with
specific algorithm steps is given in Figure 9.8. Three areas displaying dif-
ferent colors separately represent initial phase, KATP and KALP, and the
logic of the three phases is clearly presented. After the initial phase, KATP
and KALP are conducted alternately to realize efficient global optimiza-
tion. It is clear that KTLBO will continue to work until reaching the maxi-
mum allowable number of function evaluations.

9.4 COMPARISON EXPERIMENTS

In this chapter, KTLBO is compared with six well-known and recently pub-
lished algorithms MSSR (refer to Chapter 4) (Dong et al., 2016), SCGOSR
(Dong, Song, Dong, et al., 2018), ConstrLMSRBF (Regis, 2011), TLBO (Rao
et al., 2011), CMODE (Wang & Cai, 2012) and FROFI (Wang et al., 2016).
Specifically, MSSR, SCGOSR and ConstrLMSRBEF refer to SBO algorithms
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FIGURE 9.8 Overall optimization flow of KTLBO.

and have proved handling black-box optimization problems with costly
objectives and constraints on various mathematical cases. In contrast,
TLBO, CMODE and FROFI act as three efficient metaheuristic algorithms
for constrained optimization and have shown superior performance on
black-box constrained optimization problems. To verify KTLBO’s capabil-
ity, 18 benchmark cases exhibiting a range of characteristics are collected
as test cases, whose specific information is listed in Table 9.1.

In the 18 benchmark cases, there are 15 extensively used mathemati-
cal cases, consisting of 13 CEC2006 cases (Yang et al., 2020), two famous
multimodal cases GO and SE (Dong, Song, Dong, et al., 2018), as well
as three classical engineering applications TSD, SRD and SCBD (Dong,
Song, Dong, et al., 2018). Their design dimension dim ranges from 2 to 20,
and the number of constraints (Noc) falls in the range (1-38). Moreover,
LI denotes “linear inequality constraint” and NI represents “Nonlinear
inequality constraint.”
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TABLE 9.1  Specific Characteristics of 18 Test Cases

Category Func. dim Noc LI NI  KnownBestValue Type of Obj.
Mathematical g01 13 9 9 0 -15.0000 Quadratic
cases g02 20 2 0 2 —-0.8036 Nonlinear
(13 CEC2006 g04 5 6 0 6  -30,6655387  Quadratic
cases and two 906 2 2 0 2 -6,961.8139 Cubic
widely used .
cases) g07 10 8 3 5 24.3062 Quadratic
g08 2 2 0 2 -0.0958 Nonlinear
g09 7 4 0 4 680.6301 Polynomial
gl0 8 6 3 3 7,049.2480 Linear
gl2 3 1 0 1 —1.0000 Quadratic
gl6 5 38 4 34 —-1.9052 Nonlinear
gl8 9 13 0 13 -0.8660 Quaderatic
g19 15 5 0 5 32.6556 Nonlinear
g24 2 2 0 2 -5.5080 Linear
GO 2 1 0 1 -0.9711 Polynomial
SE 2 1 0 1 -1.1743 Nonlinear
Engineering TSD 3 4 1 3 0.01267 Polynomial
application SRD 7 11 4 7 2,994.4711 Polynomial
cases SCBD 10 11 5 6 62,791 Polynomial

Since SBO algorithms are generally use fewer function evaluations (FEs)
to yield satisfactory solutions, and metaheuristic algorithms require more
FEs, two groups of experiments are set. In the first experiment, KTLBO is
compared with SCGOSR, MSSR and ConstrLMSRBF, and the maximal
number of function evaluations (NFE) is set to 200. In the second, the
maximal NFE (maxNFE) is defined as 500, and KTLBO is compared with
TLBO, CMODE and FROFI. For all the parameters of SCGOSR, MSSR and
ConstrLMSRBEF, their default values [42, 25, 38] are used for test, whereas
their maximal NFE is defined as 200. For CMODE, FROFI and TLBO, the
maxNFE reaches 500, the population size is defined as 10, and all the other
parameters remain at their default values [16, 19, 46]. For KTLBO, the size
of Pop K is 3, the number of sampling groups M is 10, and the number of
DoE samples reaches 2d + 1, where d denotes the number of dimensions.
Besides, KTLBO adopts OLHS [48] to yield its initial DoE samples.

Tables 9.2 and 9.3 list the statistical results on the 13 CEC2006 cases,
where SR denotes the successful ratio to find the feasible solutions after the
maximal NFE, W-t refers to the Wilcoxon rank sum test, and all the best
results are marked in bold. Intuitively, KTLBO can find feasible solutions
in all these cases, since its SR is always 100%. SCGOSR exhibits unstable
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TABLE 9.2  Statistical Results on CEC2006 Cases (NFE = 200)—Part 1

Problem

g01

g02

g04

g06

g07

g08

Criteria
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best

KTLBO
-15.000
-15.000
-15.000
-15.000

0.000
100%

-0.398
-0.273

-0.159
-0.273
0.062
100%

-30,665.539
-30,665.539

-30,665.538
-30,665.539
0.000
100%

—-6,961.803
—-6,961.784

-6,961.762
—6,961.784
0.014
100%

24.376
24.419

24.507
24.436
0.044
100%

-0.096

SCGOSR
-14.959
~11.944
-7.828
~11.687
1.880
100%
(+)
-0.258
—0.203

-0.155
-0.209
0.062
100%
(+)
-30,665.539
-30,665.520

-30,562.619
-30,658.768
23.235
100%
(+)
-6,961.814
-6,961.804

—-6,961.730
-6,961.795
0.023
100%
(=)
24.309
24.405
30.139
26.060
2.372
100%
(=)
-0.096

MSSR
-3.000
-2.085
-1.169
~2.085
1.294
10%
(+)
-0.335
~0.180

-0.151
-0.185
0.038
100%
(=)
-30,665.537
-30,663.910
-30,617.768
-30,659.544
11.123
100%
(+)
-6,961.776
—6,957.937

—6,952.356
—6,958.198
2.922
100%
(+)
31.539
112.481

217.320
126.714
66.111
50%
(+)
-0.096

ConstrLMSRBF
-13.596
—-9.439
-3.725
-9.326
3.148
100%

(+)
-0.400
-0.286

—0.142
-0.288
0.068
100%
(+)

0%
(+)

0%
(+)
32.402
38.662

42.044
38.598
2.389
100%
(+)
-0.096
(Continued)
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Statistical Results on CEC2006 Cases (NFE = 200)—Part 1

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF
Median -0.096 -0.096 —-0.096 —-0.094
Worst —-0.090 -0.096 —-0.096 -0.088
Mean —-0.095 -0.096 —-0.096 —-0.093
Std 0.002 0.000 0.000 0.002
SR 100% 100% 100% 100%
W-t (=) (+) (+)
g09 Best 682.635 683.524 830.918 736.743
Median 736.662 703.344 1,313.413 908.523
Worst 891.725 818.397 1,903.922 1,183.825
Mean 744.492 714.327 1,309.897 923.902
Std 52.052 34.229 297.661 122.212
SR 100% 100% 100% 100%
W-t (=) (+) (+)
TABLE 9.3  Statistical Results on CEC2006 Cases (NFE = 200)—Part 2
Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF
gl0 Best 7,051.015 7,176.968 7,050.922 —
Median 7,061.990 11,125.224 7,051.715 —
Worst 7,108.000 14,567.211 7,052.509 —
Mean 7,064.030 10,667.396 7,051.715 —
Std 12.679 3,106.373 1.123 —
SR 100% 25% 10% 0%
W-t (+) (+) (+)
gl2 Best -1.000 -1.000 -1.000 -1.000
Median -1.000 —-0.997 —-0.965 -1.000
Worst -1.000 -0.924 —-0.822 —-0.960
Mean -1.000 —-0.991 —0.944 —-0.994
Std 0.000 0.017 0.058 0.011
SR 100% 100% 100% 100%
W-t (+) (+) (+)
gl6 Best -1.905 -1.905 -1.905 —
Median -1.905 -1.905 -1.905 —
Worst -1.459 -1.820 -1.650 —
Mean -1.813 -1.895 —-1.860 —
Std 0.156 0.024 0.075 —

(Continued)
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TABLE 9.3 (Continued) Statistical Results on CEC2006 Cases (NFE = 200)—Part 2

Problem Criteria KTLBO SCGOSR MSSR ConstrLMSRBF
SR 100% 100% 100% 0%
W-t (=) (=) (+)
gl8 Best -0.866 -0.866 -0.859 -0.447
Median -0.866 -0.608 -0.616 -0.355
Worst —-0.864 —-0.209 -0.239 -0.217
Mean -0.865 -0.584 -0.603 -0.343
Std 0.000 0.212 0.174 0.064
SR 100% 90% 75% 95%
W-t (+) (+) (+)
gl9 Best 37.951 297.193 301.434 232.529
Median 44.020 518.120 722.746 490.591
Worst 73.471 986.840 1143.817 749.958
Mean 45.731 592.086 710.173 514.584
Std 7.596 212.263 214.210 152.950
SR 100% 100% 100% 100%
W-t (+) (+) (+)
g24 Best -5.508 -5.508 -5.508 -4.054
Median -5.508 -5.508 —-5.507 —-4.053
Worst -5.508 -5.507 -5.452 -4.049
Mean -5.508 -5.508 -5.499 -4.053
Std 0.000 0.000 0.017 0.001
SR 100% 100% 100% 100%
W-t (+) (+) (+)

performance on gl0 and gl18, since it may fail to find feasible solutions
during 20 runs. It is easy to observe that MSSR has difficulties on g01,
g07, g10 and g18. For instance, MSSR can only succeed twice on g01 dur-
ing the 20 runs. Compared with others, ConstrLMSRBF is a special algo-
rithm, because it requires at least one feasible solution in the initial sample
set to drive the subsequent loop. Hence, a feasible solution of KTLBO is
substituted into the initial samples of ConstrLMSRBEF, to make it work.
However, ConstrLMSRBF exhibits the worst performance on go4, g06,
g10, g16 and g18.

In addition, KTLBO can get solutions closer to the true global optima
in most cases. Intuitively, KTLBO stays ahead on g01, g04, g07, gl0, gl2,
g18, g19 and g24, while SCGOSR gets first ranks on g06, g08, g09 and gl6.
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For g06 and g08, SCGOSR outperforms KTLBO, whereas their results
are significantly close. MSSR exhibits acceptable performance, and it can
approach the true global optima in most cases. However, compared with
KTLBO and SCGOSR, MSSR exhibits relatively weaker convergence abil-
ity. For instance, the values of MSSR on g04, g06, g07, g09, g18 and gl19
are obviously lower than those of SCGOSR and KTLBO. Among the four
algorithms, ConstrLMSRBF is indicated to encounter more difficulties in
these cases. Tables 9.2 and 9.3 clearly show that ConstrLMSRBF can hardly
achieve convergence during 200 FEs or even find feasible solutions in some
cases. Though ConstrLMSRBEF exhibits unstable performance, it some-
times achieves higher efficiency than MSSR. For instance, it can find more
effective mean and median results on g01, g02, g07, g09, g12 and g19 than
MSSR. For g02, ConstrLMSRBF outperforms the other three algorithms
for the RBF’s superior ability to solve high-dimensional problems. In sum-
mary, among the four algorithms, KTLBO has more significant advantages
in the 13 CEC2006 cases. Table 9.4 lists the comparison results of the four
algorithms in the low-dimensional cases and engineering applications.
KTLBO still performs efficiently and stably. KTLBO can reach the true
global optima of SRD and SE for all the runs. Besides, it can easily approach
the true global optima of SCBD, TSD and GO. In contrast, ConstrLMSRBF
exhibits worse performance in the five benchmark cases. SCGOSR and
MSSR achieve similar performance, while SCGOSR is indicated to be
more robust. In summary, Tables 9.2-9.4 draw the same conclusion that
KTLBO solves computationally expensive and black-box-constrained opti-
mization problems efficiently. Figure 9.9 illustrates the iterative results of
KTLBO, which can reflect KTLBO’s average performance during the 20
runs. Figure 9.9 plots the KTLBO history data generated during a com-
pleted search. For g01, g04, g07, g09, g12, gl6, gl18, g19, g24, SCBD, SE and
SRD, clearer figures are also added. Intuitively, most of these figures show
that the sample values generated by DoE fluctuate more significantly, while
the points generated by the iterative process mainly focus on the feasible
or global optimal area. For instance, no feasible samples are found on G7,
G8 and G0 at first, whereas many pink feasible points are captured with
iteration continuing. Besides, as impacted by KTLBO’s global exploration
mechanism, the algorithm may still have some opportunities to search the
unknown infeasible area. As indicated by many cases in Figure 9.9, though
the global optimal area has been identified, KTLBO still samples some
infeasible points far away from the present best point.



246 m Data-Driven Global Optimization Methods and Applications

TABLE 9.4  Statistical Results on GO, SE and Engineering Cases (NFE = 200)

Problem

SRD

SCBD

TSD

GO

SE

Criteria
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t

KTLBO
2,994.471
2,994.471
2,994.471
2,994.471

0.000
100%

62,791.528
62,791.688
62,792.069
62,791.734
0.151
100%

0.012666
0.012681

0.012792

0.012691

0.000030
100%

-0.971
-0.971

-0.744
-0.960
0.051
100%

-1.174
-1.174

-1.174

-1.174
0.000
100%

SCGOSR
2,994.471
2,994.536
3,009.420
2,995.991

3.805
100%
(+)

62,791.491
67,703.486
77,506.995

68,242.677
4,160.120

100%
(+)
0.012666
0.012697

0.012788
0.012705
0.000035
100%
(=)
-0.971
-0.971
-0.871
-0.938
0.047
100%
(+)
-1.174
-1.174

-1.174
-1.174
0.000
100%
(=)

MSSR
2,994.473
2,996.901
3,019.273
3,000.715

7.896

100%

(+)
65,798.689
72,331.571

78,398.626
72,793.390
5,563.921
25%
(+)
0.012665
0.012665

0.013306
0.012697
0.000143
100%
(=)
-0.971
-0.969
—0.034
-0.877
0.208
100%
(+)
-1.174
-1.174

-1.171
-1.174
0.001
100%
(+)

ConstrLMSRBF

0%
(+)

0%
(+)

0%
(+)
—0.743
0.042

0.465
-0.076
0.489
100%
(+)
-1.172
-1.158

62.187
10.430
22.570
100%
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Since KTLBO complies with the metaheuristic search mechanism,
KTLBO is further compared with three well-known metaheuristic-
constrained optimization methods. Tables 9.5-9.7 present the compari-
son results of the four algorithms in 500 FEs. Undoubtedly, KTLBO using
500 FEs can yield more accurate results than that in Tables 9.2-9.4. For
many cases (e.g., g01, g04, g06, g07, g08, g09, g12, g18, g24, SE, GO, TSD,
SRD and SCBD), KTLBO basically has reached the true global optima.
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TLBO performs more robustly among the other three comparison algo-
rithms because it is more likely to find feasible solutions during 20 runs.
CMODE and FROFI may always fail in some cases. For instance, FROFI
can hardly process g01, gl0 and g18, while CMODE cannot process gl18.
Moreover, CMODE achieves lower SR values on g01, g07 and gl0. More
function calls are required for CMODE and FROFI to identify the feasible
area. Relatively, TLBO, CMODE and FROFI achieve better performance

TABLE 9.5  Statistical Results on CEC2006 Cases (NFE = 500)—Part 1

Problem

g01

g02

g04

g06

g07

Criteria

Best
Median

Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best

KTLBO
-15.000
-15.000
-15.000
-15.000
0.000
100%

-0.443
-0.355

-0.289
-0.356
0.046
100%

-30,665.539
-30,665.539

-30,665.539
-30,665.539
0.000
100%

—-6,961.812
-6,961.799

—-6,961.778
—-6,961.798
0.009
100%

24.335

TLBO
-9.041
-6.668
-3.124
—6.409
1.842
100%
(+)
—0.344
-0.267

-0.177
-0.268
0.040
100%
(+)
-30,657.709
-30,527.893

~29,624.622
-30,376.660
322.562
100%
(+)
—6,616.246
-6,123.592

-2,080.231
-5,283.219
1,614.756
60%
(+)
147.721

CMODE
—6.780
-5.526
-3.431
-5.298

1.231
30%

(+)
-0.346
-0.246
-0.182
-0.253

0.040
100%
(+)
-30,577.162
-30,246.187

-29,630.264
-30,201.293
255.884
100%
(+)
—6,936.174
-6,598.398

-1,767.477
-5,660.160
1,689.016
85%
(+)
158.689

FROFI

0%
(+)
-0.356
—0.245

-0.181
-0.257
0.052
100%
(+)
-30,422.543
-30,207.457

—29,922.280
-30,219.223
116.434
100%
(+)
-6,809.207
-6,439.650

—4,006.968
—-6,145.102
759.007
95%

(+)
48.267
(Continued)
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TABLE 9.5 (Continued)

Statistical Results on CEC2006 Cases (NFE = 500)—Part 1

Problem Criteria KTLBO TLBO CMODE FROFI
Median 24.362 1,000.305 315.775 107.470
Worst 24.447 1,549.875 707.693 325.735
Mean 24.370 869.814 374.483 137.090
Std 0.030 473.553 237.994 77.036
SR 100% 45% 20% 90%
W-t (+) (+) (+)
g08 Best —-0.096 -0.096 —-0.096 -0.096
Median -0.096 —-0.096 —-0.095 -0.096
Worst -0.096 -0.026 -0.029 -0.029
Mean -0.096 —-0.092 —-0.081 -0.092
Std 0.000 0.016 0.026 0.015
SR 100% 100% 90% 100%
W-t (+) (+) (+)
g09 Best 680.646 692.552 700.421 702.259
Median 680.736 737.429 818.555 744.267
Worst 681.581 829.155 1,345.010 882.689
Mean 680.826 742.725 888.289 759.905
Std 0.238 37.368 177.392 46.599
SR 100% 100% 100% 100%
W-t (+) (+) (+)
TABLE 9.6  Statistical Results on CEC2006 Cases (NFE = 500)—Part 2
Problem Criteria KTLBO TLBO CMODE FROFI
gl0 Best 7,050.335 13,413.760 12,842.042 —
Median 7,054.236 17,768.095 13,343.482 —
Worst 7,068.933 22,506.365 14,506.941 -
Mean 7,056.459 18,159.266 13,564.155 —
Std 4.772 2,991.253 854.105 —
SR 100% 45% 15% 0%
W-t (+) (+) (+)
gl2 Best -1.000 -0.999 -1.000 -1.000
Median -1.000 -0.987 -1.000 -1.000
Worst -1.000 —-0.908 —-0.964 -1.000
Mean -1.000 -0.979 -0.997 -1.000
Std 0.000 0.022 0.008 0.000
SR 100% 100% 100% 100%

(Continued)
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Statistical Results on CEC2006 Cases (NFE = 500)—Part 2

Problem Criteria
W-t
gl6 Best
Median
Worst
Mean
Std
SR
W-t
gl8 Best
Median
Worst
Mean
Std
SR

gl9 Best
Median

Worst
Mean
Std
SR
W-t
g24 Best
Median
Worst
Mean
Std
SR
W-t

KTLBO

-1.905
-1.905

-1.723
-1.896
0.041
100%

-0.866
-0.866

—-0.866
—-0.866
0.000
100%

32.923
33.682

35.067
33.760
0.520
100%

-5.508
-5.508
-5.508
-5.508
0.000
100%

TLBO

(+)
-1.855
—1.542

-0.978
-1.508
0.256
85%
(+)
—0.652
—0.458

-0.271
—0.461
0.110
100%
(+)
84.283
248.502

397.335
235.149
87.032
100%
(+)
-5.507
—5.499
-5.377
—5.485
0.035
100%
(+)

CMODE

(+)
-1.879
—1.483

-1.167
-1.508
0.274
40%
(+)

0%
(+)
342.126
783.799

2,081.047
851.530
464.958

100%
(+)
-5.507
~5.490
—5.343
~5.472
0.045
100%
(+)

FROFI

(+)
-1.702
~1.437

-1.200
-1.429
0.172
40%
(+)

0%
(+)
264.017
583.579

1,249.052
601.482
269.384

55%
(+)
~5.492
~5.448

~5.292
~5.437
0.048
100%
(+)

on g02, g04, g08, g09, g12 and g24 because these cases have larger feasible
space. Tables 9.2, 9.3, 9.5 and 9.6 summarize that SBO algorithms require
fewer FEs than metaheuristic algorithms in most cases.

As indicated in Table 9.7, 500 FEs are good enough for KTLBO to find
their global optimal solutions. Besides, TLBO always achieves higher
SRs and outperforms CMODE and FROFI on SRD, SCBD, TSD and GO.
Notably, metaheuristic algorithms are applied directly to computation-
ally expensive and black-box optimization problems, whereas they require



254 m Data-Driven Global Optimization Methods and Applications

TABLE 9.7  Statistical Results on GO, SE and Engineering Cases (NFE = 500)

Problem

SRD

SCBD

TSD

GO

SE

Criteria
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t
Best
Median
Worst
Mean
Std

SR

W-t

KTLBO
2,994.471
2,994.471
2,994.471
2,994.471

0.000
100%

62,791.515
62,791.584
62,791.738
62,791.598
0.061
100%

0.012665
0.012667

0.012671

0.012667

0.000002
100%

-0.971
-0.971

-0.971
-0.971
0.000
100%

-1.174
-1.174

-1.174

-1.174
0.000
100%

TLBO
3,003.273
3,052.253
5,574.144
3,333.409

615.210
100%
(+)
65,966.042
73,772.591

83,818.265
73,285.578
4,698.158
90%
(+)
0.012735
0.013006

0.015140
0.013410
0.000830
100%
(+)
-0.971
-0.968

-0.867
-0.947
0.036
100%
(+)
-1.174
-1.171

-0.102
-1.090
0.245
100%
(+)

CMODE
3,025.246
3,122.707
3,899.410
3,178.711

229.481

90%
(+)
67,788.298
70,641.883

74,480.140
71,485.513
2,055.834
65%
(+)
0.012742
0.013769

0.230292
0.026247
0.049545
95%
(+)
-0.971
-0.970

-0.811
-0.928
0.060
100%
(+)
-1.174
-1.173

-0.580
-1.128
0.140
100%
(+)

FROFI
3,036.176
3,109.041
3,457.146
3,122.580

91.311

100%
(+)
67,238.418
73,076.280

77,374.617
72,318.792
3,124.462
55%
(+)
0.012965
0.014361

0.017988
0.014682
0.001374
100%
(+)
-0.971
-0.968

-0.858
-0.941
0.046
100%
(+)
-1.172
-1.165

-1.149
-1.164
0.006
100%
(+)




KTLBO m 255

more FEs to achieve convergence. SBO algorithms exploit the predicted
information of surrogate models for search guidance, thereby decreasing
the NFE. However, SBO methods may exhibit higher sensitivity to the pre-
diction accuracy of surrogate models. Once the surrogate models exhibit
worse predicting performance in some cases, SBO may get inefficient
immediately. Accordingly, KTLBO combining a metaheuristic search-
ing mechanism and Kriging’s predicted information can ensure a robust
sampling process, and its results from Table 9.2-9.7 indicate its powerful
functionality and significant advantages for EBCPs.

9.5 ENGINEERING APPLICATIONS

Blended-wing-body underwater gliders (BWBUGs) that play an important
role in scientific and commercial fields have aroused huge attention over
the past few years. In a BWBUG, the pressure shell is an extremely impor-
tant part that protects the expensive measuring instruments and equip-
ment in a deep-sea environment. In this chapter, to decrease the design cost
and meanwhile increase the inner space volume of the BWBUG’s pressure
shell, this study attempts to improve its buoyancy-weight ratio (BWR) and
concurrently satisfy the stress and stability constraints. Figure 9.10 pres-
ents the geometric description and defines ten design variables including
three thickness parameters (¢, t, and t;), three radius parameters (R;, R,
and R;), and four size parameters (I, ,, [, and [,).
Furthermore, the specific optimization formula is summarized below:

B_pV(ll)l2)13)l4)R1)R2aR3)t1)t27t3)
max —_ =
G m(ll512al3)l4)R1>R2>R3)tlat2)t3)
s.t. O-max(llall)ZS)l4)R1aR2)R3>t1)t2’t3)S,yo-s
A’I)jSRr(ll312)l3>l4>R13R2>R35t1)t25t3)
375<1, <390 225<1, <235 200<1, <210 150<1, <160
65<R; <85 80<R, <100 20<R;<30
5<# <12 5<t,<12 5<<12

(9.17)

where B denotes buoyancy, G refers to gravity, is the density of sea water, v
is the volume of the whole pressure shell, and m represents the total weight.
In the first stress constraint, p is the maximal equivalent stress, G ., refers
to the yield strength, and o is a safety factor. In the second stability con-
straint, ¥ is the computation pressure, P, =10 MPa is the buckling critical
load, and P, is the first-order buckling factor. In this case, the depth of
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ak

FIGURE 9.10 Illustration of BWBUG’s pressure shell.

water is defined as 1,000 m, A, and y =0.8. Since the aluminum alloy is
applied for the pressure shell, A =1.5 is set to 280 MPa. In Eq. (9.17), there
are three response values B/G, 0, and 0, come from the time-consuming
simulation model. One simulation analysis takes more than 5 minutes. As
revealed from the comparison analyses, SCGOSR and KTLBO exhibit the
best performance, so they are employed for this engineering application.

For a fair comparison, KTLBO and SCGOSR adopt the same DoE sam-
ples to drive the optimization loop. After 200 simulation analyses, KTLBO
identifies a better solution than SCGOSR. Figures 9.11 and 9.12 show the
iterative results where the stars represent feasible samples, dots refer to
the infeasible ones. In Figure 9.11, the best feasible sample is obtained at
the 189th NFE, while in Figure 9.12, the best feasible sample is obtained
at the 97th NFE. Intuitively, KTLBO converges after 100 simulation
analyses, while SCGOSR seems to get stuck in a local optimal area after
90 calls to the simulation model. Tables 9.8 and 9.9 provide the detailed
results. Compared with the best DoE sample, SCGOSR achieves a 21.89%
improvement, while KTLBO achieves a 67.40% improvement. Moreover,
Figures 9.13-9.15 illustrate the optimal simulation results of DoE, KTLBO
and SCGOSR. Obviously, KTLBO is suggested to be more suitable for this
engineering case. Table 9.9 and Figures 9.13-9.15 indicate that KTLBO
converge to the second constraint bound while SCGOSR remains far away
from this constraint bound.

To sum up, KTLBO cannot only deal with benchmark cases, but also
efficiently solve simulation-based constrained optimization problems. It
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TABLE 9.8 Obtained Best Solutions of BWBUG's Structure Design
ll lZ l3 l4 Rl RZ R3 tl t2 t3
DoE-opt 388.50 225.50 207.00 158.00 82.00 83.00 28.00 5.70 10.25 8.15
KTLBO-opt 376.55 227.82 200.00 153.27 85.00 93.41 30.00 5.00 5.00 12.00
SCGOSR-opt 385.66 229.14 202.00 159.78 84.63 84.72 26.27 555 8.19 6.01
TABLE 9.9  Optimal Response Values for BWBUG’s Structure Design
v/m? m/kg B/G O max/MPa P, /MPa
DoE-opt 0.0203 13.9904 1.7134 198.2197 69.6338
KTLBO-opt 0.0257 10.4483 2.8683 213.0277 15.6479
SCGOSR-opt 0.0223 12.6554 2.0885 215.4628 63.1093
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is noteworthy that when each analysis of the simulation model requires
several hours or days, fewer calls to the simulation model are significantly
critical. KTLBO requires fewer NFE to achieve convergence, which notice-
ably shortens the design cycle and yields a satisfactory solution for engi-
neers at the simulation phase.

9.6 CHAPTER SUMMARY

In this chapter, an efficient Kriging-assisted TLBO method is proposed to
solve computationally expensive constrained optimization problems. By
complying with TLBO’s two-phase search pattern, two Kriging-assisted

sampling strategies are formulated, retaining TLBO’s search mechanism
while reasonably balancing the exploitation of surrogates and exploration of
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FIGURE 9.13  Equivalent stress and buckling results of DoE’s best sample.
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FIGURE 9.14 Equivalent stress and first mode of KTLBO’s best sample.
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FIGURE 9.15 Equivalent stress and first mode of SCGOSR’s best sample.
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unknown areas. In KATP, the neighborhoods around the present best solu-
tion are sufficiently exploited, and a constrained EI function considering the
probability of feasibility is defined as a filter to pick up the promising indi-
viduals from the learners. In KALP, a constrained MSE function focusing on
Kriging’s prediction uncertainty is proposed to choose the learners located
at the sparsely sampled feasible region for global exploration. Initial DoE
samples and newly generated expensive samples are iteratively sorted based
on their penalty function values, and new teachers and brilliant learners are
continuously updated until the algorithm identifies the true global optima.

NOTE

1 Based on “Kriging-assisted Teaching-Learning-based Optimization
(KTLBO) to Solve Computationally Expensive Constrained Problems,”
published in [Information Sciences], [2021]. Permission obtained from
[Elsevier].
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CHAPTER 10

KDGO

Kriging-Assisted Discrete
Global Optimization for
Black-Box Problems with Costly
Objective and Constraints’

10.1 INTRODUCTION

With the rapid progress of computer technology, high-fidelity simulation
has become an indispensable tool in modern industry applications, which
can effectively reduce design budgets and bring higher economic benefits
(Dong et al., 2017; Jiang et al., 2019; Zhou et al., 2018). Simultaneously,
when the accuracy requirement continuously increases, the computa-
tion cost of simulation analysis may get huge, causing difficulty in opti-
mization design (Dong, Li, et al., 2018; H. Liu et al., 2018; Stander et al.,
2016). Besides, many real-world applications, such as management, sched-
uling, logistics, structure design and pattern recognition, involve dis-
crete domains (Ekel & Neto, 2006; Lawler, 1972; Sayadi et al., 2013) and
time-demanding simulation analysis (Dede, 2014). Therefore, discrete and

computationally intensive global optimization problems are challenging,
and have begun to gain more attention in recent years.

For discrete optimization problems, the branch and bound (BB) algo-
rithm (Land & Doig, 2010) that recursively divides the solution set and eval-
uates the bound values can find the optimal combination of these discrete
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values. For example, Demeulemeester and Herroelen (1992) employed
a BB procedure for multiple resource-constrained project scheduling.
Nakariyakul and Casasent (2007) proposed an adaptive BB algorithm to
select the optimal subsets of features in pattern recognition applications.
However, BB appears inappropriate for computationally expensive global
optimization problems, because it has to construct a relaxed problem
whose global optimum must be found to identify the lower bound, which
will cause many calls of the costly functions especially for multimodal
problems. Variable neighborhood search (VNS) presented by Mladenovi¢
and Hansen is an effective tool for global combinatorial optimization
problems (Mladenovi¢ & Hansen, 1997). VNS can systematically explore
the possible neighborhood structures to identify the local optima, and
turther find the global optimum with the help of perturbation. VNS has
been extensively applied in various fields like artificial intelligence, cluster-
ing analysis, scheduling and so on (Adibi et al., 2010; Kytojoki et al., 2007;
Polacek et al., 2004). VNS was primarily developed for box-constrained
integer optimization problems, but it cannot be directly used for nonlinear-
constrained problems. Nonsmooth optimization by mesh adaptive direct
search (NOMAD) (Abramson et al., 2009) was developed for computation-
ally expensive and black-box optimization problems. NOMAD is a deriv-
ative-free optimization method and is applicable for continuous, integer
and mixed design domains. Moreover, NOMAD is also good at handling
nonlinear-constrained optimization problems, making it suitable for most
real-world applications. However, there are no extensive numerical stud-
ies on NOMAD’s capability that deal with computationally expensive
optimization problems. It is worth mentioning that in the existing litera-
ture there is another type of algorithm to deal with discrete and black-box
global optimization problems, that is, swarm intelligence and evolutionary
computation (Anghinolfi & Paolucci, 2009; Guendouz et al., 2017; Zhang
et al., 2015). Generally, swarm/evolution-based algorithms are inspired by
some natural phenomenon and can generate a population in each cycle to
randomly search the design space. With the population updated and the
objective function evaluated many times, promising solutions can be grad-
ually acquired. Most of these discrete metaheuristic algorithms have been
applied to real-world applications. For example, Li et al. (2019) proposed
a discrete particle swarm optimization algorithm (DPSO-PDM) for com-
munity detection in complex networks. DPSO-PDM redefines the particle
velocity and position, and adds the evolutionary operation in discretization
to avoid getting trapped in local optima.
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Surrogate-assisted optimization (SAO) (Dong, Song, et al., 2018; Shi
et al., 2020; Zhou et al., 2021) plays an important role in simulation-based
engineering applications, because it is rather efficient for computationally
expensive problems. Surrogate modeling techniques like Kriging, radial
basis functions (RBF) or polynomial response surface can effectively orga-
nize the obtained data to predict the potential solutions, considerably
decreasing the number of costly function evaluations. However, most of
the existing literature in this field emphasizes the methods for the con-
tinuous design domain and seldom focuses on discrete cases. Miiller et al.
(2013) presented a surrogate-based global optimization algorithm for
mixed-integer black-box problems (SO-MI). SO-MI utilizes RBF to select
candidate samples from discrete and continuous domains. In each cycle,
four groups of cheap points are generated, where three of them are gen-
erated around the present best solution and one is randomly distributed
in the design space. Thereafter, the most promising points are separately
selected from the four sample sets to update the RBF model. It is worth
noting that SO-MI needs at least one feasible point to drive the algorithm
for constrained problems. Therefore, it is difficult for SO-MI to solve the
constrained problems with a smaller feasible space. Furthermore, Miiller
et al. (2014) introduced a surrogate-based algorithm SO-I for expensive
nonlinear integer programming problems, in which the RBF value and the
distance to the known samples are synthetically considered to evaluate a
potential point. SO-I shows excellent ability when dealing problems with
costly objective and constraints, and also has impressive performance
on practical engineering applications like hydropower generation and
throughput maximization. J. Liu et al. (2018) extended the multi-start space
reduction (MSSR) (Dong et al., 2016) algorithm for a hybrid energy stor-
age system with integer and continuous design variables. In the extended
MSSR, the discrete variables of those promising samples were rounded to
integers for simulation analysis in each cycle and showed absolute advan-
tages over the genetic algorithm. Similarly, some other SAO algorithms
have been improved or extended to solve computationally expensive and
discrete/mixed-variable engineering applications (Holmstrom et al., 2008;
Rashid et al., 2013). However, most of the above methods are developed
for a certain type of actual problems (e.g. binary, integer, unimodal, mul-
timodal, box-constrained), and less literature has introduced widely appli-
cable algorithms.

Inspired by SO-I that combines the RBF’s prediction values and the
distance between samples, we expect to develop a Kriging-based global
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optimization method for computationally expensive problems with gen-
eralized discrete space that allows binary, integer, noninteger, uni/mul-
timodal and box/inequality-constrained types. To make KDGO widely
applicable for most discrete cases, a data matrix with a discrete structure
is proposed to reflect the original design domain. Besides, a multi-start
knowledge mining process is carried out to acquire the promising samples
in each cycle, specifically including four steps: optimization, projection,
sampling and selection. First, a multi-start optimization is used to capture
the promising solutions in the continuous design range. All these potential
solutions are projected to the discrete matrix and a grid sampling method
applicable for low- and high-dimensional space is proposed to get the
promising discrete samples. Thereafter, the k-nearest neighbors (KNN)
search strategy and expected improvement (EI) criterion are jointly used
to select the supplementary samples. KDGO keeps running to update
Kriging and find the most potential samples until a satisfactory solution
is obtained. KDGO is mainly used to solve various discrete problems
including binary, integer, noninteger, unimodal, multimodal, equality and
inequality-constrained problems.

10.2 DISCRETE OPTIMIZATION CONSTRUCTION

More precisely, the problem this chapter concentrates on is described
below:

min f(x)
st.  gi(x)<0, Vi=L....m (10.1)
—oo<x,l<Skax,‘<’<<>0, Vk=1,....d

xelycR

where f(x) denotes the computationally intensive black-box objective;
gi(x) is the ith costly black-box constraint; m and d represent the num-
ber of constraints and design variables, respectively. Besides, x; is the kth
discrete variable and I';is its corresponding discrete set. It is a remark-
able fact that T'y;| can be different from T'y,| if k1# k2. It is also assumed
that co>|T";[>2, Vk=1,...,d. What is more, the values of each discrete
set I'y,Vk=1,...,d are allowed to have uneven distributions as well.
Correspondingly, a 2d illustration is provided in Figure 10.1, and three
representative cases with different characteristics are introduced to make
it more intuitive.
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FIGURE 10.1 Different discrete design spaces.

To mathematically express a generalized discrete space, a matrix D is
created to save these discrete sets as the preprocessing step for the sub-
sequent surrogate-based optimization. This proposed matrix considers
all the possible situations including even or uneven distributions and the
same or different sizes of discrete sets at each dimension.

oo oo oo oo
Init & o o e o

Dde = . . . . =
oo oo oo oo
1 1 1 1
1"1 rz e rk oo rd
2 2 2 2
r r cee r ) r

Dyxa=| ' 7 * d (10.2)
fo%e) oo ce rkM cee oo

M:max(\rl yee| T ), nely, Vi=1.., [T}, Vk=1,...d

where D" denotes the initial D matrix that is assigned with M xd infin-

ity values. Thereafter, the discrete sets I'y, Vk=1,...,dare saved into this
initial D matrix. 7 is the ith element of I'}, and M refers to the maximal
size of these discrete sets at different dimensions. Thereafter, the points
generated using the design of experiments (DoE) method are correspond-
ingly approximated to their closest discrete values in D, and their objec-
tive and constraints values are calculated, respectively. Furthermore, the
initial Kriging models of objective and constraints are separately built
using these DoE samples. In the following Kriging-assisted optimization
process, new samples selected from the continuous space will be projected
into the defined matrix D to get the promising discrete samples.
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10.2.1 Multi-Start Knowledge Mining on Kriging

As mentioned above, Kriging can build a continuous mathematical
model to predict the landscape of the original discrete problem. Hence,
efficient search or sampling strategies for continuous optimization prob-
lems can still be utilized to mine the useful discrete information from
surrogate models. Generally, the conventional surrogate-based sampling
strategies consider the most promising positions in the continuous space
as candidate points, like the maximal “expectation of improvement (EI)”
point or the minimal prediction (MP) point. For discrete optimization
problems, these new samples from the continuous space can be approxi-
mated to be the discrete individuals of set I', to drive the subsequent
optimization. However, the search may pay too much attention to the gap
between two discrete values of set I', decreasing the optimization effi-
ciency, and sometimes no new discrete samples will be supplemented to
update the surrogate models, making the program get stuck. Therefore,
a multi-start knowledge mining approach is presented to capture the
promising discrete samples, which involves four main steps: multi-start
optimization, projection, grid sampling and selection. Correspondingly,
Figures 10.2-10.5 give a 2d illustration to describe this process clearly.

As we all know, Kriging can approximate nonlinear problems and always
generate multiple predicted local optima. Multi-start optimization can iden-
tify these potentiallocal positions, realizing the global search. Mathematically,
the predicted local optimal solutions can be expressed as below

A

fx)< f(x)

‘v’er,-(xfo)cQ, Viel,....q

(10.3)

Multi-start
Optimization

FIGURE 10.2  Stepl: Multi-start optimization.



268 m Data-Driven Global Optimization Methods and Applications

Projection

FIGURE 10.3  Step2: Projection to matrix D.

Grid Sampling

FIGURE 10.4  Step3: Grid sampling.

1 Selection by EI
— o O0—0

FIGURE 10.5 Step4: Selection by EI
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where f (xfo) refers to the Kriging value at the ith predicted local optimal
location xj,, V; denotes the ith vicinity region around xj,, Q is the variable
range, and ¢ is the number of local optimal locations. An efficient way to
get these x;, is to assign a group of starting points that evenly cover the
continuous design space and then run local optimization sequentially. The
search from the starting points that are located in the same region proba-
bly converges to the same optimal solution. In other words, the number of
optima is generally smaller than the number of starting points. Figure 10.2
shows that ten starting points (small black dots) will converge to three local
optimal solutions x;, (triangles). Additionally, a reduced space enclosing
the present best solution is used to improve the computational efficiency of
multi-start optimization.

RS= [prest _dis s X ppest + dzs:| N[a,b]
2 2 (10.4)

dis=Ex(b—a)

where RS refers to a neighborhood of the present best solution x,,,, [a, b]
represents the original design space, and & is a coefficient defined as 0.1.
When the number of iterations reaches an even number, the reduced space
RS is used; otherwise, the original design range is used for the multi-start
optimization. The specific pseudo-code of the multi-start optimization is
shown in Algorithm 10.1(a).

Algorithm 10.1(a): Multi-start Knowledge
Mining: Multi-start Optimization

Input: Kriging model, Original design space [a, b], Number of iteration iter

Output: Predicted local optimal solutions.X),

(01) Ifiter/2€Z

(02) Range<—Build the reduced space RS

(03)  h < Define the number of starting points as 3.
(04) Else

(05) Range<—|a, b].

(06) h < Define the number of starting points as 10.
(07) Endif

(08) SP <«Employ LHS to get h starting points in Range.
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(09) Forifrom1ltoh

(10)  xj,«<~Run local optimizer on Kriging to get the local optima in
Range.

(11) End for

(12) Xj,«< Delete the repeated solutions and save q local optimal
solutions.

(13) Return X,

Intuitively, these X, locate in the continuous space, which cannot be cho-
sen as the candidate discrete samples directly. Therefore, projection is sug-
gested to obtain the promising discrete samples. As Eq. (10.2) describes,
the D matrix has saved the discrete sets. Project x}, to each column of D
and then find its closest lower and upper discrete values Ibj, and ubj, in
Iy, Vk=1,...,d. Thereafter, the discrete boundary values [lbfa,ubfa] of
each xj, in D are identified as input for grid sampling. Algorithm 10.1(b)
describes the projection process clearly.

Algorithm 10.1(b): Multi-start Knowledge Mining: Projection

Input: Predicted local optimal solutions X;, = {x}o Koyt X }, D matrix
Output: Discrete boundary values [lb}a JAbi,- -, b} ] [ub}a ,ubj .-+, ub]! ]

(01) Forifrom1togq

(02) Forkfromltod

(03) Index<— Employ KNN search to find the index of the nearest
individual to x}, (k) in the kth column I'; of D.

(04) IfTiders xl (k) /* the nearest discrete value is larger than X (k)*/

09 (R TE b (k)T

(06) Else if T“*<x}, (k) /* the nearest discrete value is smaller than
xi, (k)*/

(07) lblia (k)% Fg(index); ublio (k)& Fg”d2x+1). |

(08) Else /* the nearest discrete value equals tox;, (k)*/

(09) If Index =1 A |

(10) lblio (k)e I‘*%Vldl?x); ub[ig (k)% rg{lﬂdexﬂ).

(11) Else

(12) lblia (k)% andex-l); ublio (k)(— rg(index)‘

(13)  Endif
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(14  Endif
(15)  End for
(16) End for
(17) Return [ Ib},Ibf,,:-, Ibf, |, [ ubl,,ub},---, ub] |

Figures 10.2 and 10.3 show the projection and grid sampling process in a
two-dimensional space. When all the promising discrete grid samples are
collected together, the repeated points are deleted and nine big darker dots
are flagged as the candidate point set (see Figure 10.4). It is noteworthy that
the number of grid sampling is 24, which will dramatically increase when
the dimension d gets larger. For example, if there is a 20-dimensional prob-
lem, it will generate 1,048,576 grid sampling points. It is time-consuming
to call the 20-dimensional Kriging model 1,048,576 times in each cycle,
which greatly decreases KDGO?’s search efficiency. Therefore, a probabil-
ity-based grid sampling approach is proposed to get the high-dimensional
(d>8) candidate samples. Specifically, the mathematical expression is
described below as:

i _ xfa(k)—lbfo(k)
P(k)= ubj, (k)— b}, (k)

¢;(k)=ubl (k) if R<P'(K)

. A (10.5)
c;(k)=1bi,(k) if R>P'(k)

Vi=1,2,....,q. Vk=12,....,d. Vj=12,...,m.

where P’ (k) is the probability threshold value, x;j, (k) is the kth dimension
of the ith local optimal solution, and its corresponding discrete boundary
values are Ib], (k) and ubfo(k). Besides, a random variable R between [0, 1]
is defined to be compared with P'(k) for selection. It will have a higher
probability to select one of the boundary values Ibj, (k) or ubj, (k) that is
closer to the continuous point xj, (k), and the selected discrete points are
saved in a candidate sample set C = {cl 5CaserosCom } Equation (10.5) guaran-
tees that KDGO can extract the most potential points from the complete
grid sampling sets and control the number of points to avoid generating a
large computational cost in each cycle. The pseudo-code of grid sampling
is summarized in Algorithm 10.1(c)
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Algorithm 10.1(c): Multi-start Knowledge Mining: Grid Sampling

Input: Discrete boundary values [lb,lo b, Ib} ] [ub,lo ,ubj,, -+, ub}! ],
Predicted local optimal solutions X, ={x}o,xlzu,~~,x2, }, Search

region Range
Output: Discrete candidate samples C ={c,c;,**,¢,n }

(01) C«D /* Initialize the candidate sample set*/

(02) Ifd<8/*ifthis is a lower dimensional problem*/

(03)  Delete the repeated samples in [lb}[, b, b} ] [ub}[, ,ubj,, -+, ub} ]
(04) Forifroml1togq

(05) Temp<—Generate the grid samples using [lb{a , ubj, ]

(06) C—CUTemp /* Update C */

(07) End for

(08) Else /* if this is a higher dimensional problem*/

(09) Forifrom Ito q

(10) For j from 1 to m /* m equals to 100d */

(11) For kfrom 1 tod

(12) Temp<—Generate the grid samples based on Eq. (10.5).
(13) C—CUTemp /* Update C */

(14) End for

(15) End for

(16) End for

(17) Endif

(18) C«Delete the repeated grid samples and update C.
(19) IfCis

(20) C¢ Generate 10d rounded samples in [a, b] by LHS
(21) Endif

(22) ReturnC={c;,c;,",Cn }

As Figure 10.5 shows, the further mining is necessary to get the most valu-
able points (two light colored dots with a normal distribution) from C. In
KDGO, the KNN search is used to check the conflict of the known sample
pool S and the candidate points C. Specifically, the judgment conditions
are summarized below as:

feasible if knn(S,c;)#0
infeasible  if knn(S,c;)=0 (10.6)

Vi=1,....m
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where m refers to the number of candidate points, and ¢; is the ith candi-
date point. If a candidate is infeasible, this implies it has appeared in the
expensive sample pool S, and it will not be considered here. Furthermore,
the EI criterion is employed to sort the remaining feasible points in
C= {cl 3C25en0sCp }, p<m, and the top n samples with larger EI values will
be selected to update Kriging. According to the basic theory of Kriging, a
candidate sample ¢, can be regarded as a random variable Y;(x) with mean
value y;(x) and variance s/ (x). Naturally, the improvement of the new
candidate sample beyond the present best sample y,,., from the sample
pool S can be expressed below as:

I,-(x):max(ybest —Yi(x),O) (10.7)

Obviously, I,(x) is a random variable, and its mathematical expectation is
formulated as follows:

(Viest — ymm(W}gi(xw(W} 5(x)#0

0 4(x)=0

El(x)=

Vi=1,2,....p

e ={El, 2El, >---2EI, 2---> EI, | (10.8)

where ¢ and @ represent the probability density and cumulative density
functions, respectively. More precisely, the detailed pseudo-code is given.

Algorithm10.1(d): Multi-start Knowledge Mining: Selection

Input: Discrete candidate samples C ={c,,¢,, ", }» Expensive sample
pool S, Kriging model, Number of sampling per cycle n

Output: Promising samples PS = { DS1>PS2>7 5 PSy }

(01) PS<J /* Initialize the promising sample set*/

(02) C= {cl,c2,~ “5Cp }e Utilize Eq. (10.8) to update the candidate
sample set.

(03) Forifrom1top

(04) EI <« Utilize Eq. (10.8) to get the corresponding EI value.
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(05) End for

(06) Ifn<p

(07) PS¢ Sort C and Select the top n promising samples based on EI
value from C

(08) else

(09) PS«—C

(10) Endif

(11) Return PS= {psl ,PS25" "5 PSn }

Additionally, when the reduced space is used to speed up the multi-start
search, there is some possibility that the promising sample set PS may be
empty. Once it happens, 100d cheap points are generated by LHS in the
original design space, and their corresponding EI values are calculated.
The point with the maximal EI value will be selected and approximated to
the discrete values in matrix D, making the loop continue working.

10.2.2 Constraint Handling

Computationally intensive inequality constraints are also considered in
KDGO. Each constraint function g,(x) is approximated by Kriging and
will be updated with iteration continuing. In the multi-start optimization,
the local search needs to meet the constraint conditions as follows:

flxh)< f(x)
¢i(xh)<0, Vjel,...m (10.9)
Ver,»(xfo)CQ, Viel,....q

where m refers to the number of constraints and ¢ is the number of local
optima. Besides, the corresponding constraint information of each sample
is supplemented to the expensive sample pool § and a penalty function is
used to fuse the objective and constraints.

F(x):f(x)+P><Zmax(gi(x),O) (10.10)

where P is a penalty coeflicient with a large value 1el0. F(x) will replace
f(x) to identify the current best location and value in Egs. (10.4) and (10.8).
Moreover, the EI criterion has been modified for constrained problems.
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(Fbes, -, (x))dD[Fhe“sA_(i(; (x)J+ §(x)¢[FbEStSA_(£ (x)), $(x)#0

0 s(x)=0

El(x)=

jp(x)zf(x)+szmaX<§i(x),O), xeQ
F. =minF(s), s€$ (10.11)

where f,(x) is the penalty function of the predicted objective and con-
straints and F,,, is the current best value in sample pool S.

10.3 OVERALL OPTIMIZATION FRAMEWORK

In this chapter, the whole optimization flow and the detailed steps of
KDGO are provided. Figure 10.6 shows the detailed optimization flow. It
is clear that KDGO mainly includes two parts: one is the initialization, and
the other one is the proposed multi-start knowledge mining. Specifically,
the steps are summarized below as:

o Step 1: Initialize the Matrix D and some basic parameters includ-
ing design range [a, b], the dimension d, the number of DoE points
Np,p> the maximal number of sampling in each cycle #, the number
of starting points in local and global ranges h, the coefficient of local
range £, and the number of iterations iter =0.

« Step 2: Carry out OLHS sampling to get Ny, initial sample points
and project these points to the Matrix D for the discrete samples.

o Step 3: Calculate their objective and constraint function values, sort
them according to Eq. (10.10), and build the initial Kriging models
for the objective and constraints.

o Step 4: As Algorithm 10.1(a) shows, carry out “Multi-start
Optimization” and get the predicted local optimal solutions

— 1 2 q
Xlo - {xloaxlo e Xy }~

« Step 5: As Algorithm 10.1(b) shows, carry out “Projection” and get
the closest bounds [lbllo,lblzo,. ..,Ib]! ],[ub}(,,ubfo,. . .,ub,qu] of these pre-
dicted local optimal solutions from D.
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FIGURE 10.6  Overall optimization flow of KDGO.

o Step 6: As Algorithm 10.1(c) shows, carry out “Grid Sampling” and
use these bounds to create grid points C = {c1 ,Cose. .,cm} as the candi-
date sample points.

 Step 7: As Algorithm 10.1(d) shows, carry out “Selection” and select
top n promising individuals PS = { DS1>PS25e 05 psn} from the candi-
date sample points.

o Step 8: If PS is empty, generate 100d LHS points in the design range
and select the best one with maximal EI value. Moreover, find its
approximate solution in D.
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« Step 9: Calculate the objective and constraint values of these promis-
ing points, and sort them.

o Step 10: Update the number of iterations iter = iter + 1, and update the
Kriging models.

o Step 11: If the number of function evaluations (NFE) reaches
maxNFE, KDGO stops. Otherwise, the algorithm goes back to Step 4
and continues this loop.

10.4 ALGORITHMIC TEST
10.4.1 Mathematical Example Tests

To sufficiently verify the KDGO’s ability, 20 representative benchmark
cases with different characteristics are used for test runs, including five
box-constrained problems, eight inequality-constrained problems and
seven black-box engineering applications. All these mathematical func-
tions are regarded as black-box models, meaning that only input and
output data are extracted to complete the optimization search. Table 10.1
shows the specific information of these test cases, where dim refers to the
number of design variables. Moreover, LO, UMO, MMO and BBO indi-
vidually represent linear, unimodal, multimodal and black-box objectives,
and LC and NLC are linear and nonlinear constraints, respectively. In
engineering applications, Hlpl, Hlp2, H1p3, H2pl, H2p2 and H2p3 are six
subproblems about optimization design of hydropower generation. Since
large hydropower facilities are designed using different generators, the
goal of these applications is to maximize the power output during 1day
for hydropower plants with five types of generating units. More details can
be found in the reference (Li et al., 2013). Besides, The three-stage buffer
allocation problem (TP) is an application problem of throughput maximi-
zation (Pichitlamken et al., 2006), where the total buffer size and service
rate are restricted. The goal of TP is to maximize the average output rate
in a flow line with 12 stations that will generate 11 variables about buffer
storage and 12 variables about service rate.

Furthermore, six algorithms including genetic algorithm (GA),
NOMAD, SO-I, local-SO-I, SO-MI, and VNS are used as comparisons to
demonstrate KDGO’s powerful ability. Tables 10.2-10.6 directly come from
Miiller’s work (Miiller et al., 2014). For a fair comparison, KDGO uses the
same termination criterion that the algorithm will stop after 400 function
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TABLE 10.1  Specific Information about the Test Cases

Types ID Cases dim Design Space Description
Box- 1 cf 8 [-10, 10]® UMO
constrained 2 Nvs 10 [3, 9] UMO
problems 3 Anvs 10 (3, 99]10 MMO
4 Rast01 12 [-1,3]2 MMO
5 Rast02 12 [-10, 30]"2 MMO
Inequality- 6 G6 2 [13, 100] x [0, 100] MMO, 2NLC
constrained 7 Ex 5 [0, 10]%[0, 1] LO, 2NLC, 3LC
problems 8 G4 5 (78, 102] x [33, UMO, 6NLC
45]x [27,45]3
9 Aex 5 [0, 10]**[0, 1]? LO, 3LC
10 G9 7 [-10, 10]7 UMO, 4NLC
11 Gl 13 [0, 1]%%[0, 100]? MMO, 9L.C
12 Glm 13 [0, 100]'3 MMO, 9L.C
13 Hmi 16 [0, 1] MMO, 7NLC
Engineering 14 Hlpl 5 [0, 10]° BBO, INLC
applications 15 Hip2 5 [0, 10]° BBO, INLC
16 Hilp3 5 [0, 10]° BBO, INLC
17 H2pl 5 [0, 10]° BBO, 2NLC
18 H2p2 5 [0, 1015 BBO, 2NLC
19 H2p3 5 [0, 10]° BBO, 2NLC
20 TP 23 [1,20]% BBO, 2LC

evaluations, and the mean of the best values and the standard errors of the
means (SEM) after 30 runs are recorded in Tables 10.2-10.6. It is worth
noting that there are two versions of VNS for inequality-constrained prob-
lems. VNS-i uses a similar strategy as SO-I that minimizes the constraint
violation function to find the first feasible point, while VNS-ii directly uses
SO-I to find the feasible solutions as the starting points. Moreover, the
rank in Tables 10.2-10.6 lists the ranks of all the algorithms and NF refers
to the number of test runs that cannot get the feasible solutions. NF is
the first priority to determine the performance of one algorithm, mean
and SEM are the second and third, respectively. If the algorithm A has a
smaller NF value than the algorithm B, it indicates A is better than B. If
NF values of A and B are the same and the mean of A is smaller than B, it
suggests that A is better than B. Similarly, if the NF and mean values of A
and B are the same, the better algorithm should have a smaller SEM.
Table 10.2 provides the comparison results on box-constrained cases.
For the two unimodal problems Cf and Nvs, all seven algorithms can find
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Cases Algorithms #NF Mean(SEM) Rank
Cf KDGO 0 0.00 (0.00) 1
GA 0 2.72 (0.95) 7
SO-1 0 0.00 (0.00) 1
local-SO-I 0 0.00 (0.00) 1
SO-MI 0 0.00 (0.00) 1
NOMAD 0 0.00 (0.00) 1
VNS-i/ VNS-ii 0 0.00 (0.00) 1
Nvs KDGO 0 —43.13 (0.00) 1
GA 0 —43.13 (0.00) 1
SO-I 0 —43.13 (0.00) 1
local-SO-I 0 —43.13 (0.00) 1
SO-MI 0 —43.13 (0.00) 1
NOMAD 0 —43.13 (0.00) 1
VNS-i/VNS-ii 0 —43.13 (0.00) 1
Anvs KDGO 0 -9,591.72 (0.00) 1
GA 0 —-9,289.87 (81.24) 6
SO-1 0 -9,591.72 (0.00) 1
local-SO-I 0 -9,591.72 (0.00) 1
SO-MI 0 -9,591.72 (0.00) 1
NOMAD 0 -9,591.72 (0.00) 1
VNS-i/VNS-ii 0 —5,448.97 (358.19) 7
Rast01 KDGO 0 —12.00 (0.00) 1
GA 0 -10.87 (0.19) 6
SO-1 0 —12.00 (0.00) 1
local-SO-I 0 —-10.03 (0.77) 7
SO-MI 0 —12.00 (0.00) 1
NOMAD 0 —-12.00 (0.00) 1
VNS-i/VNS-ii 0 —12.00 (0.00) 1
Rast02 KDGO 0 —12.00 (0.00) 1
GA 0 33.83 (4.52) 7
SO-1 0 —12.00 (0.00) 1
local-SO-1 0 —12.00 (0.00) 1
SO-MI 0 —12.00 (0.00) 1
NOMAD 0 -10.67 (1.33) 5
VNS-i/VNS-ii 0 16.47 (22.67) 6

the global optimal solutions within 400 function evaluations except GA
on Cf. Besides, GA and VNS seem to have difficulty in dealing with Anvs,
while others can successfully find its global optimum. Rast02, an extended
version of Rast01, has a larger design space, increasing the search difficulty
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TABLE 10.3 Comparison Results on Inequality-Constrained
Cases-Partl

Cases Algorithms #NF Mean(SEM) Rank
G6 KDGO 0 -3,971.00 (0.00) 1
GA 2 —-3,971.00 (0.00) 5
SO-I 0 -3,971.00 (0.00) 1
local-SO-I 19 —3,971.00 (0.00) 7
SO-MI 0 -3,971.00 (0.00) 1
NOMAD 30 NA 8
VNS-i 14 —3,971.00 (0.00) 6
VNS-ii 0 -3,971.00 (0.00) 1
Ex KDGO 0 0.00 (0.00) 1
GA 0 0.72 (0.14) 7
SO-1 0 0.00 (0.00) 1
local-SO-I 0 0.00 (0.00) 1
SO-MI 0 0.00 (0.00) 1
NOMAD 0 0.00 (0.00) 1
VNS-i 10 0.00 (0.00) 8
VNS-ii 0 0.03 (0.03) 6
G4 KDGO 0 -30,456.91 (2.76) 1
GA 0 -30,073.77 (43.30) 5
SO-1 0 -30,303.66 (31.17) 2
local-SO-I 0 —29,069.70 (106.61) 8
SO-MI 0 -30,075.73 (53.15) 4
NOMAD 0 —-30,192.67 (35.29) 3
VNS-i 0 —29,574.12 (92.80) 6
VNS-ii 0 —29,486.62 (68.83) 7
Aex KDGO 0 —8.00 (0.00) 1
GA 0 -7.10 (0.16) 5
SO-1 0 —-8.00 (0.00) 1
local-SO-I 0 —-6.88 (0.21) 6
SO-MI 0 —8.00 (0.00) 1
NOMAD 8 —8.00 (0.00) 7
VNS-i 16 -7.75(0.11) 8
VNS-ii 0 -7.93(0.04) 4

of GA, NOMAD and VNS. Intuitively, the three surrogate-based algo-
rithms KDGO, SO-I and SO-MI almost have the same performance on
these box-constrained cases, and outperform the other four algorithms.
For inequality-constrained problems, NF is an important indicator to
evaluate the performance of these algorithms. For example, local-SO-I,
NOMAD and VNS-i have worse Rank on G6, because they frequently get
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TABLE 10.4 Comparison Results on Inequality-Constrained
Cases-Part2

Cases Algorithms #NF Mean (SEM) Rank
G9 KDGO 0 744.80 (8.93) 1
GA 0 896.53 (29.21) 4
SO-1 0 771.40 (14.97) 2
local-SO-1I 0 997.10 (246.89) 5
SO-MI 0 812.17 (12.46) 3
NOMAD 0 1,770.50 (462.58) 6
VNS-i 4 8,906.35 (6,161.61) 8
VNS-ii 0 2,097.17 (1,367.02) 7
Gl KDGO 0 —14.57 (0.15) 2
GA 0 —-6.07 (0.59) 6
SO-1 0 —-14.83 (0.10) 1
local-SO-I 0 —12.00 (0.00) 4
SO-MI 0 —-12.00 (0.32) 5
NOMAD 0 -5.97 (0.03) 7
VNS-i 30 NA 8
VNS-ii 0 —14.37 (0.24) 3
Glm KDGO 0 -50,197.70 (1.34) 1
GA 1 —-40,105.07 (3,175.53) 7
SO-1 0 —40,687.10 (3,145.90) 5
local-SO-1 0 —42,185.67 (1,966.68) 4
SO-MI 0 —50,024.17 (36.40) 2
NOMAD 0 —48,363.03 (1,197.02) 3
VNS-i 30 NA 8
VNS-ii 0 —35,687.03 (3,252.89) 6
Hmi KDGO 0 13.20 (0.14) 1
GA 8 17.73 (0.86) 3
SO-1 14 14.00 (0.68) 7
local-SO-1I 8 20.96 (3.11) 4
SO-MI 14 13.50 (0.50) 6
NOMAD 22 13.00 (0.00) 8
VNS-i 4 13.73 (0.44) 2
VNS-ii 14 13.00 (0.00) 5

stuck in infeasible regions. In particular, NOMAD cannot succeed once on
G6, thus gets Rank 8. Compared with Aex, Ex has two additional nonlinear
constraints. However, most algorithms can find satisfactory solutions on
Ex, while having difficulty on Aex. VNS-i and VNS-ii use different man-
ners to find feasible solutions, thus they have different search efficiency.
Intuitively, VNS-ii seems better than VNS-i, because VNS-i always has
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TABLE 10.5 Comparison Results on Engineering
Applications-Part1

Cases Algorithms #NF Mean(SEM) Rank
Hipl KDGO 0 758.25 (0.00) 1
GA 0 735.34 (6.75) 7
SO-1 0 758.25 (0.00) 1
local-SO-I 0 681.38 (10.25) 8
SO-MI 0 754.38 (0.88) 4
NOMAD 0 744.00 (0.96) 6
VNS-i 0 753.83 (1.54) 5
VNS-ii 0 755.04 (1.12) 3
Hlp2 KDGO 0 2,021.67 (0.22) 1
GA 0 2,008.83 (4.68) 5
SO-1 0 2,020.67 (1.33) 2
local-SO-I 0 1,835.14 (24.94) 8
SO-MI 0 2,015.46 (1.51) 3
NOMAD 0 2,003.83 (5.01) 7
VNS-i 0 2,010.83 (3.81) 4
VNS-ii 0 2,006.46 (6.91) 6
Hl1p3 KDGO 0 4,116.39 (4.31) 3
GA 0 4,108.84 (4.49) 5
SO-1 0 4,114.63 (2.50) 4
local-SO-I 0 3,890.61 (20.74) 8
SO-MI 0 4,117.98 (2.58) 2
NOMAD 0 4,125.75 (12.06) 1
VNS-i 0 4,075.42 (10.44) 7
VNS-ii 0 4,099.17 (6.69) 6

larger NF values on Ex and Aex. G4 has a larger feasible space ratio, thus
all eight algorithms can successfully identify the feasible area and go close
to the global optimum. It is obvious that KDGO has the best mean value
-30,456.91 on G4 and is much better than others. Similarly, KDGO still
gets rank 1 on G9 and SO-I has satisfactory performance as well. However,
VNS-i, VNS-ii and NOMAD perform so badly on G9 that their mean val-
ues are much larger than 1,000. Although GA sometimes may fail to get
feasible solutions, it has better global exploration ability and can always
obtain acceptable results. For example, GA gets the mean value 896.53 on
G9, much better than local-SO-I.

Glm is an extended version of G1 and has a larger search space. There
is no doubt that SO-I outperforms others on G1 and gets the best mean
value —14.83. Relatively, KDGO finds the true global optimum -15 for
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TABLE 10.6 Comparison Results on Engineering
Applications-Part2

Cases Algorithms #NF Mean(SEM) Rank
H2pl1 KDGO 0 1,679.05 (1.91) 1
GA 0 1,560.36 (25.96) 6
SO-I 0 1,677.17 (2.10) 2
local-SO-I 0 1,443.12 (46.42) 7
SO-MI 0 1,657.08 (3.75) 4
NOMAD 0 1,626.18 (19.64) 5
VNS-i 4 1,653.65 (13.92) 8
VNS-ii 0 1,671.50 (2.92) 3
H2p2 KDGO 0 4,124.70 (7.08) 1
GA 0 4,016.17 (23.14) 5
SO-1 0 4,097.40 (11.86) 2
local-SO-I 0 3,668.60 (50.60) 7
SO-MI 0 4,095.50 (6.96) 3
NOMAD 0 3,899.40 (25.57) 6
VNS-i 2 4,000.93 (28.66) 8
VNS-ii 0 4,070.83 (16.29) 4
H2p3 KDGO 0 8,302.33 (7.99) 1
GA 0 8,220.67 (22.22) 4
SO-1 0 8,299.00 (12.84) 2
local-SO-I 0 7,550.17 (73.20) 8
SO-MI 0 8,253.17 (9.62) 3
NOMAD 0 8,122.33 (32.05) 5
VNS-i 0 8,055.83 (49.83) 6
VNS-ii 0 7,996.33 (64.34) 7
TP KDGO 0 4.18 (0.19) 1
GA 0 3.10 (0.17) 4
SO-I 0 3.15(0.20) 3
local-SO-I 0 2.07 (0.22) 6
SO-MI 0 3.82(0.13) 2
NOMAD 0 0.89 (0.06) 7
VNS-i 26 1.74 (0.39) 8
VNS-ii 0 2.52(0.20) 5

22 times and also gets a satisfactory mean —14.57. On the other hand,
KDGO becomes the only method that can obtain a mean result smaller
than -—-50,000 on Glm. Furthermore, according to the statistical results,
KDGO successfully reaches the global optimum —50,200 for 21 times on
G1m, showing its superior robustness. When it comes to Hmi, all the algo-
rithms except KDGO seem to encounter some troubles. This is because
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Hmi is a binary problem with high dimension and seven nonlinear con-
straints. However, KDGO can accurately find the global optimum 13 for
28 times and get the impressive mean 13.20, once again demonstrating its
high efficiency.

For the constrained engineering cases, it seems that all the algorithms
except VNS-i can easily find feasible solutions but they have different con-
vergence abilities. KDGO and SO-I can always find the global optimum
758.25 on Hlpl. Besides, KDGO maintains the first on H1p2, H2p1, H2p2
and H2p3. And SO-I follows KDGO closely in most cases. According to
the results in Tables 10.5 and 10.6, it can be found that KDGO not only
has a better mean but also has a smaller SEM, demonstrating its excel-
lent stability. For Hlp3, NOMAD wins the competition and SO-MI has
impressive results as well.

It is clear from Table 10.1 that TP is a high-dimensional case that gen-
erally needs more function evaluations to explore the design space. After
30 test runs, KDGO undoubtedly acquires the biggest mean 4.18 that has
a 9% improvement over SO-MI. In the 20 test cases, KDGO gets 18 Rank
1, 1 Rank 2 and 1 Rank 3; SO-I gets 10 Rank 1, 6 Rank 2 and 1 Rank 3;
SO-MI acquires 8 Rank 1, 3 Rank 2 and 4 Rank 3. To sum it up, KDGO is
not only good at dealing with mathematical benchmark cases, but also has
extraordinary ability to solve actual engineering applications. The results
in Tables 10.2-10.6 verify KDGO’s functionality and demonstrate its supe-
rior performance.

10.4.2 Practical Engineering Application

In this chapter, the presented KDGO is used for structure optimization
of a blended-wing-body underwater glider (BWBUG). When the BWBUG
is lifted from the water, stress concentration may arise in the skeleton
structure because of the vertical downward force on the two wings, which
involves the gravities of skeleton, equipment and buoyancy material. For
the equipment, the total gravity is defined as 1,500N that depends on the
specific tasks and functions of this BWBUG. On the other hand, for the
buoyancy material, the density Py, is 500kg/m?® the occupied vol-
ume is V,py =0.11 m>, and the weight of the material is 55kg. Therefore,
the total gravity of the buoyancy material is Gyupyung = Wiuoyaney & =550N. To
get the lightest weight and meanwhile satisfy the stress and deformation
constraints, the specific design parameters and optimization formula are
summarized below.
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FIGURE 10.7 Structure parameters and illustration.

Figure 10.7 shows the ten design variables including: four thickness param-
eters t, 1,, t; and t,; six relative position parameters [, ,, 5, I, I; and . The
total length and width of this BWBUG are 1,000 and 3,000 mm, respectively.
Besides, the numbers of transverse and longitudinal beams in the body are
constants 4 and 2, and those in the wings are constants 3 and 5, respectively.
The design objective is to minimize the skeleton weight and meanwhile need
to be subject to the equivalent stress and total deformation constraints.

min Vvskeleton

st. Omx S0,1Y

dinax <50 mm

4<t, <10
4<t,<10

3<t;<7

3<ty <7

255<1] £345
50<1, <120

250<15<320 |
0.10<1, £0.35]

0.45<15<0.55

| = discrete interval 0.5

0.65<15<0.90 |

| = discrete interval 0.05

(10.12)

= discrete interval 0.01
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where Wi is the weight of the skeleton structure, 0, is the maximal
equivalent stress, 0, is the tensile/compressive yield strength, y refers to
safety factor and d,.x denotes the maximal total deformation. In this exper-
iment, the structure material is aluminum alloy with density 2,770kg/m?,
Young’s modulus 71,000 MPa, and Poisson’s ratio 0.33. Besides, the safety
factor is 1.6 and o, is 280 MPa. The finite element analysis is used to simu-
late this actual case, and Figure 10.8 shows the specific structure mesh.
Furthermore, Figure 10.9 shows the detailed iterative process, where the
stars refer to the feasible solutions, the dots represent infeasible designs,
and the best feasible solution is located at the 89th NFE. From Figure 10.9,
it is clear that the initial samples from the DoE phase have a wide distribu-
tion in the design space, while the efficient infilling strategy makes KDGO
find the feasible and optimal regions rapidly. After several iterations, the
search focuses on the boundary of the deformation constraint. Intuitively,
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FIGURE 10.8 Illustration of mesh generation.
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FIGURE 10.9 Iterative process of KDGO on structure design.
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TABLE 10.7 Best Solutions in Different Phases

Solutions tl tz t3 t4 11 lz 13 14 15 15
DoE-opt 5.15 4 52 6.75 278 72.5 263.5 0.15 0.47 0.77
Final-opt 4 4 3 4.7 255 120 250 0.17 0.51 0.65

TABLE 10.8 Best Response Values in Different

Phases

Response Wikcteton (K8) d,x (mm) O max (MPa)
DoE-opt 5.8822 45.6150 114.3651
Final-opt 4.8245 49.9857 110.3534

Units: Mpa Units: Mpa
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FIGURE 10.10 Equivalent stress diagram. (a) DoE-opt. (b) Final-opt.

KDGO begins to converge after 80 simulations and finally identifies the
best objective value after 88 simulations.

Additionally, the best results obtained in different phases (the DoE
phase and the final phase) are summarized in Tables 10.7 and 10.8. Here,
DoE-opt refers to the best result obtained after DoE and Final-opt denotes
the final best result. The final weight has an 18% improvement after the
iterative infilling process. Correspondingly, the equivalent stress and total
deformation diagrams are provided in Figures 10.10 and 10.11. In sum-
mary, KDGO cannot only deal with complex mathematical cases but can
also efficiently tackle the actual engineering application.
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FIGURE 10.11  Total deformation diagram. (a) DoE-opt. (b) Final-opt.

10.5 CHAPTER SUMMARY

In this chapter, a novel discrete global optimization method named
KDGO is presented, which can effectively solve computationally expensive
black-box problems. In KDGO, an efficient infilling criterion is proposed to
iteratively supplement new expensive samples, which involves a multi-start
knowledge mining process. The new samples are generated by four steps:
optimization, projection, sampling and selection. And the greatest advan-
tage of this method is its ability to solve a wide range of discrete problems,
including binary, integer and discrete number set black-box problems. In
addition, its strong stability is demonstrated through its application in a
wide range of engineering problems.

NOTE

1 Based on “Kriging-assisted Discrete Global Optimization (KDGO) for
black-box problems with costly objective and constraints,” published in
[Applied Soft Computing], [2020]. Permission obtained from [Elsevier].
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CHAPTER 11

SAGWO

Surrogate-Assisted Gray Wolf
Optimization for High-Dimensional,
Computationally Expensive
Black-Box Problems

11.1 INTRODUCTION

In searching for the optimal solution, surrogate models are commonly
employed to approximate the objective function, thereby replacing expen-
sive simulations and significantly reducing the number of evaluations of
costly functions (Dong et al., 2016; Forrester & Keane, 2009). Two types of
surrogate-based optimization strategies are typically utilized during the
optimization search process. The first is the direct offline optimization
approach (Goel et al., 2007; Guo et al., 2018; Hajikolaei & Gary Wang,
2014), which focuses on constructing an accurate surrogate model using a
set of well-distributed expensive sample points. Subsequent evolutionary
computation (EC) or swarm intelligence (SI) searches are then performed
on the surrogate model without further evaluations of the expensive
objective function. However, it is challenging to construct a globally
accurate surrogate model with a limited number of samples, especially
for multimodal or high-dimensional optimization problems. The sec-
ond is the dynamic or online optimization approach (Dong et al., 2018a;
Liu et al.,, 2017; Long et al., 2015; Miiller et al., 2014; Regis & Shoemaker,
2013), which begins with a coarse surrogate model and adaptively refines
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it by adding new expensive samples according to certain infill strategies
during each iteration of the search process. The key challenges in online
optimization lie in designing effective infill strategies and balancing the
exploration of unknown regions with the exploitation of the current
model (Haftka et al., 2016).

These stated search methods could sufficiently utilize the predic-
tive information of surrogate models and perform well on lower dimen-
sional (D <10) problems, but the algorithms also encountered challenges
in the higher dimensional (D210), computationally expensive optimi-
zations. One reason is that the high-dimensional problems have much
larger exploration space and more local optima, leading to the difficulty
in global optimization search. The other contributing factor is that the
current approximation techniques generate huge errors in search of a
high-dimensional problem, mistakenly guiding the search and wasting a
large amount of computational effort. Too much dependence on surrogate
models makes the search method ineflicient, ineffective and even infea-
sible for solving high-dimensional optimization problems (Dong et al.,
2018b; Shan & Wang, 2010).

Surrogate-assisted EC or SI algorithms (SAEC/SIAs) are different
from the methods discussed above. Although the SAEC/SIAs still need
intelligent infill sampling to update new individuals and the generation
of points, they do not overly rely on the prediction information com-
ing from the surrogates. SAEC/SIAs retain the metaheuristic character-
istics that stochastically capture new samples around the present best
solution or go to the unknown area for global exploration. Generally,
SAEC/SIAs utilize the surrogate models as the prescreening tools to
select promising individuals, which makes SAEC/SIAs more suitable for
high-dimensional, computationally expensive global optimization. The
strategies for managing surrogates in SAEC/SIAs can be classified into
generation-based, individual-based and population-based methods. In
the generation-based methods, the points of some generations are created
using surrogates, while the others are still produced by evaluating the
expensive fitness/objective function. In the individual-based strategies,
surrogates are used to evaluate the fitness of some individual points in
each generation. In the population-based methods, each subpopulation
has its surrogate, and some of the subpopulations can use surrogates for
fitness evaluations to reduce computation costs. Recently, considerable
progress has been made in improving the SAEC/SIAs search schemes.
Lim et al. (2009) used an ensemble model composed of several different
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surrogates to mitigate prediction error and applied polynomial response
surface (PRS) to acquire a smooth function with fewer local minima.
Training data for building the surrogates is chosen in the vicinity of each
individual, and initial individuals are gradually replaced by higher qual-
ity solutions from the proposed surrogates. Liu et al. (2013) developed
a surrogate-based evolutionary algorithm (GPEME) for expensive opti-
mization problems with 20-50 design variables. The Gaussian process
surrogate model assisted evolutionary algorithm for medium-scale com-
putationally expensive optimization problems (GPEME) utilizes GP to
build surrogates and adaptively coordinates the exploitation of surrogates
and evolutionary search. Besides, Sammon mapping is used to reduce the
design dimension so that GP can generate more accurate surrogates in
a low-dimensional space. Regis (2014) introduced an RBF (radial basis
function)-assisted particle swarm optimization (PSO) algorithm for
30-36 dimensional problems, where RBF is used to identify the best trial
in each swarm, and the present best trial needs to be redefined by a pos-
sible trial in its vicinity. Sun et al. (2017) presented the surrogate-assisted
cooperative swarm optimization (SA-COSO) method for 50-100 dimen-
sional, expensive optimization problems, in which the surrogate-assisted
PSO and social learning-based PSO (SL-PSO) schemes are cooperatively
used to search for the global optimum. In SA-COSO, a fitness estima-
tion strategy was also presented to assist the PSO search to generate more
promising individuals. Furthermore, Yu et al. (2018) developed a surro-
gate-assisted hierarchical PSO algorithm (SHPSO) that also combines
PSO and SL-PSO to enhance the global and local search, and SHPSO
had an impressive performance on 30-, 50- and 100-dimensional cases.
Recently, Wang et al. (2019) introduced the novel evolutionary sampling
assisted optimization (ESAO) algorithm that builds two surrogate models
for global and local searches, respectively. Expensive samples were used
to build the global model, while several better individuals were collected
to construct the local model. The ESAO has shown excellent performance
in the tests using 20-200 dimensional benchmark cases.

This chapter introduces a new search method, called surro-
gate-assisted gray wolf optimization (SAGWO), which uses RBF to assist
the gray wolf optimization (GWO) (Mirjalili et al., 2014) algorithm in
solving high-dimensional computationally expensive black-box prob-
lems. SAGWO operates in three phases: initial exploration, RBF-assisted
metaheuristic exploration and knowledge mining on the RBF model.
In the initial exploration phase, a group of well-distributed samples is
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generated using the design of experiments (DoE) to roughly approxi-
mate the high-dimensional design space, and the original wolf pack and
leaders are sequentially identified. Furthermore, knowledge mining on
the RBF model combines global search using GWO and multi-start local
search around promising regions. During the RBF-assisted metaheuris-
tic exploration phase, the predictive information from the RBF model
is utilized to guide the generation of wolf leaders in each iteration, and
the positions of the wolf pack dynamically change following the wolf
leaders, thus achieving a balance between global exploration and local
exploitation.

11.2 GRAY WOLF OPTIMIZATION

Since GWO was presented by Mirjalili et al. (2014), the method has received
considerable attention and has been successfully applied in various engi-
neering applications. For example, Sanchez et al. (2017) proposed a gray
wolf optimizer for modular granular neural network (MGNN) that was
applied to human recognition. Compared with other algorithms, GWO
could find the optimal architecture parameters of MGNN more efficiently.
Rodriguez et al. (2017) proposed a new hierarchical transformation opera-

tor with five variants in the hunting process of GWO. Through a large
amount of tests, they proved that the fuzzy hierarchical operator can
maximize the improvement of GWO’s performance. Moreover, Majumder
and Eldho (2020) utilized an artificial neural network (ANN) to build the
surrogate model for the groundwater flow and solute transport processes.
The comparative study demonstrated that GWO could successfully iden-
tify the optimal solution of the ANN model and had better stability and
convergence behavior. In recent years, how to improve GWO and how to
apply GWO to solve certain problems have become research hotspots. Due
to GWO?’s high efficiency and strong stability, this chapter expects to draw
support from GWO’s search mechanism to solve high-dimensional expen-
sive black-box optimization problems.

GWO is a nature-inspired GO algorithm, mathematically describing
the gray wolves’ social hierarchy and hunting mechanism. In GWO, the
wolf pack mainly includes four hierarchies: the fittest solution alpha (a),
the second and third best solutions beta (f) and delta (5), and the others
omega (w). Alpha, beta and delta will guide omega to hunt the prey that is
the global optimal solution. Generally, gray wolves will track and encircle
the prey before the attack, and the general formulation of the approach is
summarized below:
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D=|C-X,(t)- X(t) (11.1)
X(t+1)=X,(t)-A-D (11.2)
A=2a-n—a, C=2-n (11.3)

where X, (t) refers to the prey’s position in the present iteration, r, and r,
are two random vectors, and a is a parameter that linearly decrease from
2 to 0. It is worth noting that A and C are two random factors for exploi-
tation and exploration, respectively. To simulate the hunting behavior
mathematically, all the wolves update their positions with the guidance of
alpha, beta and delta. The formulas are summarized as follows:

D, =|C- X, (t)- X(t)
D =|C,- X5(t)- X (t) (11.4)
D; =|C; X5 (1)~ X(t)
X, =X, -4 -(D,)
X,=X;—A,(Dp) (11.5)
X;=X;— 4;-(Ds)

X+ X, +X
X(t+1)=% (11.6)
where X(f) is the position of a wolf in the current iteration, X(¢ + 1) is the
corresponding new position in the next iteration. X, X, and X; are three
updated positions based on the wolf leaders alpha, beta and delta. The ran-
dom factors C; and A, in Egs. (11.4)-(11.6) are independent.

11.3 SURROGATE-ASSISTED GWO

Surrogate-assisted EC and SI algorithms have shown a superior capability
in dealing with higher dimensional, computation-expensive optimization
problems, and GWO is a widely used, efficient swarm intelligent GO algo-
rithm. In this chapter, the RBF with a simple structure and very efficient
model-building mechanism for high-dimensional problems is used as the
surrogate model to assist the search in the GWO algorithm. The specific
introduction and expression of RBF can be seen in Chapter 6. The new
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FIGURE 11.1  Surrogate-assisted gray wolf optimization.

SAGWO algorithm integrates RBF and GWO in the optimization loop to
explore the high-dimensional design space, as shown in Figure 11.1.

Details of the new search SAGWO method are further illustrated using
the following algorithm descriptions.

Algorithm 11.1 Surrogate-Assisted Gray Wolf Optimization

(01)

(02)
(03)

(04)
(05)
(06)
(07)
(08)
(09)

Design of Experiments: Employing Latin Hypercube Sampling (LHS)
to choose m wolves § in the design space, evaluating their function
values Y, and saving them in an archive DB.
Initialize Wolf Pack: Sorting S based on Y, and choose the top n
wolves as the initial Wolf Pack WP, ;..
Initial knowledge mining on RBF: Training an RBF model by DB, get-
ting the predicted best solution f,,, from RBF, and saving it into DB.
Generate three best wolves Alpha, Beta, Delta from WP
iteration « 1;
Repeat
Run Surrogate-assisted metaheuristic exploration
Run Knowledge mining on surrogate models
Update Alpha, Beta, Delta.

init*
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(10) Sort DB based on function values and find the best sample Best
in DB.

(11) iteration « iteration +1;

(12) Until the termination criterion is satisfied.

(13) Return Best.

In Algorithm 11.1, a database DB is created to store expensive samples.
In the beginning, 2(d + 1) sample points are generated using LHS, where
top n samples are selected as the initial positions of the wolf pack based
on their function values. Here, d refers to the dimension, and 7 is the size
of the wolf pack. The initial knowledge mining is carried out on the lin-
ear RBF model to get the predicted best solution and the corresponding
function value is calculated to update DB. After the initial alpha, beta
and delta are identified from the wolf pack, the entire optimization loop
begins. Figure 11.2 shows how the first wolf pack is generated in the initial
process. More details on the RBF-assisted metaheuristic exploration and
knowledge mining on RBF are provided in the following sections.

11.3.1 Surrogate-Assisted Metaheuristic Exploration

Assume that an experienced wolf coming from other wolf packs or getting
special training by more intelligent creatures. Naturally, this experienced
wolf may better guide other wolves to hunt prey. As per the previous dis-
cussion, RBF can collect the hunting data of the wolf pack in each cycle,
and provide an approximate prediction, to generate an “experienced wolf.”
From Algorithm 11.1 and Figure 11.1, it is clear that the database DB
includes two types of information: the iterative positions of the wolf pack
and the predicted samples of RBF. Intuitively, one way to find experienced

Initial DoE
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FIGURE 11.2  Generation of initial wolf pack.
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leaders for the wolf pack is to choose promising solutions from DB to
update alpha, beta and delta. Equation (11.7) provides the formulation.

Xy (t+1)=argmin f(x), xe {WPUS,bf}

X

Xp(t+1)=argmin f(x), xe{WPUSy —X,(t+1)}

X5(t+1)=argmin f(x), x€{WPUS.y — X, (t+1)- Xp(t+1)}

¢ t
i=1 j=
(11.7)

where X, (t+1), X5(t+1) and Xs(t+1) are the updated alpha, beta and
delta, respectively. WP(i) are the positions of the wolf pack in the ith itera-
tion, S ( j ) are the predicted samples from RBF in the jth iteration, and
f(x) is the objective function. From Eq. (11.7), it is easy to find that the new
leaders of the wolf pack possess more knowledge that not only comes from
the experience of the wolf pack, but also comes from the prediction by the
RBE. After the wolf leaders are obtained by Eq. (11.7), Egs. (11.4)-(11.6) are
continuously used to update the whole wolf pack. To make it clearer, an
illustration about the data flow of the proposed metaheuristic exploration
is shown in Figure 11.3.

Moreover, another way to fuse the wolves’ experience and the predic-
tion of RBF is also presented for comparison. The method used in the sub-
sequent experiments is named SAGWO_M. Here, alpha, beta and delta are

Database DB
Rank S8 | F | Extract A
L1 gt F(ru? d

FIGURE 11.3  Data flow of the proposed metaheuristic exploration.
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updated using the original way, and the present best solution in DB is used
to guide others, leading to the following formulations:

Xpest (t)=argmin f(x), xe{WPUSrbf} (11.8)
Dg. :‘C4 'XBest(t)_X(t)‘ (11.9)

X4 = XBest - A4 '(DBest) (1110)
X(t+1)= X +X2:X3+X4 11.11)

where X (f) refers to the present best solution, and C, and A, are two
independent random factors. To explain the search process of SAGWO, the
search steps are listed in Algorithm 11.2. It is worth noting that SAGWO
and SAGWO_M have the same optimization flow except that different
equations to get X(#+1) and wolf leaders are used.

Algorithm 11.2 Surrogate-Assisted MetaHeuristic Exploration

(01) Update Alpha, Beta and Delta based on (11).
(02) for i<« 1ton (Here, n refers to the wolf pack size)

(03) for j < 1 to dim (Here, dim refers to dimension)

(04) Use (8) to (10);

(05) On the jth dimension, Generate X, based on the ith wolf
and Alpha;

(06) On the jth dimension, Generate X, based on the ith wolf and
Beta;

(07) On the jth dimension, Generate X, based on the ith wolf
and Delta;

(08) Update the jth dimension of the ith wolf’s position by X, X,,

X. (Using (11.6))
(09) endfor
(10) Make sure the ith wolf’s position inside the original range.
(11) endfor
(12) Evaluate the function values at the new positions of the wolf pack.
(13) Save all the positions and function values of wolf pack into DB.
(14) Update the RBF model using the samples in DB.
(15) Return DB and an updated RBF model.
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11.3.2 Knowledge Mining on Surrogate Models

In general, it is difficult to build a globally accurate surrogate model and
it is easier to make accurate predictions in a local trust region. Therefore,
this work focuses on a small region around the present best solution using
the following formulations:

Lb_local = max[(BestPos —Ww- (Ub — Lb )),Lb :I
Ub tocal = min[(BestPas +w-(U, — L, )),U,, ] (11.12)

Ly ioca
Local _region=

Us_tocal
where Best,,
bounds of the original design region, and w is a scaling factor. To acquire
useful knowledge from the RBF model, a combination search of global
optimization and multi-start local optimizations is conducted. The global
optimizer is used to get the predicted best solutions Gbest,,;,, and Gbest,,,;
in the original space and in the local region, respectively. The multi-start
optimization process is carried out in the local region to capture the pre-
dicted local optimal solutions Lbest,, ;. In this algorithm, the gray wolf
optimizer is employed as the global optimizer, and the sequential qua-
dratic programming (SQP) is used as the local optimizer.

In the multi-start optimization, several starting points are generated
using LHS over the defined region, and local optimization is then con-
ducted using these starting points. After the predictive local optimal solu-
tions are obtained from RBF, a separation distance is used to avoid the
obtained points getting too close to the known samples.

In Figure 11.4, the method of multi-start optimization is illustrated
using a 1-D example graphically. In the diagram, the darkest black dots
represent selected promising solutions, the lightest gray dots correspond
to known samples in the database, and the medium gray dots indicate
inappropriate local optima (including repeated points and those posi-
tioned too close to the known sample points). A multi-start optimization
process can find several local optima of a surrogate model, but the method
cannot determine which ones are appropriate to be retained. To extract
the representative local optimal solutions, eliminate redundant points,
and avoid increasing the number of function evaluations, the defined dis-
tance given in Eq. (11.13) is used in an iterative process to select promising

is the present best solution, L, and U, are the lower and upper
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FIGURE 11.4 Demonstration of multi-start optimization search.

optimal solutions. The pseudo-codes for this knowledge mining search
process are provided in Algorithm 11.3.

dim
Dist=¢- \/Z(U,,(i)—L,,(i))z (11.13)

i=1

where dim refers to dimension, and € is a scaling coefficient.

Algorithm 11.3 Knowledge Mining on Surrogate Models

(01)
(02)

(03)
(04)
(05)

(06)
(07)

Best,,,, < Acquire the best solution from the database DB;

Gbest ,,,, < Search the original space to get the predicted best solu-
tion from RBF by a global optimizer;

Evaluate the function value of Gbest,,,, and update DB and RBF;
Local_region < Create the local search region based on (16);
Gbest,,.,, < Search Local_region to get the predicted best solution
from RBF by a global optimizer;

Evaluate the function value of Gbest,, ,;and update DB and RBF;

Dist < Define the separation distance based on (17);
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(08) Start_point < Generate M sample points in Local_region by LHS;

(09) fori<—1toM

(10) Predict_best,, ., (i) < At the starting point Start_point(i), call a
local optimizer to get the ith local optimal solution from RBF in
Local_region;

(11) endfor

(12) Temp < Define a temporary variable that initially equals to the sam-
ple points in DB;

(13) Localy, i < &5

(14) fori<—1toM

(15) Min_Dist < Find the closest point to Predict_best,,,(i) from Temp
and calculate the minimum distance between them;

(16) if Min_Dist> Dist

(17) Localyp, 4 < Localy,, ;.. | | Predict_best,,,, (i);

(18) Temp — Temp | Predict_best,,,(i);

(19) endif

(20) endfor

(21) Sort the samples in Localy,, ;. according their RBF values;

(22) if |Localp,, ;.| >Local_sample_num

(23) Lbest,, ., < Choose the top Local_sample_num samples from
Localp,eis

(24) else

(25) Lbest,,, < Localy,,;.s

(26) endif

(27) Evaluate the function values of Lbest;,,; and update DB and RBF;

(28) Return DB and an updated RBF.

Intuitively, the knowledge mining process includes global search and
local search. In the global search (Algorithm 11.3, Lines 2-3) Gbest,,,,
is obtained, and in the local search (Algorithm 11.3, Lines 4-24) Gbest,,,,
and Lbest,,,, are identified to refine the RBF model. Specifically, Lines
7-18 of the algorithm describe how the multi-start optimization works,
and Lines 19-23 explain how to select the promising samples. The scaling
factor w is defined as 0.05, and the scaling coefficient € is set as le-5 in Egs.
(11.12) and (11.13). The algorithm returns the updated database DB and
RBF model that have collected all valuable information.

11.3.3 Optimization Flow

The previous sections discussed the three contributing elements of the
new SAGWO algorithm, initial exploration, RBF-assisted metaheuristic
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FIGURE 11.5 Flow chart of SAGWO.

exploration and knowledge mining on RBF. The database, DB, which stores
all expensive sample points, plays as the link to each of these three parts.
Initial exploration identifies the initial parameters and carries out an ini-
tial global search on the original RBF model. RBF-assisted metaheuris-
tic exploration gives SAGWO effective exploration capability. Knowledge
mining on RBF sufficiently exploits the RBF to guide the metaheuristic
exploration and accomplishes the balance between exploration and exploi-
tation. The flowchart of the SAGWO algorithm is shown in Figure 11.5.

11.4 EXPERIMENTS AND DISCUSSION

The new SAGWO algorithm is tested using 21 benchmark test cases with
30, 50 and 100 design variables, which have been frequently used for eval-
uating computationally expensive high-dimensional optimization search

algorithms. These include seven representative functions with different
characteristics, as listed in Table 11.1. Besides, comparisons of search
efficiency and robustness between the new SAGWO algorithm and three
groups of other well-known advanced GO search algorithms have been
made. The first group includes the well-known EC and SI algorithms,
including the genetic algorithm (GA), differential evolution (DE) and
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TABLE 11.1 Benchmark Test Functions

Global

Cases Description Characteristics Optimum
F1 Ellipsoid Unimodal 0
F2 Rosenbrock Multimodal with narrow valley 0
F3 Ackley Multimodal 0
F4 Griewank Multimodal 0
F5 Shifted rotated rastrigin (F10) Very complicated multimodal -330
F6 Rotated hybrid composition Very complicated multimodal 120

function (F16)
F7 Rotated hybrid composition Very complicated multimodal 10

function (F19) with narrow valley

GWO. The second group consists of the recently introduced SAEC/SIAs,
including GPEME (Liu et al., 2013), SA-COSO (Sun et al., 2017), SHPSO
(Yu et al,, 2018) and ESAO (Wang et al., 2019). The last group covers the
SAGWO method with different implementations, including SAGWO_M,
SAGWO_G and RBEGWO.

As previously discussed, the SAGWO and SAGWO_M have the
same search strategies, except that SAGWO uses Egs. (11.4)-(11.7) and
SAGWO_M uses Egs. (11.4)-(11.5) and (11.8)-(11.11) to update the wolf
leaders and the new positions. The SAGWO_G is nearly the same as
SAGWO, but SAGWO_G does not conduct knowledge mining on RBF in
its initial exploration and does not use a local search strategy in Algorithm
11.3. The RBFGWO does not include metaheuristic exploration, and it just
uses the GWO method to produce the best solution from RBF in each cycle.

During the test runs, the number of function evaluations (NFE) that
represents the computational cost for a computation-expensive opti-
mization problem is monitored and set to be less than its maximum of
1,000. The population sizes for GA, DE, GWO, SAGWO, SAGWO_M and
SAGWO_G are set as 10. In the SAGWO, the number of starting points
(M in Algorithm 11.3) and the number of sampling (Local_sample_num
in Algorithm 11.3) in the multi-start optimization are defined as 5 and 2,
respectively. Besides, the gray wolf optimizer uses the default parameters
as its original paper, while the size of the population is 20 and the number
of the generation is set as 500.

The statistical results come from 20 independent runs, and the Wilcoxon
rank-sum tests (W-test) were calculated at a significance level of 5%. In
the statistical tables, “=” means no significant difference between the two
groups of results, “+” indicates that SAGWO is relatively better, and “=”
denotes that SAGWO 1is worse. Since the statistical results of GPEME,
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SA-COSO and SHPSO directly came from the original research references,
“*” was used to indicate that their Wilcoxon test results cannot be provided.

Table 11.2 presents the statistical optimization results of the ten algo-
rithms using the 30-variable test examples, and Figure 11.6 shows the

TABLE 11.2 Statistical Results on 30-Dimensional Test Functions

Case  Approach Best Worst Mean Std Rank W-t

F1  ESAO 8.6562e-05  2.7820e-01  2.7470e-02 6.9640e-02 4 *
SHPSO 4.4782e-02  7.2024e-01  2.1199e-01 1.5229e-01 7 *
GPEME 1.5500e-02  1.6470e-01  7.6200e-02 4.0100e-02 5 *
GA 1.7420e+02  5.0388e+02  2.8109e+02 8.9302e+01 10+
DE 1.2174e+02  3.3717e+02  2.1891e+02 5.8507e+01 9 +
GWO 4.1835e-02  3.6898e-01  1.6522e-01 9.0830e-02 6 +
RBFGWO 6.2568e+00  1.0768e+02  2.6374e+01 2.4171e+01 8 +
SAGWO 9.8207e-06  3.3038e-04  6.5846e-05 7.5113e-05 1 +
SAGWO_M 2.0920e-05  6.0433e-04  2.3151e-04 1.7282e-04 2+
SAGWO_G 2.8334e-04  5.4808e-03  2.1042e-03 1.5143e-03 3

F2  ESAO 2.2158e+01  2.9404e+01  2.5036e+01 1.5701e+00 1
SHPSO 2.7726e+01  2.9290e+01  2.8566e+01 4.0441e-01 5
GPEME 2.6262e+01  8.8233e+01  4.6177e+01 2.5520e+01 7
GA 3.7213e+02  1.1200e+03  6.5968e+02 2.0312e+02 10 +
DE 2.0792e+02  5.5223e+02  3.7956e+02 1.1401e+02 9 +
GWO 2.8257e+01  3.0637e+01  2.9461e+01 6.9142e-01 6 +
RBFGWO 8.9374e+01  1.7144e+02  1.2920e+02 2.5974e+01 8 +
SAGWO 2.6790e+01  2.8826e+01  2.8297e+01 5.1705e-01 2 =
SAGWO_M 2.7340e+01  2.8889e+01  2.8454e+01 4.4128e-01 3 =
SAGWO_G 2.7493e+01  3.0209e+01  2.8510e+01 6.4083e-01 4

F3  ESAO 7.8000e-02  3.9096e+00  2.5213e+00 8.3960e-01 6 *
SHPSO 5.6091e-01  2.9574e+00  1.4418e+00 7.7404e-01 4 *
GPEME 1.9491e+00  4.9640e+00  3.0105e+00 9.2500e-01 7 *
GA 1.2686e+01  1.6785e+01  1.4571e+01 1.1448e+00 10  +
DE 1.1868e+01  1.6831e+01  1.4546e+01 1.3243e+00 9 +
GWO 9.4736e-01  3.3947e+00  1.8725e+00 6.8009¢-01 5 +
RBFGWO 5.1997e-01  7.9820e+00  4.2738e+00 2.6978e+00 8 +
SAGWO 7.9048e-14  2.4603e-13  1.4371e-13 4.1280e-14 1 +
SAGWO_M 7.1114e-08  1.2881e-05  3.1803e-06 3.6527e-06 2+
SAGWO_G 2.1652e-07  9.0396e-05  1.6106e-05 2.1110e-05 3

F4  ESAO 7.8600e-01  1.0221e+00  9.5340e-01 5.0370e-02 5 *
SHPSO 7.0609e-01  1.0275e+00  9.2053e-01 8.8062e-02 4 *
GPEME 7.3680e-01  1.0761e+00  9.9690e-01 1.0800e-01 6 *
GA 3.2320e+01  9.6362e+01  6.3395e+01 1.9597e+01 9 +
DE 4.3282e+01  1.3185e+02  7.1151e+01 2.3785e+01 10+
GWO 7.4976e-01  1.2102e+00  1.0177e+00 9.5911e-02 7+
RBFGWO 1.9313e+00  9.9980e+00  3.8270e+00 1.8501e+00 8 +
SAGWO 1.3153e-06  1.3466e-01  1.5756e-02 3.1977e-02 1 +
SAGWO_M 5.9291e-05  1.7021e-01  2.7857e-02 4.4472e-02 3+

SAGWO_G 2.5690e-04 5.8268e-02 1.6397e-02 1.7899¢-02 2
(Continued)
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TABLE 11.2 (Continued)

Statistical Results on 30-Dimensional Test Functions

Case  Approach Best Worst Mean Std Rank W-t
F5 ESAO —3.5780e+01  9.0332e+01  6.3250e+00  2.6477e+01 7 *
SHPSO —1.3297e+02 —5.9993e+01 -9.2830e+01  2.2544e+01 4 *
GPEME —5.7068e+01  1.8033e+01 —2.1861e+01  3.6449e+01 6 *
GA —7.1404e+01  1.4600e+02  1.7739e+01  5.9584e+01 8 +
DE 8.5727e+01  3.3614e+02  1.7987e+02  6.3066e+01 10  +
GWO —3.7374e+01  1.4639e+02  5.3641e+01  5.6215e+01 9 +
RBFGWO —1.5782e+02 —5.2813e+01 -9.6542e+01  2.5925e+01 3+
SAGWO —1.7600e+02 —5.8706e+01 —1.2881e+02 3.0823e+01 1
SAGWO_M -1.5603e+02 —4.6490e+01 —1.1389e+02  2.5695e+01 2 =
SAGWO_G —1.2844e+02 —2.7194e+01 —7.1915e+01 2.5471e+01 5 +
F6  SHPSO 3.2715e+02  6.4948e+02  4.6433e+02  8.5125e+01 2 *
GPEME — — — — — *
GA 4.4815e+02  1.1268e+03  5.9053e+02  1.6047e+02 5 +
DE 5.7205e+02  9.7630e+02  7.0275e+02  9.9422e+01 8 +
GWO 3.9666e+02  7.8791e+02  6.2881e+02  1.2028e+02 6 +
RBFGWO 4.1579e+02  8.0178e+02  6.3440e+02  1.2117e+02 7+
SAGWO 3.4843e+02  6.7579e+02  4.8985e+02  1.2882e+02 3
SAGWO_M  3.5066e+02  6.6762e+02  4.3004e+02 7.4478e+01 1
SAGWO_G 3.7243e+02  7.1133e+02  5.1102e+02  1.1015e+02 4 =
F7  ESAO 9.2335e+02  9.5389%e+02  9.3167e+02 8.9417e+00 1 *
SHPSO 9.2248e+02  9.6363e+02  9.3961e+02  9.0177e+00 2 *
GPEME 9.3316e+02  9.9286e+02  9.5859e+02  2.5695e+01 3 *
GA 9.8180e+02  1.2008e+03  1.0565e+03  5.5053e+01 7+
DE 1.0485e+03  1.2358e+03  1.1345e+03  4.9333e+01 9 +
GWO 1.0118e+03  1.1926e+03  1.1048e+03  4.6367e+01 8 +
RBFGWO 1.1028e+03  1.2123e+03  1.1541e+03 3.1691e+01 10  +
SAGWO 9.4251e+02  1.0158e+03  9.7323e+02  1.8469e+01 4
SAGWO_M  8.8750e+02  1.0190e+03  9.8662e+02  2.9923e+01 5 +
SAGWO_G 9.6278e+02  1.1059e+03  1.0407e+03  3.9036e+01 6 +

convergence of the programs at different iterations. In Table 11.2, “Rank”
is made according to the “Mean” values of the results. The SAGWO out-
performed others on F1, F3, F4 and F5; and showed superior performance
on F1 and F3, getting close to the global optima after 1,000 NFEs. SAGWO
achieved satisfactory results, although the algorithm performed less well
than SHPSO on F6 and F7. ESAO performed best on F2 and F7, while
SAGWO showed similar capability in these two cases. The W-test showed
that SAGWO and SAGWO_M performed similarly on F6, and SAGWO
is superior to others on F7. For the pure metaheuristic algorithms, GWO
outperforms GA and DE on F1 to F4; and GA showed better performance
on F5 to F7. For the SAEC/SIAs, ESAO and SHPSO demonstrated excel-
lent performance on most test cases, but SAGWO outperformed others.
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These tests and results of RBFGWO also showed that pure exploitation
of surrogates could not produce satisfactory performance. The combina-
tion of metaheuristic exploration and knowledge mining on RBF is more
effective in producing an efficient and robust global optimization method.
The comparisons of SAGWO and SAGWO_G showed that the introduced
local search could improve search efficiency.

In short, based on the tests using the 30-dimensional benchmark exam-
ples, SAEC/SIAs could get better results within 1,000 function evaluations,
and SAGWO demonstrated top performance among all tested algorithms.
Figure 11.6 supports the same conclusion that SAGWO, SAGWO_M and
SAGWO_G converge faster.

Table 11.3 presents the statistical optimization results of the 11 algo-
rithms using the 50-variable test examples, and Figure 11.7 shows the
convergence of the programs at different iterations. The first group of algo-
rithms, GA, DE, GWO, showed poor performance and appeared to need
more function evaluations to get close to the global optima. Among the
recently published SAEC/SIAs, ESAO and SHPSO are more efficient and

TABLE 11.3  Statistical Results on 50-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F1 ESAO 1.6460e-01  2.2644e+00 7.3950e-01 5.5490e-01 4 *
SA-COSO — — 5.1475e+01  1.6246e+01 8 *
SHPSO — — 4.0281e+00  2.0599e+00 6 *
GPEME 1.3407e+02  3.7256e+02 2.2108e+02  8.1612e+01 9 *
GA 9.3344e+02  2.2346e+03 1.5104e+03  2.8574e+02 11 +
DE 6.0249e+02  1.4331e+03 1.0032e+03  2.2722e+02 10 +
GWO 1.5149e+00  6.0444e+00 3.4329e+00  1.1829e+00 5 +
RBFGWO 5.8383e+00  3.1042e+01 1.3503e+01  5.9945e+00 7 +
SAGWO 6.8653e-04 1.5296e-02 4.0117e-03  3.5801e-03 1
SAGWO_M 9.1396e-04  3.9234e-02 1.0930e-02  9.5852e-03 2 +
SAGWO_G 1.3819e-02 1.5799e-01 5.0418e-02  3.7407e-02 3 +

F2 ESAO 4.3122e+01  4.9249e+01 4.7391e+01 1.7118e+00 1 *
SA-COSO — — 2.5258e+02  4.0744e+01 8 *
SHPSO — — 5.0800e+01  3.0305e+00 5 *
GPEME 1.7235e+02  4.0142e+02 2.5828e+02  8.0188e+01 9 *
GA 1.0121e+03  2.4886e+03 1.7525e+03  3.7181e+02 11 +
DE 5.8820e+02  1.5955e+03 9.7703e+02  3.0630e+02 10 +
GWO 5.0603e+01  6.5986e+01 5.5470e+01  4.5469e+00 6 +
RBFGWO 1.1727e+02  1.6160e+02 1.3764e+02  1.3016e+01 7 +
SAGWO 4.8349e+01  4.9936e+01 4.9055e+01  4.4925e-01 4
SAGWO_M 4.8011e+01  4.9356e+01 4.8813e+01  3.3765e-01 2
SAGWO_G 4.8368e+01  5.0528e+01 4.8983e+01  4.4391e-01 3 =

(Continued)
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TABLE 11.3 (Continued) Statistical Results on 50-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t
F3 ESAO 1.0571e+00  2.4326e+00 1.4311e+00  2.4910e-01 5 *
SA-COSO - - 8.9318e+00  1.0668e+00 8 *
SHPSO - - 1.8389e+00  5.6370e-01 6 *
GPEME 9.2524e+00  1.4934e+01 1.3233e+01  1.5846e+00 9 *
GA 1.5595e+01  1.9068e+01 1.7102e+01  7.6469e-01 11 +
DE 1.4801e+01  1.7466e+01 1.5737e+01  6.7673e-01 10 +
GWO 2.6962e+00  3.9506e+00 3.5012e+00  3.0424e-01 7 +
RBFGWO 4.3642e-10  6.8794e+00 1.3882e+00  2.5183e+00 4 +
SAGWO 2.0735e-11  5.6329e-11 4.0079e-11  1.0122e-11 1
SAGWO_M 7.3469e-10  2.2275e-05 2.7050e-06  5.7588e-06 3 +
SAGWO_G 1.3714e-09  3.1482e-06 5.2386e-07  9.7825e-07 2 +
F4 ESAO 8.5180e-01 1.0207e+00 9.4040e-01  4.2090e-02 4 *
SA-COSO — — 6.0062e+00  1.1043e+00 8 *
SHPSO — — 9.4521e-01 6.1404e-02 5 *
GPEME 2.2546e+01  6.4977e+01 3.6646e+01  1.3176e+01 9 *
GA 1.5005e+02  2.7782e+02 2.1681le+02  2.8582e+01 11 +
DE 1.0250e+02  2.3169e+02 1.6610e+02  3.6249e+01 10 +
GWO 1.2701e+00  3.5371e+00 1.7563e+00  5.3188e-01 6 +
RBFGWO 1.6733e+00  4.1050e+00 2.4182e+00  7.3815e-01 7 +
SAGWO 3.4783e-05  2.2988e-01 2.5573e-02  5.8155e-02 1
SAGWO_M 1.9460e-03  7.6486e-01  9.2928e-02 1.6997e-01 2 +
SAGWO_G 7.1163e-03  7.6487e-01 2.7410e-01  2.4844e-01 3 +
F5 ESAO 1.1625e+02  2.8909e+02 1.9861e+02  4.5825e+01 5 *
SA-COSO — — 1.9716e+02  3.0599e+01 4 *
SHPSO — — 1.3442e+02  3.2256e+01 3 *
GPEME — — — — — *
GA 2.9296e+02  5.6739e+02 4.3421e+02  7.6263e+01 9 +
DE 5.9319e+02  9.4458e+02 7.7043e+02  1.1676e+02 10 +
GWO 2.5640e+02  5.6726e+02 4.0821e+02  8.6890e+01 8 +
RBFGWO 1.8959e+02  3.2630e+02 2.5815e+02  3.2843e+01 7 +
SAGWO -1.6634e+01 1.6151e+02 9.8391e+01 4.6901e+01 1
SAGWO_M 3.4501e+01  1.8412e+02 1.0542e+02  3.8417e+01 2 =
SAGWO_G 1.1560e+02  2.5694e+02 2.0888e+02  3.2617e+01 6 +
F6 SA-COSO — — 1.0809e+03  3.2859e+01 9 *
SHPSO — — 4.7438e+02  4.2029e+01 1 *
GPEME — — — — — *
GA 5.5945e+02  7.2480e+02 6.5803e+02  5.0251e+01 5 +
DE 6.4938e+02  1.0490e+03 8.8082e+02  1.1662e+02 8 +
GWO 5.7645e+02  1.0145e+03 7.3131e+02  1.1967e+02 7 +
RBFGWO 5.5029e+02  8.2425e+02  6.6000e+02  6.6359e+01 6 +
SAGWO 4.3018e+02  5.6424e+02 5.0206e+02  4.5251e+01 2
SAGWO_M 3.9391e+02  6.0399e+02 5.1080e+02  6.0870e+01 3 =
SAGWO_G 5.0321e+02  7.5871e+02 5.8543e+02  5.7061e+01 4 +

(Continued)
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TABLE 11.3 (Continued) Statistical Results on 50-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t

F7 ESAO 9.4099e+02  1.0499e+03 9.7532e+02 3.7110e+01 1 *
SA-COSO — — — — — *
SHPSO — — 9.9660e+02  2.2145e+01 2 *
GPEME — — — — — *
GA 1.0730e+03  1.2872e+03 1.1593e+03  5.2797e+01 7 +
DE 1.1714e+03  1.3582e+03 1.2741e+03  4.9794e+01 9 +
GWO 1.1087e+03  1.2296e+03 1.1723e+03  3.4390e+01 8 +
RBFGWO 9.1022e+02  1.2186e+03 1.1583e+03  8.2127e+01 6 +
SAGWO 9.1000e+02  1.1320e+03 1.0441e+03  4.0828e+01 3
SAGWO_M 1.0251e+03  1.0917e+03 1.0610e+03  1.5866e+01 4 +
SAGWO_G 1.0940e+03  1.1889e+03 1.1369e¢+03  2.2134e+01 5 +

performed best on F2, F6 and F7. RBFGWO with just knowledge mining
showed slower convergence in most cases. On the other hand, SAGWO
showed superior performance on F1, F3 and F4; and SAGWO achieved
satisfactory results on all the seven cases. Although SAGWO is ranked
second and third on F6 and F7, its results are much closer to the minimum.
SAGWO_M also showed good performance, although it was not a match
for SAGWO, especially in cases F1 and F3.

The results from SAGWO and SAGWO_G also indicated that the
introduced local search strategy in Algorithm 3 played an important role
in search efficiency. The iterative curves of SAGWO, SAGWO_M and
SAGWO_G descended more quickly, as shown in Figure 11.7. According to
the W-test results, SAGWO is good at solving these 50-dimensional cases.

Table 11.4 presents the statistical optimization results of the ten algo-
rithms using the 100-variable test examples, and Figure 11.8 shows the
convergence of the programs at different iterations. Compared with DE
and GA, GWO had performed better in cases F1-F4 and F7; and for F5
and F6, GA performed better. SAEC/SIAs used fewer function evalua-
tions to get satisfactory results on these 100-dimensional problems. For
F6, SHPSO and SAGWO had very close results. However, SAGWO per-
formed much better than SHPSO in all other cases. Similarly, ESAO out-
performed SAGWO on F5, but SAGWO was more robust, considering its
overall performance.

In these tests, SAGWO_M and SAGWO_G could not be always as effi-
cient as SAGWO, and they showed advantages in some cases. For exam-
ple, SAGWO_M ranked first on F7, and SAGWO_G ranked first on F2.
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TABLE 11.4 Statistical Results on 100-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t
F1 ESAO 1.1023e+03  1.5388e+03  1.2829e+03  1.3439e+02 8 *
SA-COSO — — 1.0332e+03  3.1718e+02 7 *
SHPSO — — 7.6106e+01  2.1447e+01 5 *
GA 9.6266e+03  1.3324e+04  1.1443e+04 1.1186e+03 10 +
DE 4.3560e+03  7.7354e+03  5.9378e+03  9.7446e+02 9 +
GWO 7.8078e+01  2.4459e+02  1.4172e+02 4.7117e+01 6 +
RBFGWO 9.9654e+00 2.8113e+01  1.4063e+01  4.0008e+00 4 +
SAGWO 1.6621e-02  3.7119e-01  1.3996e-01  9.6807e-02 1
SAGWO_M  2.5521e-01 1.4308e+00  6.4491e-01  2.7070e-01 2 +
SAGWO_G  5.7410e-01  2.1091e+00  1.3740e+00  5.4002e-01 3 +
F2 ESAO 52120e+02 6.7324e+02  5.7884e+02  4.4767e+01 7 *
SA-COSO — — 2.7142e+03  1.1702e+02 8 *
SHPSO — — 1.6559e+02  2.6366e+01 4 *
GA 6.1550e+03  9.6522e+03  8.1846e+03  1.0429e+03 10 +
DE 1.7335e+03  4.1449e+03  2.9532e+03  5.8400e+02 9 +
GWO 1.3736e+02  3.5146e+02  2.0982e+02  5.7589%e+01 6 +
RBFGWO 1.5642e+02  2.0095e+02  1.7642e+02  1.2410e+01 5 +
SAGWO 1.0490e+02  1.4481e+02  1.2338e+02  1.1021e+01 3
SAGWO_M  1.0097e+02 1.3276e+02  1.0981e+02  7.6818e+00 2 -
SAGWO_G 1.0000e+02 1.0658e+02 1.0228e+02 1.8874e+00 1 -
F3 ESAO 9.9664e+00 1.0732e+01  1.0364e+01  2.1130e-01 7 *
SA-COSO — — 1.5756e+01  5.0245e-01 8 *
SHPSO — — 4.1134e+00  5.9247e-01 5 *
GA 1.8575e+01 1.9567e+01  1.9114e+01  2.5621e-01 10 +
DE 1.5880e+01 1.7640e+01  1.6727e+01  5.0897e-01 9 +
GWO 4.8145e+00 7.5527e+00  5.7254e+00  6.6842e-01 6 +
RBFGWO 3.7299e-07  7.1981e-07  5.6679e-07  8.1550e-08 2 +
SAGWO 3.0570e-08  7.4842e-08  5.4035e-08 1.2163e-08 1
SAGWO_M  1.6243e-07 1.8590e-06  6.1486e-07  3.8472e-07 3 +
SAGWO_G  5.2082e-07 1.1662e-06  7.7398e-07  1.9042e-07 4 +
F4 ESAO 4.7346e+01  6.9225e+01  5.7342e+01  5.8387e+00 7 *
SA-COSO — — 6.3353e+01  1.9021e+01 8 *
SHPSO — — 1.0704e+00  2.0485e-02 4 *
GA 6.8970e+02  1.0325e+03  8.6827e¢+02  1.0941e+02 10 +
DE 3.3230e+02  5.2619e+02  4.1035e+02  5.3397e+01 9 +
GWO 6.0071e+00  1.7320e+01  1.1922e+01  2.7013e+00 6 +
RBFGWO 1.3520e+00 1.9886e+00  1.5518e+00  1.5690e-01 5 +
SAGWO 2.0766e-04  2.2883e-01  2.3993e-02  5.1906e-02 1
SAGWO_M  4.1044e-01 1.0941e+00  8.8984e-01  1.9976e-01 2 +
SAGWO_G  9.7929e-01  1.0898e+00  1.0394e+00  3.6336e-02 3 +
F5 ESAO 6.6263e+02  7.5881e+02 7.1347e+02 2.6454e+01 1 *
SA-COSO — — 1.2731e+03  1.1719e+02 7 *
SHPSO — — 8.0173e+02  7.2252e+01 3 *
GA 1.3010e+03  2.0001e+03  1.6525e+03  1.7493e+02 8 +
DE 1.7739e+03  2.3571e+03  2.0889e+03  1.3163e+02 10 +
GWO 1.5030e+03  2.0142e+03  1.7658e+03  1.2086e+02 9 +

(Continued)
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TABLE 11.4 (Continued) Statistical Results on 100-Dimensional Test Functions

Case Approach Best Worst Mean Std Rank W-t
RBFGWO 1.0018e+03  1.2626e+03  1.1238e+03  6.4233e+01 6 +
SAGWO 6.7665e+02  9.1895e+02  8.0016e+02  7.9265e+01 2
SAGWO_M  7.0889¢+02 1.2225e+03  8.9599e+02  1.1499e+02 4 +
SAGWO_G  9.8444e+02 1.2294e+03  1.0976e+03  6.0589¢+01 5 +

F6 SA-COSO — — 1.3657e+03  3.0867e+01 9 *
SHPSO — — 5.1619¢+02 3.2060e+01 1 *
GA 6.4216e+02 8.5115e+02  7.0946e+02  5.2281e+01 6 +
DE 8.7437e+02  1.2478e+03  1.0626e+03  9.165%9e+01 8 +
GWO 6.9914e+02 1.0099e+03  8.3791e+02  7.8673e+01 7 +
RBFGWO 6.5325e+02  7.6724e+02  6.9796e+02  3.3667e+01 5 +
SAGWO 4.8201e+02 5.5528e+02  5.1866e+02  2.0540e+01 2
SAGWO_M  4.7606e+02 6.3633e+02  5.4038e+02  3.6162e+01 3 +
SAGWO_G  5.5642e+02 6.6950e+02  6.1328e+02  2.7442e+01 4 +

F7 ESAO 1.3218e+03 1.4271e+03  1.3724e+03  2.7539e+01 4 *
SA-COSO — — — — — *
SHPSO — — 1.4198e+03  3.8238e+01 6 *
GA 1.3964e+03  1.5606e+03  1.4760e+03  4.1399e+01 9 +
DE 1.4037e+03  1.4734e+03  1.4400e+03  2.1206e+01 8 +
GWO 1.3729e+03  1.4896e+03  1.4306e+03  2.9696e+01 7 +
RBFGWO 1.3339e+03  1.4079e+03  1.3761e+03  2.2113e+01 5 =
SAGWO 9.1015e+02  1.4372e+03  1.3500e+03  1.0747e+02 2
SAGWO_M 9.4134e+02 1.4302e+03 1.3326e+03 1.1856e+02 1 =
SAGWO_G  1.3236e+03 1.4273e+03  1.3634e+03  2.2508e+01 3 =

Furthermore, the W-test results showed that SAGWO was more capable of
solving these 100-dimensional problems.

To better illustrate the results from this comparative study, the perfor-
mances of all these GO algorithms on the 21 test cases are summarized
in Tables 11.5 and 11.6. The SAGWO algorithm won the first place rank
(rank 1) most frequently and had the best average rank value of 1.8095.
The SAGWO_M algorithm obtained an average rank of 2.5238, a little
bit behind the SAGWO, SAGWO_G, SHPSO and ESAO received much
closer average ranks. The search methods that only used knowledge min-
ing, like RBFGWO, or only employed metaheuristic exploration, like
GA, DE and GWO, had worse average rank values. SAGWO considerably
outperformed the GPEME and SA_COSO algorithms in these test cases.
Table 11.6 shows the average rank values of all the 11 algorithms on the
three groups of test cases. The performance of GPEME declines when the
dimension of the GO problem increases. Conversely, RBFEGWO performed
better regardless of the increase in the problem dimension. SHPSO, GWO,
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FIGURE 11.8 Iteration graph on 100-dimensional cases. (a) F1 Ellipsoid func-
tion. (b) F2 Rosenbrock function. (c) F3 Ackley function. (d) F4 Griewank func-
tion. (e) F5 shifted rotated Rastrigin function. (f) F6 rotated hybrid composition
function. (g) F7 rotated hybrid composition function.
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TABLE 11.5 Summary of Ranks

Algorithms Cases No. Sum of Rank Rank 1 No. Ave. Rank
ESAO 18 78 5 4.3333
SA-COSO 12 92 0 7.6667
SHPSO 21 84 2 4.0000
GPEME 10 70 0 7.0000
GA 21 187 0 8.9048
DE 21 193 0 9.1905
GWO 21 141 0 6.7143
RBFGWO 21 128 0 6.0952
SAGWO 21 38 11 1.8095
SAGWO_M 21 53 2 2.5238
SAGWO_G 21 76 1 3.6190

TABLE 11.6 Summary of Ranks on Different Cases

Algorithms Ave. Rankon 30 dim  Ave. Rank on 50 dim  Ave. Rank on 100 dim

ESAO 4.0000 3.3333 5.6667
SA-COSO NA 7.5000 7.8333
SHPSO 4.0000 4.0000 4.0000
GPEME 5.6667 9.0000 NA

GA 8.4286 9.2857 9.0000
DE 9.1429 9.5714 8.8571
GWO 6.7143 6.7143 6.7143
RBFGWO 7.4286 6.2857 4.5714
SAGWO 1.8571 1.8571 1.7143
SAGWO_M 2.5714 2.5714 2.4286
SAGWO_G 3.8571 3.7143 3.2857

SAGWO, SAGWO_M and SAGWO_G showed stable performance in all
three groups of cases.

In the presented SAGWO, the computation complexity mainly con-
sists of five parts, that is, the computation time for initial search, sur-
rogate modeling, function evaluations, global search and local search.
In this chapter, we empirically compare the computation time required
by these algorithms on the benchmark case ellipsoid. Different num-
bers of function evaluations and variables are used to form nine cases
for comparative study. All the algorithms were implemented on a com-
puter with two 2.40-GHz processors and 32-GB RAM, and the average
computation time of 20 runs was summarized in Table 11.7. There is
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TABLE 11.7  Average Computation Time of Different Algorithms

Parameters CPU Time (s) of Different Algorithms
Dim. NFE GA DE GWO RBFGWO SAGWO SAGWO_G SAGWO_M
30d 300 0.555 0.043 0.013 91.34 27.67 9.02 28.73
600 0.508 0.038 0.014 311.23 87.78 31.28 89.97
1,000 0.644 0.063 0.018 821.56 226.72 87.78 233.53
50d 300 0.648 0.020 0.007 115.54 54.83 11.01 54.20
600 0.804 0.042 0.013 436.74 175.06 43.92 180.05
1,000 0.975 0.075 0.022 1,166.65 428.46 120.80 443.99
100d 300 1.267 0.023 0.010 112.49 80.15 10.89 74.52
600 1.515 0.047 0.019 660.65 420.17 66.54 419.12
1,000 1.876 0.078 0.033 1,912.84 1,099.27 195.49 1,125.28

no doubt that the conventional metaheuristic algorithms GA, DE and
GWO require less time than the surrogate-based algorithms RBFGWO,
SAGWO, SAGWO_M and SAGWO_G. Moreover, when the dimension
and NFE increase, the required computation time for GA, DE and GWO
still stays at a lower level. On the contrary, these surrogate-based algo-
rithms are dramatically affected by the two factors NFE and dimension.
This is because a higher dimension and larger NFE will greatly increase
the computation time for surrogate modeling and optimization search on
surrogate models. Among these surrogate-based algorithms, SAGWO has
performed similar to SAGWO_M, SAGWO_G requires the least compu-
tation time and RBFGWO spends the most CPU time. Compared with
SAGWO, SAGWO_G lacks the initial search and local search that increase
the computation complexity, thus it can run faster. On the other side, since
RBFGWO purely exploits RBF to capture new samples per cycle, it needs
more calls to the surrogate models. Thus, RBFGWO runs slower and is
more sensitive to dimension and NFE. It is worth noting that the com-
putation time for function evaluations can be ignored in this experiment
because one run for the mathematical expression takes less than le-2 sec-
onds. However, the required time for an actual expensive problem may be
several minutes, hours or even days. For the time-consuming engineering
problems, the time for running the algorithm itself can be ignored and the
total computation cost will mainly come from the NFEs.

In summary, the newly proposed SAGWO algorithm showed supe-
rior search efficiency and outstanding robustness on all 21 benchmark
test cases; and the algorithm is able to solve high-dimensional, computa-
tion-expensive, black-box global optimization problems.
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11.5 CHAPTER SUMMARY

In this chapter, a novel RBF-assisted, metaheuristic algorithm, surro-
gate-assisted gray wolf optimization (SAGWO), for solving high-dimen-
sional, computation-expensive, black-box global optimization problems
is presented. The new algorithm conducts the search in three successive
phases, initial exploration, RBF-assisted metaheuristic exploration and
knowledge mining on RBF.

In the “initial exploration,” a group of DoE samples is generated and
stored in a database, DB, to capture the overall feature of the design
space. After that, the initial wolf pack with better fitness function val-
ues is selected from the DB, and the wolf leaders are identified. In the
“knowledge mining on the surrogate,” the RBF model is dynamically
updated and is sufficiently exploited by a dedicated optimization process
consisting of a global optimization search and a multi-start optimiza-
tion search. A small region around the present best solution is also cre-
ated for the local search to speed up convergence. In the “RBF-assisted
metaheuristic exploration,” the precious knowledge from RBF is used to
assist the generation of wolf leaders that will guide the whole wolf pack
to explore the design space.

Representative test cases and published data from four top-rated surro-
gate-assisted evolutionary algorithms are used for a comparative study in
this work to test the functionality and verify the performance of the new
SAGWO algorithm. The comparison experiments on 21 test cases, rang-
ing from 30 to 100 design variables showed that the SAGWO has superior
computation efficiency and robustness.

For now, SAGWO can be directly used for computationally expensive
constrained problems by the penalty-function method. However, when
the number of expensive constraints increases, SAGWO may have diffi-
culty in finding feasible solutions by the penalty function. In future work,
it is of interest to extend SAGWO’s capability to solve high-dimensional
optimization problems with multiple costly inequality constraints that are
another huge challenge in the engineering optimization field. Moreover,
SAGWO will be used for the large-scale smart grid design and shape design
of full-parameter blended-wing-body underwater gliders in the next stage.

NOTE

1 Based on “Surrogate-assisted Grey wolf optimization for high-dimensional,
computationally expensive black-box problems,” published in [Swarm and
Evolutionary Computation], [2020]. Permission obtained from [Elsevier].
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